1
|
Yu J, Liao PJ, Keller TH, Cherian J, Virshup DM, Xu W. Ultra-large scale virtual screening identifies a small molecule inhibitor of the Wnt transporter Wntless. iScience 2024; 27:110454. [PMID: 39104418 PMCID: PMC11298631 DOI: 10.1016/j.isci.2024.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Wnts are lipid-modified glycoproteins that play key roles in both embryonic development and adult homeostasis. Wnt signaling is dysregulated in many cancers and preclinical data shows that targeting Wnt biosynthesis and secretion can be effective in Wnt-addicted cancers. An integral membrane protein known as Wntless (WLS/Evi) is essential for Wnt secretion. However, WLS remains undrugged thus far. The cryo-EM structure of WLS in complex with WNT8A shows that WLS has a druggable G-protein coupled receptor (GPCR) domain. Using Active Learning/Glide, we performed an ultra-large scale virtual screening from Enamine's REAL 350/3 Lead-Like library containing nearly 500 million compounds. 68 hits were examined after on-demand synthesis in cell-based Wnt reporter and other functional assays. ETC-451 emerged as a potential first-in-class WLS inhibitor. ETC-451 blocked WLS-WNT3A interaction and decreased Wnt-addicted pancreatic cancer cell line proliferation. The current hit provides a starting chemical scaffold for further structure or ligand-based drug discovery targeting WLS.
Collapse
Affiliation(s)
- Jia Yu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Pei-Ju Liao
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Thomas H. Keller
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, Singapore 138670, Singapore
| | - Joseph Cherian
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, Singapore 138670, Singapore
| | - David M. Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Weijun Xu
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, Singapore 138670, Singapore
| |
Collapse
|
2
|
Koutra E, Lusmöller E, Fischer J, Komlosi K, Stadler R, Gutzmer R. [Focal dermal hypoplasia associated with pathogenic PORCN gene variant in postzygotic, unilateral mosaic form]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:486-491. [PMID: 38366244 DOI: 10.1007/s00105-024-05308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
We report a case of a 29-year-old woman with subtle partial erythematous, partial hyperpigmented streaks along the Blaschko's lines on the right side of the body since early childhood. Primary DNA results of the skin and blood assay diagnosed focal dermal hypoplasia in mosaic form. The postzygotic mutation in the PORCN gene was only detectable in the affected skin and not in the blood assay. This article illustrates that clinically very discrete hypopigmentation and poikiloderma along Blaschko lines should raise awareness for robust diagnostic analysis in order to recognize this variable multisystem disease and to ensure an appropriate search for extracutaneous abnormalities and human genetic counseling, ideally before pregnancy. Careful correlation of clinical, histological, and genetic features along with close multidisciplinary cooperation of specialists from the fields of human genetics, dermatology, pediatrics, orthopedics and ophthalmology is crucial for final diagnosis, assessment of the prognosis and targeted genetic counseling of affected individuals.
Collapse
Affiliation(s)
- Eleni Koutra
- Universitätsklinik für Dermatologie, Venerologie, Allergologie und Phlebologie, Johannes Wesling Klinikum Minden, Hans-Nolte-Str. 1, 32429, Minden, Deutschland.
| | - Elke Lusmöller
- Universitätsklinik für Dermatologie, Venerologie, Allergologie und Phlebologie, Johannes Wesling Klinikum Minden, Hans-Nolte-Str. 1, 32429, Minden, Deutschland
| | - Judith Fischer
- Institut für Humangenetik, Universitätsklinikum Freiburg, Freiburg, Deutschland
| | - Katalin Komlosi
- Institut für Humangenetik, Universitätsklinikum Freiburg, Freiburg, Deutschland
| | - Rudolf Stadler
- Universitätsklinik für Dermatologie, Venerologie, Allergologie und Phlebologie, Johannes Wesling Klinikum Minden, Hans-Nolte-Str. 1, 32429, Minden, Deutschland
| | - Ralf Gutzmer
- Universitätsklinik für Dermatologie, Venerologie, Allergologie und Phlebologie, Johannes Wesling Klinikum Minden, Hans-Nolte-Str. 1, 32429, Minden, Deutschland
| |
Collapse
|
3
|
de Almeida Magalhaes T, Liu J, Chan C, Borges KS, Zhang J, Kane AJ, Wierbowski BM, Ge Y, Liu Z, Mannam P, Zeve D, Weiss R, Breault DT, Huang P, Salic A. Extracellular carriers control lipid-dependent secretion, delivery, and activity of WNT morphogens. Dev Cell 2024; 59:244-261.e6. [PMID: 38154460 PMCID: PMC10872876 DOI: 10.1016/j.devcel.2023.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
WNT morphogens trigger signaling pathways fundamental for embryogenesis, regeneration, and cancer. WNTs are modified with palmitoleate, which is critical for binding Frizzled (FZD) receptors and activating signaling. However, it is unknown how WNTs are released and spread from cells, given their strong lipid-dependent membrane attachment. We demonstrate that secreted FZD-related proteins and WNT inhibitory factor 1 are WNT carriers, potently releasing lipidated WNTs and forming active soluble complexes. WNT release occurs by direct handoff from the membrane protein WNTLESS to the carriers. In turn, carriers donate WNTs to glypicans and FZDs involved in WNT reception and to the NOTUM hydrolase, which antagonizes WNTs by lipid moiety removal. WNT transfer from carriers to FZDs is greatly facilitated by glypicans that serve as essential co-receptors in Wnt signaling. Thus, an extracellular network of carriers dynamically controls secretion, posttranslational regulation, and delivery of WNT morphogens, with important practical implications for regenerative medicine.
Collapse
Affiliation(s)
| | - Jingjing Liu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Charlene Chan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kleiton Silva Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiuchun Zhang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J Kane
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bradley M Wierbowski
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yunhui Ge
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiwen Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Prabhath Mannam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Daniel Zeve
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ron Weiss
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Pengxiang Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adrian Salic
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Alvarez-Rodrigo I, Willnow D, Vincent JP. The logistics of Wnt production and delivery. Curr Top Dev Biol 2023; 153:1-60. [PMID: 36967191 DOI: 10.1016/bs.ctdb.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
7
|
Wnt signaling and the regulation of pluripotency. Curr Top Dev Biol 2023; 153:95-119. [PMID: 36967203 DOI: 10.1016/bs.ctdb.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The role of Wnt signaling in stem cells has been mired in seemingly contradictory findings. On one hand, Wnt has been heralded as a self-renewal factor. On the other hand, Wnt's association with differentiation and lineage commitment is indisputable. This apparent contradiction is particularly evident in pluripotent stem cells, where Wnt promotes self-renewal as well as differentiation. To resolve this discrepancy one must delve into fundamental principles of pluripotency and gain an appreciation for the concept of pluripotency states, which exist in a continuum with intermediate metastable states, some of which have been stabilized in vitro. Wnt signaling is a critical regulator of transitions between pluripotent states. Here, we will discuss Wnt's roles in maintaining pluripotency, promoting differentiation, as well as stimulating reprogramming of somatic cells to an induced pluripotent state.
