1
|
Ghafoori SM, Petersen GF, Conrady DG, Calhoun BM, Stigliano MZZ, Baydo RO, Grice R, Abendroth J, Lorimer DD, Edwards TE, Forwood JK. Structural characterisation of hemagglutinin from seven Influenza A H1N1 strains reveal diversity in the C05 antibody recognition site. Sci Rep 2023; 13:6940. [PMID: 37117205 PMCID: PMC10140725 DOI: 10.1038/s41598-023-33529-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
Influenza virus (IV) causes several outbreaks of the flu each year resulting in an economic burden to the healthcare system in the billions of dollars. Several influenza pandemics have occurred during the last century and estimated to have caused 100 million deaths. There are four genera of IV, A (IVA), B (IVB), C (IVC), and D (IVD), with IVA being the most virulent to the human population. Hemagglutinin (HA) is an IVA surface protein that allows the virus to attach to host cell receptors and enter the cell. Here we have characterised the high-resolution structures of seven IVA HAs, with one in complex with the anti-influenza head-binding antibody C05. Our analysis revealed conserved receptor binding residues in all structures, as seen in previously characterised IV HAs. Amino acid conservation is more prevalent on the stalk than the receptor binding domain (RBD; also called the head domain), allowing the virus to escape from antibodies targeting the RBD. The equivalent site of C05 antibody binding to A/Denver/57 HA appears hypervariable in the other H1N1 IV HAs. Modifications within this region appear to disrupt binding of the C05 antibody, as these HAs no longer bind the C05 antibody by analytical SEC. Our study brings new insights into the structural and functional recognition of IV HA proteins and can contribute to further development of anti-influenza vaccines.
Collapse
Affiliation(s)
- Seyed Mohammad Ghafoori
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Gayle F Petersen
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Deborah G Conrady
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Brandy M Calhoun
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Matthew Z Z Stigliano
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Ruth O Baydo
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Rena Grice
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Jan Abendroth
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Donald D Lorimer
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Thomas E Edwards
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Jade K Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
2
|
Russell CJ. Hemagglutinin Stability and Its Impact on Influenza A Virus Infectivity, Pathogenicity, and Transmissibility in Avians, Mice, Swine, Seals, Ferrets, and Humans. Viruses 2021; 13:746. [PMID: 33923198 PMCID: PMC8145662 DOI: 10.3390/v13050746] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Genetically diverse influenza A viruses (IAVs) circulate in wild aquatic birds. From this reservoir, IAVs sporadically cause outbreaks, epidemics, and pandemics in wild and domestic avians, wild land and sea mammals, horses, canines, felines, swine, humans, and other species. One molecular trait shown to modulate IAV host range is the stability of the hemagglutinin (HA) surface glycoprotein. The HA protein is the major antigen and during virus entry, this trimeric envelope glycoprotein binds sialic acid-containing receptors before being triggered by endosomal low pH to undergo irreversible structural changes that cause membrane fusion. The HA proteins from different IAV isolates can vary in the pH at which HA protein structural changes are triggered, the protein causes membrane fusion, or outside the cell the virion becomes inactivated. HA activation pH values generally range from pH 4.8 to 6.2. Human-adapted HA proteins tend to have relatively stable HA proteins activated at pH 5.5 or below. Here, studies are reviewed that report HA stability values and investigate the biological impact of variations in HA stability on replication, pathogenicity, and transmissibility in experimental animal models. Overall, a stabilized HA protein appears to be necessary for human pandemic potential and should be considered when assessing human pandemic risk.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
3
|
Kido H, Takahashi E, Kimoto T. Role of host trypsin-type serine proteases and influenza virus-cytokine-trypsin cycle in influenza viral pathogenesis. Pathogenesis-based therapeutic options. Biochimie 2019; 166:203-213. [PMID: 31518617 DOI: 10.1016/j.biochi.2019.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
Influenza A virus (IAV) is one of the most common infectious pathogen and associated with significant morbidity and mortality. Although processing the IAV hemagglutinin (HA) envelope glycoprotein precursor is a pre-requisite for viral membrane fusion activity, viral entry and transmission, HA-processing protease is not encoded in the IAV genome and thus the cellular trypsin-type serine HA-processing proteases determine viral infectious tropism and viral pathogenicity. The initial process of IAV infection of the airway is followed by marked upregulation of ectopic trypsin in various organs and endothelial cells through the induction of various proinflammatory cytokines, and this process has been termed the "influenza virus-cytokine-trypsin" cycle. In the advanced stage of IAV infection, the cytokine storm induces disorders of glucose and lipid metabolism and the "metabolic disorders-cytokine" cycle is then linked with the "influenza virus-cytokine-trypsin" cycle, to advance the pathogenic process into energy crisis and multiple organ failure. Application of protease inhibitors and treatment of metabolic disorders that break these cycles and their interconnection is therefore a promising therapeutic approach against influenza. This review discusses IAV pathogenicity on trypsin type serine HA-processing proteases, cytokines, metabolites and therapeutic options.
