1
|
Francis N, Ayodele BA, O'Brien-Simpson NM, Birchmeier W, Pike RN, Pagel CN, Mackie EJ. Keratinocyte-specific ablation of protease-activated receptor 2 prevents gingival inflammation and bone loss in a mouse model of periodontal disease. Cell Microbiol 2018; 20:e12891. [PMID: 30009515 DOI: 10.1111/cmi.12891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/13/2018] [Accepted: 07/06/2018] [Indexed: 01/10/2023]
Abstract
Chronic periodontitis is characterised by gingival inflammation and alveolar bone loss. A major aetiological agent is Porphyromonas gingivalis, which secretes proteases that activate protease-activated receptor 2 (PAR2 ). PAR2 expressed on oral keratinocytes is activated by proteases released by P. gingivalis, inducing secretion of interleukin 6 (IL-6), and global knockout of PAR2 prevents bone loss and inflammation in a periodontal disease model in mice. To test the hypothesis that PAR2 expressed on gingival keratinocytes is required for periodontal disease pathology, keratinocyte-specific PAR2 -null mice were generated using K14-Cre targeted deletion of the PAR2 gene (F2rl1). These mice were subjected to a model of periodontitis involving placement of a ligature around a tooth, combined with P. gingivalis infection ("Lig + Inf"). The intervention caused a significant 44% decrease in alveolar bone volume (assessed by microcomputed tomography) in wildtype (K14-Cre:F2rl1wt/wt ), but not littermate keratinocyte-specific PAR2 -null (K14-Cre:F2rl1fl/fl ) mice. Keratinocyte-specific ablation of PAR2 prevented the significant Lig + Inf-induced increase (2.8-fold) in the number of osteoclasts in alveolar bone and the significant up-regulation (2.4-4-fold) of the inflammatory markers IL-6, IL-1β, interferon-γ, myeloperoxidase, and CD11b in gingival tissue. These data suggest that PAR2 expressed on oral epithelial cells is a critical regulator of periodontitis-induced bone loss and will help in designing novel therapies with which to treat the disease.
Collapse
Affiliation(s)
- Nidhish Francis
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Babatunde A Ayodele
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | - Robert N Pike
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Charles N Pagel
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
2
|
Activated HGF-c-Met Axis in Head and Neck Cancer. Cancers (Basel) 2017; 9:cancers9120169. [PMID: 29231907 PMCID: PMC5742817 DOI: 10.3390/cancers9120169] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly morbid disease. Recent developments including Food and Drug Administration (FDA) approved molecular targeted agent’s pembrolizumab and cetuximab show promise but did not improve the five-year survival which is currently less than 40%. The hepatocyte growth factor receptor; also known as mesenchymal–epithelial transition factor (c-Met) and its ligand hepatocyte growth factor (HGF) are overexpressed in head and neck squamous cell carcinoma (HNSCC); and regulates tumor progression and response to therapy. The c-Met pathway has been shown to regulate many cellular processes such as cell proliferation, invasion, and angiogenesis. The c-Met pathway is involved in cross-talk, activation, and perpetuation of other signaling pathways, curbing the cogency of a blockade molecule on a single pathway. The receptor and its ligand act on several downstream effectors including phospholipase C gamma (PLCγ), cellular Src kinase (c-Src), phosphotidylinsitol-3-OH kinase (PI3K) alpha serine/threonine-protein kinase (Akt), mitogen activate protein kinase (MAPK), and wingless-related integration site (Wnt) pathways. They are also known to cross-talk with other receptors; namely epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) and specifically contribute to treatment resistance. Clinical trials targeting the c-Met axis in HNSCC have been undertaken because of significant preclinical work demonstrating a relationship between HGF/c-Met signaling and cancer cell survival. Here we focus on HGF/c-Met impact on cellular signaling in HNSCC to potentiate tumor growth and disrupt therapeutic efficacy. Herein we summarize the current understanding of HGF/c-Met signaling and its effects on HNSCC. The intertwining of c-Met signaling with other signaling pathways provides opportunities for more robust and specific therapies, leading to better clinical outcomes.