Collapse
|
8
|
Fuhrmann S, Ramirez S, Mina Abouda M, Campbell CD. Porcn is essential for growth and invagination of the mammalian optic cup. Front Cell Dev Biol 2022; 10:1016182. [PMID: 36393832 PMCID: PMC9661423 DOI: 10.3389/fcell.2022.1016182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Microphthalmia, anophthalmia, and coloboma (MAC) are congenital ocular malformations causing 25% of childhood blindness. The X-linked disorder Focal Dermal Hypoplasia (FDH) is frequently associated with MAC and results from mutations in Porcn, a membrane bound O-acyl transferase required for palmitoylation of Wnts to activate multiple Wnt-dependent pathways. Wnt/β-catenin signaling is suppressed in the anterior neural plate for initiation of eye formation and is subsequently required during differentiation of the retinal pigment epithelium (RPE). Non-canonical Wnts are critical for early eye formation in frog and zebrafish. However, it is unclear whether this also applies to mammals. We performed ubiquitous conditional inactivation of Porcn in mouse around the eye field stage. In Porcn CKO , optic vesicles (OV) arrest in growth and fail to form an optic cup. Ventral proliferation is significantly decreased in the mutant OV, with a concomitant increase in apoptotic cell death. While pan-ocular transcription factors such as PAX6, SIX3, LHX2, and PAX2 are present, indicative of maintenance of OV identity, regional expression of VSX2, MITF, OTX2, and NR2F2 is downregulated. Failure of RPE differentiation in Porcn CKO is consistent with downregulation of the Wnt/β-catenin effector LEF1, starting around 2.5 days after inactivation. This suggests that Porcn inactivation affects signaling later than a potential requirement for Wnts to promote eye field formation. Altogether, our data shows a novel requirement for Porcn in regulating growth and morphogenesis of the OV, likely by controlling proliferation and survival. In FDH patients with ocular manifestations, growth deficiency during early ocular morphogenesis may be the underlying cause for microphthalmia.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN, United States
| | - Sara Ramirez
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN, United States
| | - Mirna Mina Abouda
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Clorissa D. Campbell
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
9
|
Zhao Y, Mahy W, Willis NJ, Woodward HL, Steadman D, Bayle ED, Atkinson BN, Sipthorp J, Vecchia L, Ruza RR, Harlos K, Jeganathan F, Constantinou S, Costa A, Kjær S, Bictash M, Salinas PC, Whiting P, Vincent JP, Fish PV, Jones EY. Structural Analysis and Development of Notum Fragment Screening Hits. ACS Chem Neurosci 2022; 13:2060-2077. [PMID: 35731924 PMCID: PMC9264368 DOI: 10.1021/acschemneuro.2c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Wnt signaling suppressor Notum is a promising target for osteoporosis, Alzheimer's disease, and colorectal cancers. To develop novel Notum inhibitors, we used an X-ray crystallographic fragment screen with the Diamond-SGC Poised Library (DSPL) and identified 59 fragment hits from the analysis of 768 data sets. Fifty-eight of the hits were found bound at the enzyme catalytic pocket with potencies ranging from 0.5 to >1000 μM. Analysis of the fragments' diverse binding modes, enzymatic inhibitory activities, and chemical properties led to the selection of six hits for optimization, and five of these resulted in improved Notum inhibitory potencies. One hit, 1-phenyl-1,2,3-triazole 7, and its related cluster members, have shown promising lead-like properties. These became the focus of our fragment development activities, resulting in compound 7d with IC50 0.0067 μM. The large number of Notum fragment structures and their initial optimization provided an important basis for further Notum inhibitor development.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - William Mahy
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Nicky J. Willis
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Hannah L. Woodward
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - David Steadman
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Elliott D. Bayle
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Benjamin N. Atkinson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - James Sipthorp
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Luca Vecchia
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Reinis R. Ruza
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Karl Harlos
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Fiona Jeganathan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Stefan Constantinou
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Artur Costa
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Svend Kjær
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Magda Bictash
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Patricia C. Salinas
- Department
of Cell and Developmental Biology, Laboratory for Molecular and Cellular
Biology, University College London, London WC1E 6BT, U.K.
| | - Paul Whiting
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Jean-Paul Vincent
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Paul V. Fish
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - E. Yvonne Jones
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| |
Collapse
|
10
|
Yu J, Liao PJ, Xu W, Jones JR, Everman DB, Flanagan-Steet H, Keller TH, Virshup DM. Structural model of human PORCN illuminates disease-associated variants and drug-binding sites. J Cell Sci 2021; 134:273795. [PMID: 34817055 DOI: 10.1242/jcs.259383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
Wnt signaling is essential for normal development and is a therapeutic target in cancer. The enzyme PORCN, or porcupine, is a membrane-bound O-acyltransferase (MBOAT) that is required for the post-translational modification of all Wnts, adding an essential mono-unsaturated palmitoleic acid to a serine on the tip of Wnt hairpin 2. Inherited mutations in PORCN cause focal dermal hypoplasia, and therapeutic inhibition of PORCN slows the growth of Wnt-dependent cancers. Based on homology to mammalian MBOAT proteins, we developed and validated a structural model of human PORCN. The model accommodates palmitoleoyl-CoA and Wnt hairpin 2 in two tunnels in the conserved catalytic core, shedding light on the catalytic mechanism. The model predicts how previously uncharacterized human variants of uncertain significance can alter PORCN function. Drugs including ETC-159, IWP-L6 and LGK-974 dock in the PORCN catalytic site, providing insights into PORCN pharmacologic inhibition. This structural model enhances our mechanistic understanding of PORCN substrate recognition and catalysis, as well as the inhibition of its enzymatic activity, and can facilitate the development of improved inhibitors and the understanding of disease-relevant PORCN mutants. This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Jia Yu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
| | - Pei-Ju Liao
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
| | - Weijun Xu
- Discovery Chemistry, Experimental Drug Development Centre, 10 Biopolis Road, Chromos, 138670, Singapore
| | - Julie R Jones
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - David B Everman
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Thomas H Keller
- Discovery Chemistry, Experimental Drug Development Centre, 10 Biopolis Road, Chromos, 138670, Singapore
| | - David M Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore.,Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
11
|
Gross JC. Extracellular WNTs: Trafficking, Exosomes, and Ligand-Receptor Interaction. Handb Exp Pharmacol 2021; 269:29-43. [PMID: 34505202 DOI: 10.1007/164_2021_531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
WNT signaling is a key developmental pathway in tissue organization. A recent focus of research is the secretion of WNT proteins from source cells. Research over the past decade on how WNTs are produced and released into the extracellular space has unravelled very specific control mechanisms in the early secretory pathway, specialized trafficking routes, and redundant forms of packaging for delivery to target cells. In this review I discuss the findings that WNT proteins have been found on extracellular vesicles (EVs) such as exosomes and possible functional implications. There is an ongoing debate in the WNT signaling field whether EV are relevant in vivo and can fulfill specific functions, also fueled by the general preconception of EV secretion as cellular garbage disposal. As part of the EV research community, I want to give an overview of what we know and don't know about WNT secretion on EVs and offer a more unifying model that can explain current discrepancies in observations regarding WNT secretion.
Collapse
Affiliation(s)
- Julia Christina Gross
- Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany. .,Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany. .,Health and Medical University Potsdam, Potsdam, Germany.
| |
Collapse
|
12
|
Galli LM, Anderson MO, Gabriel Fraley J, Sanchez L, Bueno R, Hernandez DN, Maddox EU, Lingappa VR, Burrus LW. Determination of the membrane topology of PORCN, an O-acyl transferase that modifies Wnt signalling proteins. Open Biol 2021; 11:200400. [PMID: 34186010 PMCID: PMC8241489 DOI: 10.1098/rsob.200400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Wnt gradients elicit distinct cellular responses, such as proliferation, specification, differentiation and survival in a dose-dependent manner. Porcupine (PORCN), a membrane-bound O-acyl transferase (MBOAT) that resides in the endoplasmic reticulum, catalyses the addition of monounsaturated palmitate to Wnt proteins and is required for Wnt gradient formation and signalling. In humans, PORCN mutations are causal for focal dermal hypoplasia (FDH), an X-linked dominant syndrome characterized by defects in mesodermal and endodermal tissues. PORCN is also an emerging target for cancer therapeutics. Despite the importance of this enzyme, its structure remains poorly understood. Recently, the crystal structure of DltB, an MBOAT family member from bacteria, was solved. In this report, we use experimental data along with homology modelling to DltB to determine the membrane topology of PORCN. Our studies reveal that PORCN has 11 membrane domains, comprising nine transmembrane spanning domains and two reentrant domains. The N-terminus is oriented towards the lumen while the C-terminus is oriented towards the cytosol. Like DltB, PORCN has a funnel-like structure that is encapsulated by multiple membrane-spanning helices. This new model for PORCN topology allows us to map residues that are important for biological activity (and implicated in FDH) onto its three-dimensional structure.