Collapse
Affiliation(s)
- Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan.
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Takashi Kimoto
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| |
Collapse
|
4
|
Daidoji T, Watanabe Y, Arai Y, Kajikawa J, Hirose R, Nakaya T. Unique Infectious Strategy of H5N1 Avian Influenza Virus Is Governed by the Acid-Destabilized Property of Hemagglutinin. Viral Immunol 2017; 30:398-407. [PMID: 28654310 DOI: 10.1089/vim.2017.0020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 virus emerged in 1997 as a zoonotic disease in Hong Kong. It has since spread to Asia and Europe and is a serious threat to both the poultry industry and human health. For effective surveillance and possible prevention/control of HPAI H5N1 viruses, it is necessary to understand the molecular mechanism underlying HPAI H5N1 pathogenesis. The hemagglutinin (HA) protein of influenza A viruses (IAVs) is one of the major determinants of host adaptation, transmissibility, and viral virulence. The main function of the HA protein is to facilitate viral entry and viral genome release within host cells before infection. To achieve viral infection, IAVs belonging to different subtypes or strains induce viral-cell membrane fusion at different endosomal pH levels after internalization through endocytosis. However, host-specific endosomal pH also affects induction of membrane fusion followed by infection. The HA protein of HPAI H5N1 has a higher pH threshold for membrane fusion than the HA protein of classical avian influenza viruses. Although this particular property of HA (which governs viral infection) is prone to deactivation in the avian intestine or in an ambient environment, it facilitates efficient infection of host cells, resulting in a broad host tropism, regardless of the pH in the host endosome. Accumulated knowledge, together with further research, about the HA-governed mechanism underlying HPAI H5N1 virulence (i.e., receptor tropism and pH-dependent viral-cell membrane fusion) will be helpful for developing effective surveillance strategies and for prevention/control of HPAI H5N1 infection.
Collapse
Affiliation(s)
- Tomo Daidoji
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Yohei Watanabe
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Yasuha Arai
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan .,2 Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University , Osaka, Japan
| | - Junichi Kajikawa
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Ryohei Hirose
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan .,3 Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Takaaki Nakaya
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| |
Collapse
|
5
|
Laporte M, Naesens L. Airway proteases: an emerging drug target for influenza and other respiratory virus infections. Curr Opin Virol 2017; 24:16-24. [PMID: 28414992 PMCID: PMC7102789 DOI: 10.1016/j.coviro.2017.03.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/28/2017] [Accepted: 03/30/2017] [Indexed: 01/11/2023]
Abstract
To enter into airway epithelial cells, influenza, parainfluenza- and coronaviruses rely on host cell proteases for activation of the viral protein involved in membrane fusion. One protease, transmembrane protease serine 2 (TMPRSS2) was recently proven to be crucial for hemagglutinin cleavage of some human influenza viruses. Since the catalytic sites of the diverse serine proteases linked to influenza, parainfluenza- and coronavirus activation are structurally similar, active site inhibitors of these airway proteases could have broad therapeutic applicability against multiple respiratory viruses. Alternatively, superior selectivity could be achieved with allosteric inhibitors of TMPRSS2 or another critical protease. Though still in its infancy, airway protease inhibition represents an attractive host-cell targeting approach to combat respiratory viruses such as influenza.
