1
|
Zhou L, Raza SHA, Ma B, Shater AF, Mohammedsaleh ZM, Jahejo AR, Li J, Gui L. Mutations in FGFR1 were associated with growth traits in sheep ( Ovis aries). Anim Biotechnol 2023; 34:1-7. [PMID: 34097574 DOI: 10.1080/10495398.2021.1929271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
For its role in the mediation of myoblast proliferation, fibroblast growth factor receptor 1 (FGFR1) was considered a functional candidate gene for growth performance in Tibetan sheep. Via the polymerase chain reaction-restriction fragment length polymorphism (PCR-PFLP) approach, four single nucleotide polymorphisms (SNPs) including g.14752C > T (intron 1), g.45361A > G (intron 7), g.49400A > G (3'UTR region) and g.49587A > T (3'UTR region), were identified in 422 ewes. The association analysis demonstrated that individuals carrying the AA genotype of g.49400A > G had significantly greater withers height, length than those with GG genotype (p < 0.05). Individuals with genotype AA of g.49587A > T had significantly greater weight and chest circumference than those with genotype TT (p < 0.01). Additionally, the individuals with Hap1/1 diplotypes (CAAA-CAAA) were highly significantly associated with weight and chest circumference than Hap1/2 diplotypes (CAAA-CAAT) (p < 0.05). The quantitative real-time polymerase chain reaction (qPCR) analysis revealed that the FGFR1 was detectable expressed in muscle tissues within three different age stage. Remarkably higher mRNA expression was detected at fetal lamb stage as compared with adult ewes (p < 0.01). The outcome of this research confirmed that both g.49400A > G and g.49587A > T of FGFR1 were involved in growth-related traits, which may be considered to be genetic markers for improving the growth traits of Tibetan sheep.
Collapse
Affiliation(s)
- Li Zhou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Boyan Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ali Raza Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jiangwei Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| |
Collapse
|
2
|
Galimov A, Merry TL, Luca E, Rushing EJ, Mizbani A, Turcekova K, Hartung A, Croce CM, Ristow M, Krützfeldt J. MicroRNA-29a in Adult Muscle Stem Cells Controls Skeletal Muscle Regeneration During Injury and Exercise Downstream of Fibroblast Growth Factor-2. Stem Cells 2016; 34:768-80. [PMID: 26731484 DOI: 10.1002/stem.2281] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 09/23/2015] [Accepted: 10/31/2015] [Indexed: 01/18/2023]
Abstract
The expansion of myogenic progenitors (MPs) in the adult muscle stem cell niche is critical for the regeneration of skeletal muscle. Activation of quiescent MPs depends on the dismantling of the basement membrane and increased access to growth factors such as fibroblast growth factor-2 (FGF2). Here, we demonstrate using microRNA (miRNA) profiling in mouse and human myoblasts that the capacity of FGF2 to stimulate myoblast proliferation is mediated by miR-29a. FGF2 induces miR-29a expression and inhibition of miR-29a using pharmacological or genetic deletion decreases myoblast proliferation. Next generation RNA sequencing from miR-29a knockout myoblasts (Pax7(CE/+) ; miR-29a(flox/flox) ) identified members of the basement membrane as the most abundant miR-29a targets. Using gain- and loss-of-function experiments, we confirm that miR-29a coordinately regulates Fbn1, Lamc1, Nid2, Col4a1, Hspg2 and Sparc in myoblasts in vitro and in MPs in vivo. Induction of FGF2 and miR-29a and downregulation of its target genes precedes muscle regeneration during cardiotoxin (CTX)-induced muscle injury. Importantly, MP-specific tamoxifen-induced deletion of miR-29a in adult skeletal muscle decreased the proliferation and formation of newly formed myofibers during both CTX-induced muscle injury and after a single bout of eccentric exercise. Our results identify a novel miRNA-based checkpoint of the basement membrane in the adult muscle stem cell niche. Strategies targeting miR-29a might provide useful clinical approaches to maintain muscle mass in disease states such as ageing that involve aberrant FGF2 signaling.