Collapse
Affiliation(s)
- Lisa M Galli
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - J Gabriel Fraley
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Luis Sanchez
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Raymund Bueno
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - David N Hernandez
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Eva U Maddox
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | | | - Laura W Burrus
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| |
Collapse
|
13
|
Dhasmana D, Veerapathiran S, Azbazdar Y, Nelanuthala AVS, Teh C, Ozhan G, Wohland T. Wnt3 Is Lipidated at Conserved Cysteine and Serine Residues in Zebrafish Neural Tissue. Front Cell Dev Biol 2021; 9:671218. [PMID: 34124053 PMCID: PMC8189181 DOI: 10.3389/fcell.2021.671218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
Wnt proteins are a family of hydrophobic cysteine-rich secreted glycoproteins that regulate a gamut of physiological processes involved in embryonic development and tissue homeostasis. Wnt ligands are post-translationally lipidated in the endoplasmic reticulum (ER), a step essential for its membrane targeting, association with lipid domains, secretion and interaction with receptors. However, at which residue(s) Wnts are lipidated remains an open question. Initially it was proposed that Wnts are lipid-modified at their conserved cysteine and serine residues (C77 and S209 in mWnt3a), and mutations in either residue impedes its secretion and activity. Conversely, some studies suggested that serine is the only lipidated residue in Wnts, and substitution of serine with alanine leads to retention of Wnts in the ER. In this work, we investigate whether in zebrafish neural tissues Wnt3 is lipidated at one or both conserved residues. To this end, we substitute the homologous cysteine and serine residues of zebrafish Wnt3 with alanine (C80A and S212A) and investigate their influence on Wnt3 membrane organization, secretion, interaction and signaling activity. Collectively, our results indicate that Wnt3 is lipid modified at its C80 and S212 residues. Further, we find that lipid addition at either C80 or S212 is sufficient for its secretion and membrane organization, while the lipid modification at S212 is indispensable for receptor interaction and signaling.
Collapse
Affiliation(s)
- Divya Dhasmana
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Sapthaswaran Veerapathiran
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Turkey
| | | | - Cathleen Teh
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Turkey
| | - Thorsten Wohland
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Porcupine inhibitors: Novel and emerging anti-cancer therapeutics targeting the Wnt signaling pathway. Pharmacol Res 2021; 167:105532. [DOI: 10.1016/j.phrs.2021.105532] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
|
15
|
Hebert L, Hillman P, Baker C, Brown M, Ashley-Koch A, Hixson JE, Morrison AC, Northrup H, Au KS. Burden of rare deleterious variants in WNT signaling genes among 511 myelomeningocele patients. PLoS One 2020; 15:e0239083. [PMID: 32970752 PMCID: PMC7514064 DOI: 10.1371/journal.pone.0239083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022] Open
Abstract
Genes in the noncanonical WNT signaling pathway controlling planar cell polarity have been linked to the neural tube defect myelomeningocele. We hypothesized that some genes in the WNT signaling network have a higher mutational burden in myelomeningocele subjects than in reference subjects in gnomAD. Exome sequencing data from 511 myelomeningocele subjects was obtained in-house and data from 29,940 ethnically matched subjects was provided by version 2 of the publicly available Genome Aggregation Database. To compare mutational burden, we collapsed rare deleterious variants across each of 523 human WNT signaling genes in case and reference populations. Ten WNT signaling genes were disrupted with a higher mutational burden among Mexican American myelomeningocele subjects compared to reference subjects (Fishers exact test, P ≤ 0.05) and seven different genes were disrupted among individuals of European ancestry compared to reference subjects. Gene ontology enrichment analyses indicate that genes disrupted only in the Mexican American population play a role in planar cell polarity whereas genes identified in both populations are important for the regulation of canonical WNT signaling. In summary, evidence for WNT signaling genes that may contribute to myelomeningocele in humans is presented and discussed.
Collapse
Affiliation(s)
- Luke Hebert
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Paul Hillman
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Craig Baker
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Michael Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Allison Ashley-Koch
- Department of Medicine and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States of America
| | - James E. Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Hope Northrup
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Kit Sing Au
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
16
|
Linnemannstöns K, Witte L, Karuna M P, Kittel JC, Danieli A, Müller D, Nitsch L, Honemann-Capito M, Grawe F, Wodarz A, Gross JC. Ykt6-dependent endosomal recycling is required for Wnt secretion in the Drosophila wing epithelium. Development 2020; 147:dev.185421. [PMID: 32611603 PMCID: PMC7438013 DOI: 10.1242/dev.185421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/08/2020] [Indexed: 01/09/2023]
Abstract
Morphogens are important signalling molecules for tissue development and their secretion requires tight regulation. In the wing imaginal disc of flies, the morphogen Wnt/Wingless is apically presented by the secreting cell and re-internalized before final long-range secretion. Why Wnt molecules undergo these trafficking steps and the nature of the regulatory control within the endosomal compartment remain unclear. Here, we have investigated how Wnts are sorted at the level of endosomes by the versatile v-SNARE Ykt6. Using in vivo genetics, proximity-dependent proteomics and in vitro biochemical analyses, we show that most Ykt6 is present in the cytosol, but can be recruited to de-acidified compartments and recycle Wnts to the plasma membrane via Rab4-positive recycling endosomes. Thus, we propose a molecular mechanism by which producing cells integrate and leverage endocytosis and recycling via Ykt6 to coordinate extracellular Wnt levels.
Collapse
Affiliation(s)
- Karen Linnemannstöns
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Leonie Witte
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Pradhipa Karuna M
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Jeanette Clarissa Kittel
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Adi Danieli
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Denise Müller
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Lena Nitsch
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Mona Honemann-Capito
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Ferdinand Grawe
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne 50931, Germany.,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Andreas Wodarz
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne 50931, Germany.,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Julia Christina Gross
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany .,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| |
Collapse
|
17
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Torres VI, Godoy JA, Inestrosa NC. Modulating Wnt signaling at the root: Porcupine and Wnt acylation. Pharmacol Ther 2019; 198:34-45. [DOI: 10.1016/j.pharmthera.2019.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
|
19
|
Moti N, Yu J, Boncompain G, Perez F, Virshup DM. Wnt traffic from endoplasmic reticulum to filopodia. PLoS One 2019; 14:e0212711. [PMID: 30794657 PMCID: PMC6386245 DOI: 10.1371/journal.pone.0212711] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/07/2019] [Indexed: 11/26/2022] Open
Abstract
Wnts are a family of secreted palmitoleated glycoproteins that play key roles in cell to cell communication during development and regulate stem cell compartments in adults. Wnt receptors, downstream signaling cascades and target pathways have been extensively studied while less is known about how Wnts are secreted and move from producing cells to receiving cells. We used the synchronization system called Retention Using Selective Hook (RUSH) to study Wnt trafficking from endoplasmic reticulum to Golgi and then to plasma membrane and filopodia in real time. Inhibition of porcupine (PORCN) or knockout of Wntless (WLS) blocked Wnt exit from the ER. Wnt-containing vesicles paused at sub-cortical regions of the plasma membrane before exiting the cell. Wnt-containing vesicles were associated with filopodia extending to adjacent cells. These data visualize and confirm the role of WLS and PORCN in ER exit of Wnts and support the role of filopodia in Wnt signaling.
Collapse
Affiliation(s)
- Naushad Moti
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Jia Yu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Gaelle Boncompain
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR144 “Cell Biology and Cancer”, Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR144 “Cell Biology and Cancer”, Paris, France
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Brafman D, Willert K. Wnt/β-catenin signaling during early vertebrate neural development. Dev Neurobiol 2017; 77:1239-1259. [PMID: 28799266 DOI: 10.1002/dneu.22517] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/24/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
The vertebrate central nervous system (CNS) is comprised of vast number of distinct cell types arranged in a highly organized manner. This high degree of complexity is achieved by cellular communication, including direct cell-cell contact, cell-matrix interactions, and cell-growth factor signaling. Among the several developmental signals controlling the development of the CNS, Wnt proteins have emerged as particularly critical and, hence, have captivated the attention of many researchers. With Wnts' evolutionarily conserved function as primordial symmetry breaking signals, these proteins and their downstream effects are responsible for simultaneously establishing cellular diversity and tissue organization. With their expansive repertoire of secreted agonists and antagonists, cell surface receptors, signaling cascades and downstream biological effects, Wnts are ideally suited to control the complex processes underlying vertebrate neural development. In this review, we will describe the mechanisms by which Wnts exert their potent effects on cells and tissues and highlight the many roles of Wnt signaling during neural development, starting from the initial induction of the neural plate, the subsequent patterning along the embryonic axes, to the intricately organized structure of the CNS. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1239-1259, 2017.