Collapse
|
3
|
Izumida Y, Aoki T, Yasuda D, Koizumi T, Suganuma C, Saito K, Murai N, Shimizu Y, Hayashi K, Odaira M, Kusano T, Kushima M, Kudano M. Hepatocyte growth factor is constitutively produced by donor-derived bone marrow cells and promotes regeneration of pancreatic beta-cells. Biochem Biophys Res Commun 2011; 333:273-82. [PMID: 15950193 DOI: 10.1016/j.bbrc.2005.05.100] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 05/17/2005] [Indexed: 01/29/2023]
Abstract
Recent studies have demonstrated that the transplantation of bone marrow cells following diabetes induced by streptozotocin can support the recovery of pancreatic b-cell mass and a partial reversal of hyperglycemia. To address this issue, we examined whether the c-Met/hepatocyte growth factor (HGF) signaling pathway was involved in the recovery of b-cell injury after bone marrow transplantation (BMT). In this model, donor-derived bone marrow cells were positive for HGF immunoreactivity in the recipient spleen, liver, lung, and pancreas as well as in the host hepatocytes. Indeed, plasma HGF levels were maintained at a high value.The frequency of c-Met expression and its proliferative activity and differentiative response in the pancreatic ductal cells in the BMT group were greater than those in the PBS-treated group, resulting in an elevated number of endogenous insulin-producing cells. The induction of the c-Met/HGF signaling pathway following BMT promotes pancreatic regeneration in diabetic rats.
Collapse
Affiliation(s)
- Yoshihiko Izumida
- Department of General and Gastrointestinal Surgery, Showa University, School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hui AY, Meens JA, Schick C, Organ SL, Qiao H, Tremblay EA, Schaeffer E, Uniyal S, Chan BMC, Elliott BE. Src and FAK mediate cell-matrix adhesion-dependent activation of Met during transformation of breast epithelial cells. J Cell Biochem 2009; 107:1168-81. [PMID: 19533669 DOI: 10.1002/jcb.22219] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell-matrix adhesion has been shown to promote activation of the hepatocyte growth factor receptor, Met, in a ligand-independent manner. This process has been linked to transformation and tumorigenesis in a variety of cancer types. In the present report, we describe a key role of integrin signaling via the Src/FAK axis in the activation of Met in breast epithelial and carcinoma cells. Expression of an activated Src mutant in non-neoplastic breast epithelial cells or in carcinoma cells was found to increase phosphorylation of Met at regulatory tyrosines in the auto-activation loop domain, correlating with increased cell spreading and filopodia extensions. Furthermore, phosphorylated Met is complexed with beta1 integrins and is co-localized with vinculin and FAK at focal adhesions in epithelial cells expressing activated Src. Conversely, genetic or pharmacological inhibition of Src abrogates constitutive Met phosphorylation in carcinoma cells or epithelial cells expressing activated Src, and inhibits filopodia formation. Interestingly, Src-dependent phosphorylation of Met requires cell-matrix adhesion, as well as actin stress fiber assembly. Phosphorylation of FAK by Src is also required for Src-induced Met phosphorylation, emphasizing the importance of the Src/FAK signaling pathway. However, stimulation of Met phosphorylation by addition of exogenous HGF in epithelial cells is refractory to inhibition of Src family kinases, indicating that HGF-dependent and Src/integrin-dependent Met activation occur via distinct mechanisms. Together these findings demonstrate a novel mechanism by which the Src/FAK axis links signals from the integrin adhesion complex to promote Met activation in breast epithelial cells.
Collapse
Affiliation(s)
- Angela Y Hui
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Patanè S, Avnet S, Coltella N, Costa B, Sponza S, Olivero M, Vigna E, Naldini L, Baldini N, Ferracini R, Corso S, Giordano S, Comoglio PM, Di Renzo MF. MET Overexpression Turns Human Primary Osteoblasts into Osteosarcomas. Cancer Res 2006; 66:4750-7. [PMID: 16651428 DOI: 10.1158/0008-5472.can-05-4422] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The MET oncogene was causally involved in the pathogenesis of a rare tumor, i.e., the papillary renal cell carcinoma, in which activating mutations, either germline or somatic, were identified. MET activating mutations are rarely found in other human tumors, whereas at higher frequencies, MET is amplified and/or overexpressed in sporadic tumors of specific histotypes, including osteosarcoma. In this work, we provide experimental evidence that overexpression of the MET oncogene causes and sustains the full-blown transformation of osteoblasts. Overexpression of MET, obtained by lentiviral vector-mediated gene transfer, resulted in the conversion of primary human osteoblasts into osteosarcoma cells, displaying the transformed phenotype in vitro and the distinguishing features of human osteosarcomas in vivo. These included atypical nuclei, aberrant mitoses, production of alkaline phosphatase, secretion of osteoid extracellular matrix, and striking neovascularization. Although with a lower tumorigenicity, this phenotype was superimposable to that observed after transfer of the MET gene activated by mutation. Both transformation and tumorigenesis were fully abrogated when MET expression was quenched by short-hairpin RNA or when signaling was impaired by a dominant-negative MET receptor. These data show that MET overexpression is oncogenic and that it is essential for the maintenance of the cancer phenotype.