Collapse
Affiliation(s)
- Artur Galimov
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Troy L Merry
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Edlira Luca
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Elisabeth J Rushing
- Institute of Neuropathology, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Amir Mizbani
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Katarina Turcekova
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Angelika Hartung
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, Ohio, USA
| | - Michael Ristow
- Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jan Krützfeldt
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Yablonka-Reuveni Z, Danoviz ME, Phelps M, Stuelsatz P. Myogenic-specific ablation of Fgfr1 impairs FGF2-mediated proliferation of satellite cells at the myofiber niche but does not abolish the capacity for muscle regeneration. Front Aging Neurosci 2015; 7:85. [PMID: 26074812 PMCID: PMC4446549 DOI: 10.3389/fnagi.2015.00085] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle satellite cells (SCs) are Pax7+ myogenic stem cells that reside between the basal lamina and the plasmalemma of the myofiber. In mature muscles, SCs are typically quiescent, but can be activated in response to muscle injury. Depending on the magnitude of tissue trauma, SCs may divide minimally to repair subtle damage within individual myofibers or produce a larger progeny pool that forms new myofibers in cases of overt muscle injury. SC transition through proliferation, differentiation and renewal is governed by the molecular blueprint of the cells as well as by the extracellular milieu at the SC niche. In particular, the role of the fibroblast growth factor (FGF) family in regulating SCs during growth and aging is well recognized. Of the several FGFs shown to affect SCs, FGF1, FGF2, and FGF6 proteins have been documented in adult skeletal muscle. These prototypic paracrine FGFs transmit their mitogenic effect through the FGFRs, which are transmembrane tyrosine kinase receptors. Using the mouse model, we show here that of the four Fgfr genes, only Fgfr1 and Fgfr4 are expressed at relatively high levels in quiescent SCs and their proliferating progeny. To further investigate the role of FGFR1 in adult myogenesis, we have employed a genetic (Cre/loxP) approach for myogenic-specific (MyoDCre-driven) ablation of Fgfr1. Neither muscle histology nor muscle regeneration following cardiotoxin-induced injury were overtly affected in Fgfr1-ablated mice. This suggests that FGFR1 is not obligatory for SC performance in this acute muscle trauma model, where compensatory growth factor/cytokine regulatory cascades may exist. However, the SC mitogenic response to FGF2 is drastically repressed in isolated myofibers prepared from Fgfr1-ablated mice. Collectively, our study indicates that FGFR1 is important for FGF-mediated proliferation of SCs and its mitogenic role is not compensated by FGFR4 that is also highly expressed in SCs.
Collapse
Affiliation(s)
- Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle WA, USA
| | - Maria E Danoviz
- Department of Biological Structure, University of Washington School of Medicine, Seattle WA, USA
| | - Michael Phelps
- Department of Biological Structure, University of Washington School of Medicine, Seattle WA, USA
| | - Pascal Stuelsatz
- Department of Biological Structure, University of Washington School of Medicine, Seattle WA, USA
| |
Collapse
|
4
|
|
5
|
Rouabhia M, Park H, Meng S, Derbali H, Zhang Z. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One 2013; 8:e71660. [PMID: 23990967 PMCID: PMC3747189 DOI: 10.1371/journal.pone.0071660] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/01/2013] [Indexed: 01/15/2023] Open
Abstract
Electrical stimulation (ES) has long been used as an alternative clinical treatment and an effective approach to modulate cellular behaviours. In this work we investigated the effects of ES on human skin fibroblast activity, myofibroblast transdifferentiation and the consequence on wound healing. Normal human fibroblasts were seeded on heparin-bioactivated PPy/PLLA conductive membranes, cultured for 24 h, and then exposed to ES of 50 or 200 mV/mm for 2, 4, or 6 h. Following ES, the cells were either subjected to various analyses or re-seeded to investigate their healing capacity. Our findings show that ES had no cytotoxic effect on the fibroblasts, as demonstrated by the similar LDH activity levels in the ES-exposed and non-exposed cultures, and by the comparable cell viability under both conditions. Furthermore, the number of viable fibroblasts was higher following exposure to 6 h of ES than in the non-exposed culture. This enhanced cell growth was likely due to the ES up-regulated secretion of FGF-1 and FGF-2. In an in vitro scratch-wound assay where cell monolayer was used as a healing model, the electrically stimulated dermal fibroblasts migrated faster following exposure to ES and recorded a high contractile behaviour toward the collagen gel matrix. This enhanced contraction was supported by the high level of α-smooth muscle actin expressed by the fibroblasts following exposure to ES, indicating the characteristics of myofibroblasts. Remarkably, the modulation of fibroblast growth continued long after ES. In conclusion, this work demonstrates for the first time that exposure to ES promoted skin fibroblast growth and migration, increased growth factor secretion, and promoted fibroblast to myofibroblast transdifferentiation, thus promoting wound healing.