Collapse
Affiliation(s)
- David Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287
| | - Karl Willert
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, 92093-0695
| |
Collapse
|
21
|
Blockade to pathological remodeling of infarcted heart tissue using a porcupine antagonist. Proc Natl Acad Sci U S A 2017; 114:1649-1654. [PMID: 28143939 DOI: 10.1073/pnas.1621346114] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The secreted Wnt signaling molecules are essential to the coordination of cell-fate decision making in multicellular organisms. In adult animals, the secreted Wnt proteins are critical for tissue regeneration and frequently contribute to cancer. Small molecules that disable the Wnt acyltransferase Porcupine (Porcn) are candidate anticancer agents in clinical testing. Here we have systematically assessed the effects of the Porcn inhibitor (WNT-974) on the regeneration of several tissue types to identify potentially unwanted chemical effects that could limit the therapeutic utility of such agents. An unanticipated observation from these studies is proregenerative responses in heart muscle induced by systemic chemical suppression of Wnt signaling. Using in vitro cultures of several cell types found in the heart, we delineate the Wnt signaling apparatus supporting an antiregenerative transcriptional program that includes a subunit of the nonfibrillar collagen VI. Similar to observations seen in animals exposed to WNT-974, deletion of the collagen VI subunit, COL6A1, has been shown to decrease aberrant remodeling and fibrosis in infarcted heart tissue. We demonstrate that WNT-974 can improve the recovery of heart function after left anterior descending coronary artery ligation by mitigating adverse remodeling of infarcted tissue. Injured heart tissue exposed to WNT-974 exhibits decreased scarring and reduced Col6 production. Our findings support the development of Porcn inhibitors as antifibrotic agents that could be exploited to promote heart repair following injury.
Collapse
|
22
|
Jang J, Jung Y, Kim Y, Jho EH, Yoon Y. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974. Sci Rep 2017; 7:41612. [PMID: 28128299 PMCID: PMC5269682 DOI: 10.1038/srep41612] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022] Open
Abstract
In this study, LPS-induced inflammatory responses in BEAS-2B human bronchial epithelial cells and human umbilical vein endothelial cell (HUVEC)s were found to be prevented by Dickkopf-1 (DKK-1), a secreted Wnt antagonist, and LGK974, a small molecular inhibitor of the Wnt secretion. LPS-induced IκB degradation and NF-κB nuclear translocation as well as the expressions of pro-inflammatory genes including IL-6, IL-8, TNF- α, IL-1β, MCP-1, MMP-9, COX-2 and iNOS, were all suppressed by DKK-1 and LGK974 in a dose-dependent manner. The suppressive effects of LGK974 on NF-κB, IκB, and pro-inflammatory gene expression were rescued by ectopic expression of β-catenin, suggesting that the anti-inflammatory activity of LGK974 is mediated by modulation of the Wnt/β-catenin pathway and not by unrelated side effects. When Wnt recombinant proteins were treated to cells, Wnt3a and Wnt5a significantly induced pro-inflammatory gene expressions, while Wnt7a and Wnt10b showed little effects. It was also found that Wnt3a and Wnt5a expressions were significantly induced by LPS treatment. Consistently, knockdown of Wnt3a and Wnt5a blocked LPS-induced inflammatory responses, while treatment of recombinant Wnt3a and Wnt5a proteins rescued the inhibition of inflammatory responses by LGK974. Findings of this study showed that DKK-1 and LGK974 suppress LPS-induced inflammatory response by modulating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jaewoong Jang
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 156-756, Republic of Korea
| | - Yoonju Jung
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 156-756, Republic of Korea
| | - Youngeun Kim
- Department of Life Science, University of Seoul, Seoul, 130-743, Republic of Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, 130-743, Republic of Korea
| | - Yoosik Yoon
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 156-756, Republic of Korea
| |
Collapse
|
23
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
24
|
Lung disease recalling paraseptal emphysema in a patient with Goltz syndrome. Multidiscip Respir Med 2016; 11:36. [PMID: 27625787 PMCID: PMC5020471 DOI: 10.1186/s40248-016-0069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background Goltz syndrome is a rare, genetic disorder mainly occurring in female patients. Case presentation The case presented here is, to the best of our knowledge, the first description of the occurrence of lung parenchymal alterations in a young female patient affected by Goltz syndrome. Although pulmonary involvement is not known in patients affected by X-linked Goltz syndrome, the case here described is related to the even rarer autosomal form of the disease, as in this case. It is thus conceivable that in such different genetic setting the involvement of lung parenchyma may be unveiled through atypical emphysematous lesions. Conclusion This report suggested - for the first time time - a rationale for a lung function and imaging screening in patients affected by Goltz syndrome at least in its autosomal form.
Collapse
|
25
|
Saha S, Aranda E, Hayakawa Y, Bhanja P, Atay S, Brodin NP, Li J, Asfaha S, Liu L, Tailor Y, Zhang J, Godwin AK, Tome WA, Wang TC, Guha C, Pollard JW. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun 2016; 7:13096. [PMID: 27734833 PMCID: PMC5065628 DOI: 10.1038/ncomms13096] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
WNT/β-catenin signalling is crucial for intestinal homoeostasis. The intestinal epithelium and stroma are the major source of WNT ligands but their origin and role in intestinal stem cell (ISC) and epithelial repair remains unknown. Macrophages are a major constituent of the intestinal stroma. Here, we analyse the role of macrophage-derived WNT in intestinal repair in mice by inhibiting their release using a macrophage-restricted ablation of Porcupine, a gene essential for WNT synthesis. Such Porcn-depleted mice have normal intestinal morphology but are hypersensitive to radiation injury in the intestine compared with wild-type (WT) littermates. Porcn-null mice are rescued from radiation lethality by treatment with WT but not Porcn-null bone marrow macrophage-conditioned medium (CM). Depletion of extracellular vesicles (EV) from the macrophage CM removes WNT function and its ability to rescue ISCs from radiation lethality. Therefore macrophage-derived EV-packaged WNTs are essential for regenerative response of intestine against radiation. The intestinal stroma secretes WNT ligands but the role of WNT in intestinal repair is unclear. Here, the authors show that when WNT synthesis is ablated from stromal macrophages, the intestine morphology is normal but hypersensitive to radiation injury, implicating macrophage-derived WNT in intestinal repair.