Collapse
Affiliation(s)
- Salvatore Patanè
- Laboratory of Cancer Genetics, University of Turin School of Medicine, Candiolo (Turin), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Raymond WW, Cruz AC, Caughey GH. Mast cell and neutrophil peptidases attack an inactivation segment in hepatocyte growth factor to generate NK4-like antagonists. J Biol Chem 2005; 281:1489-94. [PMID: 16303761 PMCID: PMC2271111 DOI: 10.1074/jbc.m511154200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a plasminogen-like protein with an alpha chain linked to a trypsin-like beta chain without peptidase activity. The interaction of HGF with c-met, a receptor tyrosine kinase expressed by many cells, is important in cell growth, migration, and formation of endothelial and epithelial tubes. Stimulation of c-met requires two-chain, disulfide-linked HGF. Portions of an alpha chain containing an N-terminal segment and four kringle domains (NK4) antagonize HGF activity. Until now, no physiological pathway for generating NK4 was known. Here we show that chymases, which are chymotryptic peptidases secreted by mast cells, hydrolyze HGF, thereby abolishing scatter factor activity while generating an NK4-like antagonist of HGF scatter factor activity. Thus, chymase interferes with HGF directly by destroying active protein and indirectly by generating an antagonist. The site of hydrolysis, Leu480, lies in the alpha chain on the N-terminal side of the cysteine linking the alpha and beta chains. This site appears to be specific for HGF because chymase does not hydrolyze other plasminogen-like proteins, such as macrophage-stimulating protein and plasminogen itself. Mast cell/neutrophil cathepsin G and neutrophil elastase generate similar fragments of HGF by cleaving near the chymase site. Mast cell and neutrophil peptidases are secreted during tissue injury, infection, ischemia, and allergic inflammation, where they may oppose HGF effects on epithelial repair. Thus, HGF possesses an "inactivation segment" that serves as an Achilles' heel attacked by inflammatory proteases. This work reveals a potential physiological pathway for inactivation of HGF and generation of NK4-like antagonists.
Collapse
Affiliation(s)
- Wilfred W. Raymond
- Department of Medicine and Cardiovascular Research Institute, The University of California at San Francisco, San Francisco, California 94143
- The Veterans Affairs Medical Center, San Francisco, California 94121
| | - Anthony C. Cruz
- Department of Medicine and Cardiovascular Research Institute, The University of California at San Francisco, San Francisco, California 94143
- The Veterans Affairs Medical Center, San Francisco, California 94121
| | - George H. Caughey
- Department of Medicine and Cardiovascular Research Institute, The University of California at San Francisco, San Francisco, California 94143
- The Veterans Affairs Medical Center, San Francisco, California 94121
- To whom correspondence should be addressed: Veterans Affairs Medical Center 111-D, 4150 Clement St., San Francisco, CA 94121; Tel.: 415-221-4810 (ext. 2385); Fax: 415-387-3568; E-mail:
| |
Collapse
|
7
|
Crouch S, Spidel CS, Lindsey JS. HGF and ligation of alphavbeta5 integrin induce a novel, cancer cell-specific gene expression required for cell scattering. Exp Cell Res 2004; 292:274-87. [PMID: 14697335 DOI: 10.1016/j.yexcr.2003.09.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hepatocyte growth factor (HGF), a cytokine involved in tumorigenesis and most metastases, initiates cell migration by binding to the protooncogene c-Met receptor. In epithelial carcinoma cells, c-Met activation causes the breakdown of E-cadherin cell-cell contacts leading to cell spreading. While the breakdown of E-cadherin contacts is immediate, HGF-induced migration requires transcription. To test the hypothesis that this de novo mRNA synthesis includes cancer cell-specific transcripts, we performed subtraction hybridization to isolate HGF-induced transcripts from an endometrial epithelial carcinoma cell line, RL95-2 (RL95), known to migrate but not to proliferate with HGF treatment. One novel cDNA we call Mig-7 is induced by HGF in endometrial epithelial carcinoma cell lines RL95 and HEC-1A before migration ensues. Ovarian, oral squamous cell, and colon metastatic tumors but not normal tissues express Mig-7. HGF did not induce Mig-7 in normal primary endometrial epithelial cells. In addition, blocking antibodies to alphavbeta5 integrin inhibited HGF induction of Mig-7 in RL95 cells. Most importantly, Mig-7-specific antisense oligonucleotides inhibited scattering of RL95 cells in vitro. These results are the first to demonstrate that Mig-7 expression may be used as a cancer cell-specific target to inhibit cell scattering.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Amino Acid Sequence/genetics