Collapse
Affiliation(s)
- Mahmoud Rouabhia
- Faculty of Dentistry, Research Group on Oral Ecology, Laval University, Quebec City, Quebec, Canada
| | - Hyunjin Park
- Faculty of Dentistry, Research Group on Oral Ecology, Laval University, Quebec City, Quebec, Canada
- Faculty of Medicine, Department of Surgery, Laval University, Saint-François d’Assise Hospital Research Center, CHU, Quebec City, Quebec, Canada
| | - Shiyun Meng
- College of Environment and Biotechnology, Chongqing Technology and Business University, Chongqing, China
| | - Habib Derbali
- Faculty of Dentistry, Research Group on Oral Ecology, Laval University, Quebec City, Quebec, Canada
- Faculty of Medicine, Department of Surgery, Laval University, Saint-François d’Assise Hospital Research Center, CHU, Quebec City, Quebec, Canada
| | - Ze Zhang
- Faculty of Medicine, Department of Surgery, Laval University, Saint-François d’Assise Hospital Research Center, CHU, Quebec City, Quebec, Canada
| |
Collapse
|
6
|
Boonen KJM, van der Schaft DWJ, Baaijens FPT, Post MJ. Interaction between electrical stimulation, protein coating and matrix elasticity: a complex effect on muscle fibre maturation. J Tissue Eng Regen Med 2010; 5:60-8. [DOI: 10.1002/term.289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension. BMC Musculoskelet Disord 2007; 8:32. [PMID: 17425786 PMCID: PMC1853093 DOI: 10.1186/1471-2474-8-32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 04/10/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy can occur under many different conditions, including prolonged disuse or immobilization, cachexia, cushingoid conditions, secondary to surgery, or with advanced age. The mechanisms by which unloading of muscle is sensed and translated into signals controlling tissue reduction remains a major question in the field of musculoskeletal research. While the fibroblast growth factors (FGFs) and their receptors are synthesized by, and intimately involved in, embryonic skeletal muscle growth and repair, their role maintaining adult muscle status has not been examined. METHODS We examined the effects of ectopic expression of FGFR1 during disuse-mediated skeletal muscle atrophy, utilizing hindlimb suspension and DNA electroporation in mice. RESULTS We found skeletal muscle FGF4 and FGFR1 mRNA expression to be modified by hind limb suspension,. In addition, we found FGFR1 protein localized in muscle fibers within atrophying mouse muscle which appeared to be resistant to atrophy. Electroporation and ectopic expression of FGFR1 significantly inhibited the decrease in muscle fiber area within skeletal muscles of mice undergoing suspension induced muscle atrophy. Ectopic FGFR1 expression in muscle also significantly stimulated protein synthesis in muscle fibers, and increased protein degradation in weight bearing muscle fibers. CONCLUSION These results support the theory that FGF signaling can play a role in regulation of postnatal skeletal muscle maintenance, and could offer potentially novel and efficient therapeutic options for attenuating muscle atrophy during aging, illness and spaceflight.
Collapse
|
8
|
Smith-Adaline EA, Volkman SK, Ignelzi MA, Slade J, Platte S, Goldstein SA. Mechanical environment alters tissue formation patterns during fracture repair. J Orthop Res 2004; 22:1079-85. [PMID: 15304282 DOI: 10.1016/j.orthres.2004.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Accepted: 02/10/2004] [Indexed: 02/04/2023]
Abstract
Fracture repair has previously been shown to be sensitive to mechanical environment, yet the specific relationship between strain character, magnitude and frequency, as well as other mechanical parameters, and tissue formation is not well understood. This study aimed to correlate strain distribution within the healing fracture gap with patterns of tissue formation using a rat model of a healing osteotomy subject to mechanical stimulation in bending. Finite element models based on realistic tissue distributions were used to estimate both the magnitude and spatial distribution of strains within the fracture gap. The spatial distribution of regenerating tissue was determined by microcomputed tomography and histology, and was confirmed using reverse transcription-polymerase chain reaction (RT-PCR). Results suggest that tensile strains suppress chondrogenesis during the mechanical stimulation period. After stimulation ends, however, tensile strains increased chondrogenesis followed by rapid bone formation. In contrast, in compressive environments, bone is formed primarily via intramembranous ossification. Taken together, these results suggest that intermittent tensile strains during fracture repair stimulate endochondral ossification and promote eventual bone healing compared to intermittent compressive strains and unstimulated fractures. Further understanding of these relationships may allow proposal of optimal therapeutic strategies for improvement of the fracture repair process.