Collapse
Affiliation(s)
- Subhrajit Saha
- Department of Radiation Oncology, Albert Einstein College of Medicine &Montefiore Medical Center, Bronx, New York 10461, USA
| | - Evelyn Aranda
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Yoku Hayakawa
- Department of Medicine, Division of Digestive and Liver Diseases, Irving Cancer Research Center, Columbia University, New York, New York 10032, USA
| | - Payel Bhanja
- Department of Radiation Oncology, Albert Einstein College of Medicine &Montefiore Medical Center, Bronx, New York 10461, USA
| | - Safinur Atay
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - N Patrik Brodin
- Department of Radiation Oncology, Albert Einstein College of Medicine &Montefiore Medical Center, Bronx, New York 10461, USA
| | - Jiufeng Li
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Samuel Asfaha
- Department of Medicine, Division of Digestive and Liver Diseases, Irving Cancer Research Center, Columbia University, New York, New York 10032, USA
| | - Laibin Liu
- Department of Radiation Oncology, Albert Einstein College of Medicine &Montefiore Medical Center, Bronx, New York 10461, USA
| | - Yagnesh Tailor
- Department of Medicine, Division of Digestive and Liver Diseases, Irving Cancer Research Center, Columbia University, New York, New York 10032, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Wolfgang A Tome
- Department of Radiation Oncology, Albert Einstein College of Medicine &Montefiore Medical Center, Bronx, New York 10461, USA
| | - Timothy C Wang
- Department of Medicine, Division of Digestive and Liver Diseases, Irving Cancer Research Center, Columbia University, New York, New York 10032, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine &Montefiore Medical Center, Bronx, New York 10461, USA.,Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Jeffrey W Pollard
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
26
|
Mary L, Scheidecker S, Kohler M, Lombardi MP, Delezoide AL, Auberger E, Triau S, Colin E, Gerard M, Grzeschik KH, Dollfus H, Antal MC. Prenatal diagnosis of focal dermal hypoplasia: Report of three fetuses and review of the literature. Am J Med Genet A 2016; 173:479-486. [PMID: 27623003 DOI: 10.1002/ajmg.a.37974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/29/2016] [Indexed: 11/09/2022]
Abstract
Focal dermal hypoplasia (FDH) is a rare syndrome characterized by pleiotropic features knowing to involve mostly skin and limbs. Although FDH has been described in children and adults, the cardinal signs of the fetal phenotype are not straightforward impacting the quality of the prenatal diagnosis. We describe in depth the ultrasound, radiological, macroscopical, and histological phenotype of three female fetuses with a severe form of FDH, propose a review of the literature and an attempt to delineate minimal and cardinal signs for FDH diagnosis. This report confirms the variability of FDH phenotype, highlights unreported FDH features, and allows delineating evocative clinical associations for prenatal diagnosis, namely intrauterine growth retardation, limbs malformations, anterior wall/diaphragm defects, and eye anomalies. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura Mary
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Scheidecker
- Laboratoire de Cytogénétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Monique Kohler
- Service de Gynécologie et Obstétrique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Maria-Paola Lombardi
- Department of Clinical Genetics, Academisch Medisch Centrum, Amsterdam, The Netherlands
| | | | - Elisabeth Auberger
- Anatomie et Cytologie Pathologiques, Hôpital Simone Veil, Groupement Hospitalier Eaubonne-Montmorency, Montmorency, France
| | - Stéphane Triau
- Laboratoire de Pathologie Cellulaire et Tissulaire-Fœtopathologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Estelle Colin
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Marion Gerard
- Service de Génétique, Centre Hospitalier Universitaire de Caen, Caen, France
| | | | - Hélène Dollfus
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Faculté de Médecine de Strasbourg, Strasbourg, France
| | - Maria Cristina Antal
- Faculté de Médecine de Strasbourg, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle, Strasbourg, France
| |
Collapse
|
27
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2942-2976. [PMID: 27612668 DOI: 10.1016/j.bbamcr.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of Rome, Rome, Italy
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section - Policlinico "G. Martino" - University of Messina, Messina 98125, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
28
|
Galli LM, Zebarjadi N, Li L, Lingappa VR, Burrus LW. Divergent effects of Porcupine and Wntless on WNT1 trafficking, secretion, and signaling. Exp Cell Res 2016; 347:171-183. [PMID: 27492485 DOI: 10.1016/j.yexcr.2016.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/12/2016] [Accepted: 07/31/2016] [Indexed: 12/30/2022]
Abstract
Loss-of-function studies have identified Porcupine (PORCN) and Wntless (WLS) as essential mediators of Wnt secretion and signaling. Whereas PORCN is thought to palmitoylate Wnt proteins, WLS is believed to transport palmitoylated Wnt proteins to the cell surface. However, little is known about how these two proteins cooperate to regulate Wnt palmitoylation, trafficking, secretion, and signaling. We first investigated possible interactions between PORCN, WLS, and WNT1, by carrying out co-immunoprecipitation studies. These studies demonstrate the existence of a complex containing PORCN and WLS. They further show that PORCN and WLS compete for binding to WNT1. Then, we used gain-of-function studies to investigate the cooperation between PORCN and WLS as well as possible biochemical interactions between PORCN, WLS, and WNT1. Consistent with the proposed roles for PORCN and WLS, we show that overexpression of PORCN promotes palmitoylation of WNT1 while overexpression of WLS does not. Overexpression of PORCN enhances the ability of WLS to promote WNT1 trafficking to the cell surface as well as secretion, but decreases the ability of WLS to activate WNT1 signaling in target cell. These observations suggest that the levels of WNT1 on the cell surface and in the media are not the sole determinants of the activation of Wnt signaling in target cells.
Collapse
Affiliation(s)
- Lisa M Galli
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Navid Zebarjadi
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Lydia Li
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | | | - Laura W Burrus
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| |
Collapse
|
29
|
Pastor-Cantizano N, Montesinos JC, Bernat-Silvestre C, Marcote MJ, Aniento F. p24 family proteins: key players in the regulation of trafficking along the secretory pathway. PROTOPLASMA 2016; 253:967-985. [PMID: 26224213 DOI: 10.1007/s00709-015-0858-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/13/2015] [Indexed: 05/20/2023]
Abstract
p24 family proteins have been known for a long time, but their functions have remained elusive. However, they are emerging as essential regulators of protein trafficking along the secretory pathway, influencing the composition, structure, and function of different organelles in the pathway, especially the ER and the Golgi apparatus. In addition, they appear to modulate the transport of specific cargos, including GPI-anchored proteins, G-protein-coupled receptors, or K/HDEL ligands. As a consequence, they have been shown to play specific roles in signaling, development, insulin secretion, and the pathogenesis of Alzheimer's disease. The search of new putative ligands may open the way to discover new functions for this fascinating family of proteins.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - Juan Carlos Montesinos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - César Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain.
| |
Collapse
|
30
|
Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. J Transl Med 2016; 96:156-67. [PMID: 26692289 PMCID: PMC4731262 DOI: 10.1038/labinvest.2015.153] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
The Wnt/β-catenin signaling cascade is an evolutionarily conserved, highly complex pathway that is known to be involved in kidney injury and repair after a wide variety of insults. Although the kidney displays an impressive ability to repair and recover after injury, these repair mechanisms can be overwhelmed, leading to maladaptive responses and eventual development of chronic kidney disease (CKD). Emerging evidence demonstrates that Wnt/β-catenin signaling possesses dual roles in promoting repair/regeneration or facilitating progression to CKD after acute kidney injury (AKI), depending on the magnitude and duration of its activation. In this review, we summarize the expression, intracellular modification, and secretion of Wnt family proteins and their regulation in a variety of kidney diseases. We also explore our current understanding of the potential mechanisms by which transient Wnt/β-catenin activation positively regulates adaptive responses of the kidney after AKI, and discuss how sustained activation of this signaling triggers maladaptive responses and causes destructive outcomes. A better understanding of these mechanisms may offer important opportunities for designing targeted therapy to promote adaptive kidney repair/recovery and prevent progression to CKD in patients.
Collapse
|
31
|
Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016; 3:11-40. [PMID: 27077077 PMCID: PMC4827448 DOI: 10.1016/j.gendis.2015.12.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in controlling cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best-characterized the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance.
Collapse
|
32
|
Abstract
Wnt proteins act as potent morphogens in various aspects of embryonic development and adult tissue homeostasis. However, in addition to its physiological importance, aberrant Wnt signaling has been linked to the onset and progression of different types of cancer. On the cellular level, the secretion of Wnt proteins involves trafficking of lipid-modified Wnts from the endoplasmic reticulum (ER) to Golgi and further compartments via the Wnt cargo receptor evenness interrupted. Others and we have recently shown that Wnt proteins are secreted on extracellular vesicles (EVs) such as microvesicles and exosomes. Although more details about specific regulation of Wnt secretion steps are emerging, it remains largely unknown how Wnt proteins are channeled into different release pathways such as lipoprotein particles, EVs and cytonemes. Here, we describe protocols to purify and quantify Wnts from the supernatant of cells by either assessing total Wnt proteins in the supernatant or monitoring Wnt proteins on EVs. Purified Wnts from the supernatant as well as total cellular protein content can be investigated by immunoblotting. Additionally, the relative activity of canonical Wnts in the supernatant can be assessed by a dual-luciferase Wnt reporter assay. Quantifying the amount of secreted Wnt proteins and their activity in the supernatant of cells allows the investigation of intracellular trafficking events that regulate Wnt secretion and the role of extracellular modulators of Wnt spreading.
Collapse
Affiliation(s)
- Kathrin Glaeser
- Division Signaling and Functional Genomics and Heidelberg University, Department for Cell and Molecular Biology, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics and Heidelberg University, Department for Cell and Molecular Biology, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Julia Christina Gross
- Haematology and Oncology and Developmental Biochemistry, University Medicine Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
33
|
Abstract
In this issue of Blood, Kabiri and coworkers report the hematopoietic deletion of the endoplasmic reticulum–localized O-acyltransferase porcupine (PORCN), which is necessary for acylation of Wnts in the endoplasmic reticulum, enabling their secretion and binding to the frizzled receptors. Unexpectedly, the absence of secreted Wnt factors does not have major effects on steady-state in vivo hematopoiesis or on long-term repopulating activity of Wnt-deficient hematopoietic stem cells.