- Antibodies/pharmacology
- Base Sequence/genetics
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/isolation & purification
- Carcinoma/genetics
- Carcinoma/metabolism
- Cell Line, Tumor
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Hepatocyte Growth Factor/metabolism
- Hepatocyte Growth Factor/pharmacology
- Humans
- Integrins/antagonists & inhibitors
- Integrins/metabolism
- Middle Aged
- Molecular Sequence Data
- Neoplasm Invasiveness/genetics
- Neoplasm Metastasis/genetics
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/isolation & purification
- Oligoribonucleotides, Antisense/pharmacology
- Proto-Oncogene Proteins c-met/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Vitronectin/antagonists & inhibitors
- Receptors, Vitronectin/metabolism
- Stromal Cells/cytology
- Stromal Cells/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Sonya Crouch
- Pharmaceutical Sciences Department, Texas Tech University Health Science Center School of Pharmacy, Amarillo, TX 79106, USA
| | | | | |
Collapse
|
8
|
Qiao H, Hung W, Tremblay E, Wojcik J, Gui J, Ho J, Klassen J, Campling B, Elliott B. Constitutive activation of met kinase in non-small-cell lung carcinomas correlates with anchorage-independent cell survival. J Cell Biochem 2003; 86:665-77. [PMID: 12210733 DOI: 10.1002/jcb.10239] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lung cancer is currently the most frequent cause of cancer death in North America. Hepatocyte growth factor (HGF) and its receptor Met are frequently over-expressed in non-small-cell lung carcinomas (NSCLC), but their potential role in tumor progression is not clearly known. To assess the role of HGF/Met signaling in lung carcinomas, we have examined the expression, activation status, and function of Met in NSCLC cell lines (n = 7), established from primary tumors or pleural fluids of cancer patients. We observed Met expression in three NSCLC cell lines, two of which exhibited constitutive tyrosine-phosphorylation of Met, and Met kinase activity. In addition, the observed constitutive activation of Met was sustained under anchorage-independent conditions, and correlated with phosphatidyl inositol 3-kinase-dependent cell survival. Immunoreactive HGF-like protein was secreted by two Met-positive and two Met-negative NSCLC cell lines. However HGF activity, as determined by the ability to induce cell scattering and tyrosine-phosphorylation of Met in reporter cell lines, was detected in conditioned medium from only one Met-negative NSCLC cell line: none of the conditioned media from Met-expressing NSCLC cell lines showed detectable HGF activity. Thus, constitutive activation of Met in NSCLC cell lines may occur at least in part through intracrine, or HGF-independent mechanisms. Interestingly, additional paracrine stimulation with exogenous recombinant HGF was required for DNA synthesis and correlated with increased activation of ERK1/2 in all Met-positive NSCLC cell lines, regardless of the basal activation status of Met. These findings indicate that a medium level of constitutive activation of Met occurs in some NSCLC cell lines, and correlates with survival of detached carcinoma cells; whereas additional paracrine stimulation by recombinant HGF is required for DNA synthesis. Thus constitutive and paracrine activation of Met may provide complementary signals that promote survival and proliferation, respectively, during tumor progression of NSCLC.
Collapse
Affiliation(s)
- Hui Qiao
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario, K7L 3N6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|