Collapse
Affiliation(s)
- Manon Laporte
- Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Lieve Naesens
- Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
The Proteolytic Activation of (H3N2) Influenza A Virus Hemagglutinin Is Facilitated by Different Type II Transmembrane Serine Proteases. J Virol 2016; 90:4298-4307. [PMID: 26889029 PMCID: PMC4836353 DOI: 10.1128/jvi.02693-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/01/2016] [Indexed: 11/20/2022] Open
Abstract
Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans and mice, members of the type II transmembrane protease family (TTSP), e.g., TMPRSS2, TMPRSS4, and TMPRSS11d (HAT), have been shown to cleave influenza virus HA for viral activation and infectivity in vitro. Recently, we reported that inactivation of a single HA-activating protease gene, Tmprss2, in knockout mice inhibits the spread of H1N1 influenza viruses. However, after infection of Tmprss2 knockout mice with an H3N2 influenza virus, only a slight increase in survival was observed, and mice still lost body weight. In this study, we investigated an additional trypsin-like protease, TMPRSS4. Both TMPRSS2 and TMPRSS4 are expressed in the same cell types of the mouse lung. Deletion of Tmprss4 alone in knockout mice does not protect them from body weight loss and death upon infection with H3N2 influenza virus. In contrast, Tmprss2−/−Tmprss4−/− double-knockout mice showed a remarkably reduced virus spread and lung pathology, in addition to reduced body weight loss and mortality. Thus, our results identified TMPRSS4 as a second host cell protease that, in addition to TMPRSS2, is able to activate the HA of H3N2 influenza virus in vivo. IMPORTANCE Influenza epidemics and recurring pandemics are responsible for significant global morbidity and mortality. Due to high variability of the virus genome, resistance to available antiviral drugs is frequently observed, and new targets for treatment of influenza are needed. Host cell factors essential for processing of the virus hemagglutinin represent very suitable drug targets because the virus is dependent on these host factors for replication. We reported previously that Tmprss2-deficient mice are protected against H1N1 virus infections, but only marginal protection against H3N2 virus infections was observed. Here we show that deletion of two host protease genes, Tmprss2 and Tmprss4, strongly reduced viral spread as well as lung pathology and resulted in increased survival after H3N2 virus infection. Thus, TMPRSS4 represents another host cell factor that is involved in cleavage activation of H3N2 influenza viruses in vivo.
Collapse
|
7
|
Šantak M, Slović A, Ljubin-Sternak S, Mlinarić Galinović G, Forčić D. Genetic diversity among human parainfluenza virus type 2 isolated in Croatia between 2011 and 2014. J Med Virol 2016; 88:1733-41. [PMID: 27004845 DOI: 10.1002/jmv.24532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2016] [Indexed: 11/09/2022]
Abstract
The dynamics and evolution of the human parainfluenza virus type 2 (HPIV2) in Croatia, and also globally, are largely unknown. Most HPIV2 infections are treated symptomatically outside the hospital setting. Thus, the diagnosis is missing making it difficult to follow the genetic variation and evolution of the HPIV2. This study explores hospitalized HPIV2 cases in Croatia during 4-year period (2011-2014). Most cases in this period were reported in October or November (68.75%) and most of patients were under 2 years of age (81.25%). For molecular analyses, we used the F and HN gene sequences and showed that although both regions are equally suitable for phylogenetic analyses it would be advantageous to use regions longer than 2 kb for HPIV2 analyses of isolates which are spatially and temporally closely related. We show here that the dominant cluster in this area was cluster G3 while only one strain isolated in this period was positioned in the distant cluster G1a. Further monitoring of the HPIV2 will determine whether cluster G3 will remain dominant or it will be overruled by cluster G1a. This will be important for the surveillance of virus circulation in population and significance of the viral infection. J. Med. Virol. 88:1733-1741, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maja Šantak
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Anamarija Slović
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Sunčanica Ljubin-Sternak
- Teaching Institute of Public Health "Dr. Andrija Štampar", Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Gordana Mlinarić Galinović
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Croatian National Institute of Public Health, Zagreb, Croatia