Collapse
|
34
|
Teh C, Sun G, Shen H, Korzh V, Wohland T. Modulating the expression level of secreted Wnt3 influences cerebellum development in zebrafish transgenics. Development 2015; 142:3721-33. [PMID: 26395493 DOI: 10.1242/dev.127589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/28/2015] [Indexed: 12/13/2022]
Abstract
The boundaries of brain regions are associated with the tissue-specific secretion of ligands from different signaling pathways. The dynamics of these ligands in vivo and the impact of its disruption remain largely unknown. Using light and fluorescence microscopy for the overall imaging of the specimen and fluorescence correlation spectroscopy (FCS) to determine Wnt3 dynamics, we demonstrated that Wnt3 regulates cerebellum development during embryogenesis using zebrafish wnt3 transgenics with either tissue-specific expression of an EGFP reporter or a functionally active fusion protein, Wnt3EGFP. The results suggest a state of dynamic equilibrium of Wnt3EGFP mobility in polarized neuroepithelial-like progenitors in the dorsal midline and cerebellar progenitors on the lateral side. Wnt3EGFP is secreted from the cerebellum as shown by measurements of its mobility in the ventricular cavity. The importance of Wnt secretion in brain patterning was validated with the Porcn inhibitor Wnt-C59 (C59), which, when applied early, reduced membrane-bound and secreted fractions of Wnt3EGFP and led to a malformed brain characterized by the absence of epithalamus, optic tectum and cerebellum. Likewise, interference with Wnt secretion later on during cerebellar development negatively impacted cerebellar growth and patterning. Our work, supported by quantitative analysis of protein dynamics in vivo, highlights the importance of membrane-localized and secreted Wnt3 during cerebellum development.
Collapse
Affiliation(s)
- Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673 Singapore
| | - Guangyu Sun
- Department of Chemistry, National University of Singapore, 117543 Singapore Center for Bioimaging Sciences, National University of Singapore, 117557 Singapore
| | - Hongyuan Shen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673 Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673 Singapore Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, 117543 Singapore Center for Bioimaging Sciences, National University of Singapore, 117557 Singapore Department of Biological Sciences, National University of Singapore, 117543 Singapore
| |
Collapse
|
35
|
Samadani AA, Akhavan-Niaki H. Interaction of sonic hedgehog (SHH) pathway with cancer stem cell genes in gastric cancer. Med Oncol 2015; 32:48. [PMID: 25636508 DOI: 10.1007/s12032-015-0492-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 01/23/2015] [Indexed: 02/06/2023]
Abstract
Gastric cancer may appear by frequent genetic or epigenetic changes in oncogenes, tumor suppressor or DNA mismatch repair genes. Molecular studies show the possibility of involvement of certain cancer pathways in gastric cancer. In this respect, DNA methylation is one of the most important epigenetic alterations in gastric cancer and identifying the signaling mechanism and also methylation of some genes that are involved in gastric cancer can help to improve treatment strategies. Relatively, there are many reported methylation alteration of genes in stem cells in all kinds of tumors with some of these genes having a key role in tumor development. Correspondingly, KLF5, CDX1/2, WNT1 and FEM1A are considerable genes in gastric cancer, although many researches and studies have illustrated that sonic hedgehog and expression of its signaling cascade proteins are related in gastric cancer. Relatively, modification in these genes causes many eclectic cancers such as rhabdomyosarcoma and diverse kinds of digestive system tumor development. Conspicuously, these master genes have a noticeable role in stem cell's growth regulation as well as other kinds of cancer such as breast cancer and leukemia. Hence, we concluded that research and studies on methylation and expression of these genes and also the investigation of molecular signaling in gastric cancer can acquire impressive conclusions in order to control and treat this common place and serious problem.
Collapse
Affiliation(s)
- Ali Akbar Samadani
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
36
|
Miranda M, Galli LM, Enriquez M, Szabo LA, Gao X, Hannoush RN, Burrus LW. Identification of the WNT1 residues required for palmitoylation by Porcupine. FEBS Lett 2014; 588:4815-24. [PMID: 25451226 DOI: 10.1016/j.febslet.2014.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 10/27/2014] [Accepted: 11/12/2014] [Indexed: 11/26/2022]
Abstract
The post-translational palmitoylation of WNT morphogens is critical for proper signaling during embryogenesis and adult homeostasis. The addition of palmitoyl groups to WNT proteins is catalyzed by Porcupine (PORCN). However, the Wnt amino acid residues required for recognition and palmitoylation by PORCN have not been fully characterized. We show that WNT1 residues 214-234 are sufficient for PORCN-dependent palmitoylation of Ser224. Substitution of Ser224 with Thr, but not Cys, is tolerated in palmitoylation and biological assays. Our data highlight the importance of palmitoylation for WNT1 activity and establish PORCN as an O-acyl transferase for WNT1.
Collapse
Affiliation(s)
- M Miranda
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - L M Galli
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - M Enriquez
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - L A Szabo
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - X Gao
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - R N Hannoush
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - L W Burrus
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| |
Collapse
|
37
|
Bankhead EJ, Colasanto MP, Dyorich KM, Jamrich M, Murtaugh LC, Fuhrmann S. Multiple requirements of the focal dermal hypoplasia gene porcupine during ocular morphogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:197-213. [PMID: 25451153 DOI: 10.1016/j.ajpath.2014.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/25/2014] [Accepted: 09/02/2014] [Indexed: 12/13/2022]
Abstract
Wnt glycoproteins control key processes during development and disease by activating various downstream pathways. Wnt secretion requires post-translational modification mediated by the O-acyltransferase encoded by the Drosophila porcupine homolog gene (PORCN). In humans, PORCN mutations cause focal dermal hypoplasia (FDH, or Goltz syndrome), an X-linked dominant multisystem birth defect that is frequently accompanied by ocular abnormalities such as coloboma, microphthalmia, or even anophthalmia. Although genetic ablation of Porcn in mouse has provided insight into the etiology of defects caused by ectomesodermal dysplasia in FDH, the requirement for Porcn and the actual Wnt ligands during eye development have been unknown. In this study, Porcn hemizygosity occasionally caused ocular defects reminiscent of FDH. Conditional inactivation of Porcn in periocular mesenchyme led to defects in mid- and hindbrain and in craniofacial development, but was insufficient to cause ocular abnormalities. However, a combination of conditional Porcn depletion in optic vesicle neuroectoderm, lens, and neural crest-derived periocular mesenchyme induced severe eye abnormalities with high penetrance. In particular, we observed coloboma, transdifferentiation of the dorsal and ventral retinal pigment epithelium, defective optic cup periphery, and closure defects of the eyelid, as well as defective corneal morphogenesis. Thus, Porcn is required in both extraocular and neuroectodermal tissues to regulate distinct Wnt-dependent processes during morphogenesis of the posterior and anterior segments of the eye.
Collapse
Affiliation(s)
- Elizabeth J Bankhead
- Departments of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Mary P Colasanto
- Departments of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Kayla M Dyorich
- Departments of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Milan Jamrich
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Sabine Fuhrmann
- Departments of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
38
|
Yu J, Virshup D. Updating the Wnt pathways. Biosci Rep 2014; 34:e00142. [PMID: 25208913 PMCID: PMC4201215 DOI: 10.1042/bsr20140119] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022] Open
Abstract
In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases.