Collapse
Affiliation(s)
- E A Smith-Adaline
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, G-161 400 N. Ingalls, Ann Arbor, MI 48109-0486, USA
| | | | | | | | | | | |
Collapse
|
9
|
Putman CT, Xu X, Gillies E, MacLean IM, Bell GJ. Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans. Eur J Appl Physiol 2004; 92:376-84. [PMID: 15241691 DOI: 10.1007/s00421-004-1104-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2004] [Indexed: 10/26/2022]
Abstract
This study investigated the effect of strength training, endurance training, and combined strength plus endurance training on fibre-type transitions, fibre cross-sectional area (CSA) and MHC isoform content of the vastus lateralis muscle. Forty volunteers (24 males and 16 females) were randomly assigned to one of four groups: control (C), endurance training (E), strength training (S), or concurrent strength and endurance training (SE). The S and E groups each trained three times a week for 12 weeks; the SE group performed the same S and E training on alternate days. The development of knee extensor muscle strength was S>SE>E ( P<0.05) and has been reported elsewhere. The reduction in knee extensor strength development in SE as compared to S corresponded to a 6% increase in MHCIIa content ( P<0.05) in SE at the expense of the faster MHCIId(x) isoform ( P<0.05), as determined by electrophoretic analyses; reductions in MHCIId/x content after S or E training were attenuated by comparison. Both S and SE induced three- to fourfold reductions ( P<0.05) in the proportion of type IIA/IID(X) hybrid fibres. S also induced fourfold increases in the proportion of type I/IIA hybrid fibres within both genders, and in a population of fibres expressing a type I/IID(X) hybrid phenotype within the male subjects. Type I/IIA hybrid fibres were not detected after SE. Both S and SE training paradigms induced similar increases (16-19%, P<0.05) in the CSA of type IIA fibres. In contrast, the increase in CSA of type I fibres was 2.9-fold greater ( P<0.05) in S as compared to SE after 12 weeks. We conclude that the interference of knee extensor strength development in SE versus S was related to greater fast-to-slow fibre-type transitions and attenuated hypertrophy of type I fibres. Data are given as mean (SEM) unless otherwise stated.
Collapse
Affiliation(s)
- Charles T Putman
- Exercise Biochemistry Laboratory, Faculty of Physical Education and Recreation, University of Alberta, T6G 2H9, Edmonton, AB, Canada.
| | | | | | | | | |
Collapse
|
10
|
Zambon AC, McDearmon EL, Salomonis N, Vranizan KM, Johansen KL, Adey D, Takahashi JS, Schambelan M, Conklin BR. Time- and exercise-dependent gene regulation in human skeletal muscle. Genome Biol 2003; 4:R61. [PMID: 14519196 PMCID: PMC328450 DOI: 10.1186/gb-2003-4-10-r61] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 08/12/2003] [Accepted: 08/18/2003] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Skeletal muscle remodeling is a critical component of an organism's response to environmental changes. Exercise causes structural changes in muscle and can induce phase shifts in circadian rhythms, fluctuations in physiology and behavior with a period of around 24 hours that are maintained by a core clock mechanism. Both exercise-induced remodeling and circadian rhythms rely on the transcriptional regulation of key genes. RESULTS We used DNA microarrays to determine the effects of resistance exercise (RE) on gene regulation in biopsy samples of human quadriceps muscle obtained 6 and 18 hours after an acute bout of isotonic exercise with one leg. We also profiled diurnal gene regulation at the same time points (2000 and 0800 hours) in the non-exercised leg. Comparison of our results with published circadian gene profiles in mice identified 44 putative genes that were regulated in a circadian fashion. We then used quantitative PCR to validate the circadian expression of selected gene orthologs in mouse skeletal muscle. CONCLUSIONS The coordinated regulation of the circadian clock genes Cry1, Per2, and Bmal1 6 hours after RE and diurnal genes 18 hours after RE in the exercised leg suggest that RE may directly modulate circadian rhythms in human skeletal muscle.