| | - Dubravko Forčić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Russell CJ. Acid-induced membrane fusion by the hemagglutinin protein and its role in influenza virus biology. Curr Top Microbiol Immunol 2015; 385:93-116. [PMID: 25007844 PMCID: PMC7122338 DOI: 10.1007/82_2014_393] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Membrane fusion is not spontaneous. Therefore, enveloped viruses have evolved membrane-fusion mediating glycoproteins that, once activated, refold, and release energy that fuses viral and cellular membranes. The influenza A virus hemagglutinin (HA) protein is a prototypic structural class I viral fusion glycoprotein that, once primed by proteolytic cleavage, is activated by endosomal low pH to form a fusogenic "leash-in-grooves" hairpin structure. Low-pH induced HA protein refolding is an irreversible process, so acid exposure in the absence of a target membrane leads to virus inactivation. The HA proteins of diverse influenza virus subtypes isolated from a variety of species differ in their acid stabilities, or pH values at which irreversible HA protein conformational changes are triggered. Recently, efficient replication of highly pathogenic avian influenza (HPAI) viruses such as H5N1 in avian species has been associated with a relatively high HA activation pH. In contrast, a decrease in H5N1 HA activation pH has been shown to enhance replication and airborne transmission in mammals. Mutations that alter the acid stabilities of H1 and H3 HA proteins have also been discovered that influence the amantadine susceptibilities, replication rates, and pathogenicities of human influenza viruses. An understanding of the role of HA acid stability in influenza virus biology is expected to aid in identifying emerging viruses with increased pandemic potential and assist in developing live attenuated virus vaccines. Acid-induced HA protein activation, which has provided a paradigm for protein-mediated membrane fusion, is now identified as a novel determinant of influenza virus biology.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, MS 330, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA,
| |
Collapse
|
9
|
KIDO H. Influenza virus pathogenicity regulated by host cellular proteases, cytokines and metabolites, and its therapeutic options. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:351-368. [PMID: 26460316 PMCID: PMC4729853 DOI: 10.2183/pjab.91.351] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/29/2015] [Indexed: 06/05/2023]
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality. The knowledge gained within the last decade on the pandemic IAV(H1N1)2009 improved our understanding not only of the viral pathogenicity but also the host cellular factors involved in the pathogenicity of multiorgan failure (MOF), such as cellular trypsin-type hemagglutinin (HA0) processing proteases for viral multiplication, cytokine storm, metabolic disorders and energy crisis. The HA processing proteases in the airway and organs for all IAV known to date have been identified. Recently, a new concept on the pathogenicity of MOF, the "influenza virus-cytokine-trypsin" cycle, has been proposed involving up-regulation of trypsin through pro-inflammatory cytokines, and potentiation of viral multiplication in various organs. Furthermore, the relationship between causative factors has been summarized as the "influenza virus-cytokine-trypsin" cycle interconnected with the "metabolic disorders-cytokine" cycle. These cycles provide new treatment concepts for ATP crisis and MOF. This review discusses IAV pathogenicity on cellular proteases, cytokines, metabolites and therapeutic options.
Collapse
Affiliation(s)
- Hiroshi KIDO
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| |
Collapse
|
10
|
DESC1 and MSPL activate influenza A viruses and emerging coronaviruses for host cell entry. J Virol 2014; 88:12087-97. [PMID: 25122802 DOI: 10.1128/jvi.01427-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type II transmembrane serine protease (TTSP) TMPRSS2 cleaves and activates the influenza virus and coronavirus surface proteins. Expression of TMPRSS2 is essential for the spread and pathogenesis of H1N1 influenza viruses in mice. In contrast, H3N2 viruses are less dependent on TMPRSS2 for viral amplification, suggesting that these viruses might employ other TTSPs for their activation. Here, we analyzed TTSPs, reported to be expressed in the respiratory system, for the ability to activate influenza viruses and coronaviruses. We found that MSPL and, to a lesser degree, DESC1 are expressed in human lung tissue and cleave and activate the spike proteins of the Middle East respiratory syndrome and severe acute respiratory syndrome coronaviruses for cell-cell and virus-cell fusion. In addition, we show that these proteases support the spread of all influenza virus subtypes previously pandemic in humans. In sum, we identified two host cell proteases that could promote the amplification of influenza viruses and emerging coronaviruses in humans and might constitute targets for antiviral intervention. Importance: Activation of influenza viruses by host cell proteases is essential for viral infectivity and the enzymes responsible are potential targets for antiviral intervention. The present study demonstrates that two cellular serine proteases, DESC1 and MSPL, activate influenza viruses and emerging coronaviruses in cell culture and, because of their expression in human lung tissue, might promote viral spread in the infected host. Antiviral strategies aiming to prevent viral activation might thus need to encompass inhibitors targeting MSPL and DESC1.