Collapse
Key Words
- adenomatous polyposis coli
- planar cell polarity (pcp)
- wnt
- apc, adenomatous polyposis coli
- bar, bin-amphiphysin-rvs
- cbp, creb (camp response element-binding)-binding protein
- cop, coat protein complex
- crd, cysteine-rich domain
- ctd, c-terminal domain
- ck1α, casein kinase 1 α
- er, endoplasmic reticulum fap, familial adenomatous polyposis
- fdh, focal dermal hypoplasia
- gsk3β, glycogen synthase kinase 3β
- lef, lymphoid enhancer-binding factor
- lrp, lipoprotein receptor-related protein
- ntd, n-terminal domain
- pcp, planar cell polarity
- porcn, protein porcupine
- ror2, receptor tyrosine kinase-like orphan receptor 2
- rspo, r-spondin
- sfrp, secreted frizzled-related protein
- snx-1, sorting nexin-1
- swim, wingless-interacting molecule
- tcf, t cell-specific factor
Collapse
Affiliation(s)
- Jia Yu
- *Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - David M. Virshup
- *Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
- †Institute of Medical Biology, A*STAR, Singapore 138648, Singapore
- ‡Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
- §Department of Pediatrics, Duke University, Durham, NC 27710, U.S.A
| |
Collapse
|
39
|
Galli LM, Szabo LA, Li L, Htaik YM, Onguka O, Burrus LW. Concentration-dependent effects of WNTLESS on WNT1/3A signaling. Dev Dyn 2014; 243:1095-105. [PMID: 24866848 PMCID: PMC4140996 DOI: 10.1002/dvdy.24149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND WNTLESS (WLS) is a multi-transmembrane protein that transports Wnt ligands from the Golgi to the cell surface. Although WLS loss-of-function experiments in the developing central nervous system reveal phenotypes consistent with defects in WNT1 and WNT3A signaling, data from complementary gain-of-function experiments have not yet been reported. Here, we report the phenotypic consequences of WLS overexpression in cultured cells and in the developing chick spinal cord. RESULTS Overexpression of small amounts of WLS along with either WNT1 or WNT3A promotes the Wnt/β-catenin pathway in HEK293T cells, while overexpression of higher levels of WLS inhibits the Wnt/β-catenin pathway in these cells. Similarly, overexpressed WLS inhibits the Wnt/β-catenin pathway in the developing spinal cord, as assessed by cell proliferation and specification. These effects appear to be Wnt-specific as overexpression of WLS inhibits the expression of FZD10, a target of β-catenin-dependent transcription. CONCLUSIONS Our results show that overexpression of WLS inhibits Wnt/β-catenin signaling in the spinal cord. As the activation of the Wnt/β-catenin pathway in the spinal cord requires WNT1 or WNT3A, our results are consistent with a model in which the relative concentration of WLS to Wnt regulates WNT1/3A signaling in the developing spinal cord.
Collapse
Affiliation(s)
- Lisa M. Galli
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132
| | - Linda A. Szabo
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132
| | - Lydia Li
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132
| | - Yin Min Htaik
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132
| | - Ouma Onguka
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132
| | - Laura W. Burrus
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132
| |
Collapse
|
40
|
Kabiri Z, Greicius G, Madan B, Biechele S, Zhong Z, Zaribafzadeh H, Aliyev J, Wu Y, Bunte R, Williams BO, Rossant J, Virshup DM. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development 2014; 141:2206-15. [PMID: 24821987 DOI: 10.1242/dev.104976] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt/β-catenin signaling supports intestinal homeostasis by regulating proliferation in the crypt. Multiple Wnts are expressed in Paneth cells as well as other intestinal epithelial and stromal cells. Ex vivo, Wnts secreted by Paneth cells can support intestinal stem cells when Wnt signaling is enhanced with supplemental R-Spondin 1 (RSPO1). However, in vivo, the source of Wnts in the stem cell niche is less clear. Genetic ablation of Porcn, an endoplasmic reticulum resident O-acyltransferase that is essential for the secretion and activity of all vertebrate Wnts, confirmed the role of intestinal epithelial Wnts in ex vivo culture. Unexpectedly, mice lacking epithelial Wnt activity (Porcn(Del)/Villin-Cre mice) had normal intestinal proliferation and differentiation, as well as successful regeneration after radiation injury, indicating that epithelial Wnts are dispensable for these processes. Consistent with a key role for stroma in the crypt niche, intestinal stromal cells endogenously expressing Wnts and Rspo3 support the growth of Porcn(Del) organoids ex vivo without RSPO1 supplementation. Conversely, increasing pharmacologic PORCN inhibition, affecting both stroma and epithelium, reduced Lgr5 intestinal stem cells, inhibited recovery from radiation injury, and at the highest dose fully blocked intestinal proliferation. We conclude that epithelial Wnts are dispensable and that stromal production of Wnts can fully support normal murine intestinal homeostasis.
Collapse
|
41
|
Zinzi L, Contino M, Cantore M, Capparelli E, Leopoldo M, Colabufo NA. ABC transporters in CSCs membranes as a novel target for treating tumor relapse. Front Pharmacol 2014; 5:163. [PMID: 25071581 PMCID: PMC4091306 DOI: 10.3389/fphar.2014.00163] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/20/2014] [Indexed: 12/12/2022] Open
Abstract
CSCs are responsible for the high rate of recurrence and chemoresistance of different types of cancer. The current antineoplastic agents able to inhibit bulk replicating cancer cells and radiation treatment are not efficacious toward CSCs since this subpopulation has several intrinsic mechanisms of resistance. Among these mechanisms, the expression of ATP-Binding Cassette (ABC) transporters family and the activation of different signaling pathways (such as Wnt/β-catenin signaling, Hedgehog, Notch, Akt/PKB) are reported. Therefore, considering ABC transporters expression on CSCs membranes, compounds able to modulate MDR could induce cytotoxicity in these cells disclosing an exciting and alternative strategy for targeting CSCs in tumor therapy. The next challenge in the cure of cancer relapse may be a multimodal strategy, an approach where specific CSCs targeting drugs exert simultaneously the ability to circumvent tumor drug resistance (ABC transporters modulation) and cytotoxic activity toward CSCs and the corresponding differentiated tumor cells. The efficacy of suggested multimodal strategy could be probed by using several scaffolds active toward MDR pumps on CSCs isolated by tumor specimens.
Collapse
Affiliation(s)
- Laura Zinzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy
| | - Mariangela Cantore
- Dipartimento di Farmacia-Scienze del Farmaco, Biofordrug srl, Spin-off of University of Bari Bari, Italy
| | - Elena Capparelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy ; Dipartimento di Farmacia-Scienze del Farmaco, Biofordrug srl, Spin-off of University of Bari Bari, Italy
| | - Nicola A Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy ; Dipartimento di Farmacia-Scienze del Farmaco, Biofordrug srl, Spin-off of University of Bari Bari, Italy
| |
Collapse
|
42
|
Porcupine is not required for the production of the majority of Wnts from primary human astrocytes and CD8+ T cells. PLoS One 2014; 9:e92159. [PMID: 24647048 PMCID: PMC3960167 DOI: 10.1371/journal.pone.0092159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/18/2014] [Indexed: 11/19/2022] Open
Abstract
Wnts are small secreted glycoproteins that are highly conserved among species. To date, 19 Wnts have been described, which initiate a signal transduction cascade that is either β-catenin dependent or independent, culminating in the regulation of hundreds of target genes. Extracellular release of Wnts is dependent on lipidation of Wnts by porcupine, a membrane-bound-O-acyltransferase protein in the endoplasmic reticulum. Studies demonstrating the requirement of porcupine for Wnts production are based on cell line and non-human primary cells. We evaluated the requirement for porcupine for Wnts production in human primary astrocytes and CD8+ T cells. Using IWP-2, an inhibitor of porcupine, or siRNA targeting porcupine, we demonstrate that porcupine is not required for the release of Wnt 1, 3, 5b, 6,7a, 10b, and 16a. While IWP had no effect on Wnt 2b release, knockdown of porcupine by siRNA reduced Wnt 2b release by 60%. These data indicate that porcupine-mediated production of Wnts is context dependent and is not required for all Wnts production, suggesting that alternative mechanisms exist for Wnts production.
Collapse
|
43
|
Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nat Chem Biol 2013; 10:61-8. [PMID: 24292069 DOI: 10.1038/nchembio.1392] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 10/17/2013] [Indexed: 12/26/2022]
Abstract
Wnts are secreted palmitoylated glycoproteins that are important in embryonic development and human cancers. Here we report a method for imaging the palmitoylated form of Wnt proteins with subcellular resolution using clickable bioorthogonal fatty acids and in situ proximity ligation. Palmitoylated Wnt3a is visualized throughout the secretory pathway and trafficks to multivesicular bodies that act as export sites in secretory cells. We establish that glycosylation is not required for Wnt3a palmitoylation, which is necessary but not sufficient for Wnt3a secretion. Wnt3a is palmitoylated by fatty acids 13-16 carbons in length at Ser209 but not at Cys77, consistent with a slow turnover rate. We find that porcupine (PORCN) itself is palmitoylated, demonstrating what is to our knowledge the first example of palmitoylation of an MBOAT protein, and this modification partially regulates Wnt palmitoylation and signaling. Our data reveal the role of O-palmitoylation in Wnt signaling and suggest another layer of cellular control over PORCN function and Wnt secretion.