Collapse
Affiliation(s)
- Alexander C Zambon
- Gladstone Institute of Cardiovascular Disease, Department of Medicine, University of California, San Francisco, CA 94141, USA
| | - Erin L McDearmon
- Howard Hughes Medical Institute, Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | - Nathan Salomonis
- Gladstone Institute of Cardiovascular Disease, Department of Medicine, University of California, San Francisco, CA 94141, USA
| | - Karen M Vranizan
- Gladstone Institute of Cardiovascular Disease, Department of Medicine, University of California, San Francisco, CA 94141, USA
- Functional Genomics Lab, University of California, Berkeley, CA 94720, USA
| | - Kirsten L Johansen
- Department of Medicine, University of California, San Francisco, CA 94141, USA
| | - Deborah Adey
- Department of Medicine, University of California, San Francisco, CA 94141, USA
| | - Joseph S Takahashi
- Howard Hughes Medical Institute, Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | - Morris Schambelan
- Department of Medicine, University of California, San Francisco, CA 94141, USA
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, Department of Medicine, University of California, San Francisco, CA 94141, USA
- Department of Medicine, University of California, San Francisco, CA 94141, USA
| |
Collapse
|
11
|
Putman CT, Sultan KR, Wassmer T, Bamford JA, Skorjanc D, Pette D. Fiber-type transitions and satellite cell activation in low-frequency-stimulated muscles of young and aging rats. J Gerontol A Biol Sci Med Sci 2001; 56:B510-9. [PMID: 11723143 DOI: 10.1093/gerona/56.12.b510] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We examined satellite cell content and the activity of satellite cell progeny in tibialis anterior muscles of young (15 weeks) and aging (101 weeks) Brown Norway (BN) rats, after they were exposed for 50 days to a standardized and highly reproducible regime of chronic low-frequency electrical stimulation. Chronic low-frequency electrical stimulation was successful in inducing fast-to-slow fiber-type transformation, characterized by a 2.3-fold increase in the proportion of IIA fibers and fourfold and sevenfold decreases in the proportion of IID/X and IIB fibers in both young and aging BN rats. These changes were accompanied by a twofold increase in the satellite cell content in both the young and aging groups; satellite cell content reached a level that was significantly higher in the young group (p <.04). The total muscle precursor cell content (i.e., satellite cells plus progeny), however, did not differ between groups, because there was a greater number of satellite cell progeny passing through the proliferative and differentiative compartments of the aging group. The resulting 1.5-fold increase in myonuclear content was similar in the young and aging groups. We conclude that satellite cells and satellite cell progeny of aging BN rats possess an unaltered capacity to contribute to the adaptive response.
Collapse
Affiliation(s)
- C T Putman
- Skeletal Muscle Research Group, Faculty of Physical Education, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | |
Collapse
|
12
|
Kästner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z. Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 2000; 48:1079-96. [PMID: 10898801 DOI: 10.1177/002215540004800805] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Satellite cells are the myogenic precursors in postnatal muscle and are situated beneath the myofiber basement membrane. We previously showed that fibroblast growth factor 2 (FGF2, basic FGF) stimulates a greater number of satellite cells to enter the cell cycle but does not modify the overall schedule of a short proliferative phase and a rapid transition to the differentiated state as the satellite cells undergo myogenesis in isolated myofibers. In this study we investigated whether other members of the FGF family can maintain the proliferative state of the satellite cells in rat myofiber cultures. We show that FGF1, FGF4, and FGF6 (as well as hepatocyte growth factor, HGF) enhance satellite cell proliferation to a similar degree as that seen with FGF2, whereas FGF5 and FGF7 are ineffective. None of the growth factors prolongs the proliferative phase or delays the transition of the satellite cells to the differentiating, myogenin(+) state. However, FGF6 retards the rapid exit of the cells from the myogenin(+) state that routinely occurs in myofiber cultures. To determine which of the above growth factors might be involved in regulating satellite cells in vivo, we examined their mRNA expression patterns in cultured rat myofibers using RT-PCR. The expression of all growth factors, excluding FGF4, was confirmed. Only FGF6 was expressed at a higher level in the isolated myofibers and not in the connective tissue cells surrounding the myofibers or in satellite cells dissociated away from the muscle. By Western blot analysis, we also demonstrated the presence of FGF6 protein in the skeletal musle tissue. Our studies therefore suggest that the myofibers serve as the main source for the muscle FGF6 in vivo. We also used RT-PCR to analyze the expression patterns of the four tyrosine kinase FGF receptors (FGFR1-FGFR4) and of the HGF receptor (c-met) in the myofiber cultures. Depending on the time in culture, expression of all receptors was detected, with FGFR2 and FGFR3 expressed only at a low level. Only FGFR4 was expressed at a higher level in the myofibers but not the connective tissue cell cultures. FGFR4 was also expressed at a higher level in satellite cells compared to the nonmyogenic cells when the two cell populations were released from the muscle tissue and fractionated by Percoll density centrifugation. The unique localization patterns of FGF6 and FGFR4 may reflect specific roles for these members of the FGF signaling complex during myogenesis in adult skeletal muscle.
Collapse
Affiliation(s)
- S Kästner
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|