Collapse
|
44
|
Rios-Esteves J, Resh MD. Stearoyl CoA desaturase is required to produce active, lipid-modified Wnt proteins. Cell Rep 2013; 4:1072-81. [PMID: 24055053 DOI: 10.1016/j.celrep.2013.08.027] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/25/2013] [Accepted: 08/14/2013] [Indexed: 01/19/2023] Open
Abstract
Wnt proteins contain palmitoleic acid, an unusual lipid modification. Production of an active Wnt signal requires the acyltransferase Porcupine and depends on the attachment of palmitoleic acid to Wnt. The source of this monounsaturated fatty acid has not been identified, and it is not known how Porcupine recognizes its substrate and whether desaturation occurs before or after fatty acid transfer to Wnt. Here, we show that stearoyl desaturase (SCD) generates a monounsaturated fatty acid substrate that is then transferred by Porcupine to Wnt. Treatment of cells with SCD inhibitors blocked incorporation of palmitate analogs into Wnt3a and Wnt5a and reduced Wnt secretion as well as autocrine and paracrine Wnt signaling. The SCD inhibitor effects were rescued by exogenous addition of monounsaturated fatty acids. We propose that SCD is a key molecular player responsible for Wnt biogenesis and processing and that SCD inhibition provides an alternative mechanism for blocking Wnt pathway activation.
Collapse
Affiliation(s)
- Jessica Rios-Esteves
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Gerstner Sloan-Kettering Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
45
|
Gross JC, Boutros M. Secretion and extracellular space travel of Wnt proteins. Curr Opin Genet Dev 2013; 23:385-90. [DOI: 10.1016/j.gde.2013.02.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 12/31/2022]
|
46
|
Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia 2013; 28:15-33. [PMID: 23778311 PMCID: PMC3887408 DOI: 10.1038/leu.2013.184] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 02/08/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is well documented to participate in a complex array of critical cellular processes. It was initially identified in rat skeletal muscle as a serine/threonine kinase that phosphorylated and inactivated glycogen synthase. This versatile protein is involved in numerous signaling pathways that influence metabolism, embryogenesis, differentiation, migration, cell cycle progression and survival. Recently, GSK-3 has been implicated in leukemia stem cell pathophysiology and may be an appropriate target for its eradication. In this review, we will discuss the roles that GSK-3 plays in hematopoiesis and leukemogenesis as how this pivotal kinase can interact with multiple signaling pathways such as: Wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt/mammalian target of rapamycin (mTOR), Ras/Raf/MEK/extracellular signal-regulated kinase (ERK), Notch and others. Moreover, we will discuss how targeting GSK-3 and these other pathways can improve leukemia therapy and may overcome therapeutic resistance. In summary, GSK-3 is a crucial regulatory kinase interacting with multiple pathways to control various physiological processes, as well as leukemia stem cells, leukemia progression and therapeutic resistance. GSK-3 and Wnt are clearly intriguing therapeutic targets.
Collapse
|
47
|
Proffitt KD, Virshup DM. Precise regulation of porcupine activity is required for physiological Wnt signaling. J Biol Chem 2012; 287:34167-78. [PMID: 22888000 PMCID: PMC3464525 DOI: 10.1074/jbc.m112.381970] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Gradients of diverse Wnt proteins regulate development, renewal, and differentiation. Porcupine (PORCN) is a membrane-bound O-acyltransferase that is required for post-translational modification of all Wnts to enable their transport, secretion, and activity. Mutations in PORCN are associated with focal dermal hypoplasia (FDH), whereas gene deletion causes embryonic lethality in mice. To study the protein in more detail, zinc finger nucleases were used to edit the PORCN genomic locus, establishing two HT1080 fibrosarcoma clones null for PORCN activity that facilitate the study of PORCN structure and function. We establish that PORCN is a key non-redundant node for the regulation of global Wnt signaling because PORCN null cells are completely incapable of autocrine Wnt signaling. The strength of Wnt signaling is exquisitely sensitive to PORCN expression, with a dynamic range of at least 3 orders of magnitude, suggesting that PORCN activity is a key modulator of all Wnt ligand activity. Consistent with this, we find that multiple FDH-associated mutants have only subtle alterations in enzyme activity yet are associated with a severe FDH phenotype. These studies support an essential regulatory role of PORCN in shaping Wnt signaling gradients.
Collapse
Affiliation(s)
- Kyle D Proffitt
- Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Graduate Medical School, 8 College Road, 169857 Singapore
| | | |
Collapse
|
48
|
Nucleosome remodeler SNF2L suppresses cell proliferation and migration and attenuates Wnt signaling. Mol Cell Biol 2012; 32:2359-71. [PMID: 22508985 DOI: 10.1128/mcb.06619-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ISWI is an evolutionarily conserved ATPase that catalyzes nucleosome remodeling in different macromolecular complexes. Two mammalian ISWI orthologs, SNF2H and SNF2L, are thought to have specialized functions despite their high sequence similarity. To date, the function of SNF2L in human cells has not been a focus of research. Newly established specific monoclonal antibodies and selective RNA interference protocols have now enabled a comprehensive characterization of loss-of-function phenotypes in human cells. In contrast to earlier results, we found SNF2L to be broadly expressed in primary human tissues. Depletion of SNF2L in HeLa cells led to enhanced proliferation and increased migration. These phenomena were explained by transcriptome profiling, which identified SNF2L as a modulator of the Wnt signaling network. The cumulative effects of SNF2L depletion on gene expression portray the cell in a state of activated Wnt signaling characterized by increased proliferation and chemotactic locomotion. Accordingly, high levels of SNF2L expression in normal melanocytes contrast with undetectable expression in malignant melanoma. In summary, our data document an inverse relationship between SNF2L expression and features characteristic of malignant cells.
Collapse
|
49
|
Covey TM, Kaur S, Tan Ong T, Proffitt KD, Wu Y, Tan P, Virshup DM. PORCN moonlights in a Wnt-independent pathway that regulates cancer cell proliferation. PLoS One 2012; 7:e34532. [PMID: 22509316 PMCID: PMC3324524 DOI: 10.1371/journal.pone.0034532] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/01/2012] [Indexed: 11/24/2022] Open
Abstract
Porcupine (PORCN) is a membrane-bound O-acyl transferase that is required for the palmitoylation of Wnt proteins, and that is essential in diverse Wnt pathways for Wnt-Wntless (WLS) binding, Wnt secretion, and Wnt signaling activity. We tested if PORCN was required for the proliferation of transformed cells. Knockdown of PORCN by multiple independent siRNAs results in a cell growth defect in a subset of epithelial cancer cell lines. The growth defect is transformation-dependent in human mammary epithelial (HMEC) cells. Additionally, inducible PORCN knockdown by two independent shRNAs markedly reduces the growth of established MDA-MB-231 cancers in orthotopic xenografts in immunodeficient mice. Unexpectedly, the proliferation defect resulting from loss of PORCN occurs in a Wnt-independent manner, as it is rescued by re-expression of catalytically inactive PORCN, and is not seen after RNAi-mediated knockdown of the Wnt carrier protein WLS, nor after treatment with the PORCN inhibitor IWP. Consistent with a role in a Wnt-independent pathway, knockdown of PORCN regulates a distinct set of genes that are not altered by other inhibitors of Wnt signaling. PORCN protein thus appears to moonlight in a novel signaling pathway that is rate-limiting for cancer cell growth and tumorigenesis independent of its enzymatic function in Wnt biosynthesis and secretion.
Collapse
Affiliation(s)
- Tracy M. Covey
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Simran Kaur
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Tina Tan Ong
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Kyle D. Proffitt
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Yonghui Wu
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - David M. Virshup
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
50
|
Abstract
Throughout the animal kingdom, Wnt-triggered signal transduction pathways play fundamental roles in embryonic development and tissue homeostasis. Wnt proteins are modified as glycolipoproteins and are secreted into the extracellular environment as morphogens. Recent studies on the intracellular trafficking of Wnt proteins demonstrate multiple layers of regulation along its secretory pathway. These findings have propelled a great deal of interest among researchers to further investigate the molecular mechanisms that control the release of Wnts and hence the level of Wnt signaling. This review is dedicated to Wntless, a putative G-protein coupled receptor that transports Wnts intracellularly for secretion. Here, we highlight the conclusions drawn from the most recent cellular, molecular and genetic studies that affirm the role of Wntless in the secretion of Wnt proteins.
Collapse
|