Collapse
|
11
|
Yamane K, Indalao IL, Chida J, Yamamoto Y, Hanawa M, Kido H. Diisopropylamine dichloroacetate, a novel pyruvate dehydrogenase kinase 4 inhibitor, as a potential therapeutic agent for metabolic disorders and multiorgan failure in severe influenza. PLoS One 2014; 9:e98032. [PMID: 24865588 PMCID: PMC4035290 DOI: 10.1371/journal.pone.0098032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/28/2014] [Indexed: 02/07/2023] Open
Abstract
Severe influenza is characterized by cytokine storm and multiorgan failure with metabolic energy disorders and vascular hyperpermeability. In the regulation of energy homeostasis, the pyruvate dehydrogenase (PDH) complex plays an important role by catalyzing oxidative decarboxylation of pyruvate, linking glycolysis to the tricarboxylic acid cycle and fatty acid synthesis, and thus its activity is linked to energy homeostasis. The present study tested the effects of diisopropylamine dichloroacetate (DADA), a new PDH kinase 4 (PDK4) inhibitor, in mice with severe influenza. Infection of mice with influenza A PR/8/34(H1N1) virus resulted in marked down-regulation of PDH activity and ATP level, with selective up-regulation of PDK4 in the skeletal muscles, heart, liver and lungs. Oral administration of DADA at 12-h intervals for 14 days starting immediately after infection significantly restored PDH activity and ATP level in various organs, and ameliorated disorders of glucose and lipid metabolism in the blood, together with marked improvement of survival and suppression of cytokine storm, trypsin up-regulation and viral replication. These results indicate that through PDK4 inhibition, DADA effectively suppresses the host metabolic disorder-cytokine cycle, which is closely linked to the influenza virus-cytokine-trypsin cycle, resulting in prevention of multiorgan failure in severe influenza.
Collapse
Affiliation(s)
- Kazuhiko Yamane
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Irene L Indalao
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Junji Chida
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | | | - Masaaki Hanawa
- R&D Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| |
Collapse
|
12
|
Murillo LN, Murillo MS, Perelson AS. Towards multiscale modeling of influenza infection. J Theor Biol 2013; 332:267-90. [PMID: 23608630 DOI: 10.1016/j.jtbi.2013.03.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/19/2013] [Accepted: 03/27/2013] [Indexed: 02/05/2023]
Abstract
Aided by recent advances in computational power, algorithms, and higher fidelity data, increasingly detailed theoretical models of infection with influenza A virus are being developed. We review single scale models as they describe influenza infection from intracellular to global scales, and, in particular, we consider those models that capture details specific to influenza and can be used to link different scales. We discuss the few multiscale models of influenza infection that have been developed in this emerging field. In addition to discussing modeling approaches, we also survey biological data on influenza infection and transmission that is relevant for constructing influenza infection models. We envision that, in the future, multiscale models that capitalize on technical advances in experimental biology and high performance computing could be used to describe the large spatial scale epidemiology of influenza infection, evolution of the virus, and transmission between hosts more accurately.
Collapse
Affiliation(s)
- Lisa N Murillo
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | |
Collapse
|
13
|
Reperant LA, Kuiken T, Osterhaus ADME. Adaptive pathways of zoonotic influenza viruses: from exposure to establishment in humans. Vaccine 2012; 30:4419-34. [PMID: 22537992 DOI: 10.1016/j.vaccine.2012.04.049] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/06/2012] [Accepted: 04/12/2012] [Indexed: 12/11/2022]
Abstract
Human influenza viruses have their ultimate origin in avian reservoirs and may adapt, either directly or after passage through another mammalian species, to circulate independently in the human population. Three sets of barriers must be crossed by a zoonotic influenza virus before it can become a human virus: animal-to-human transmission barriers; virus-cell interaction barriers; and human-to-human transmission barriers. Adaptive changes allowing zoonotic influenza viruses to cross these barriers have been studied extensively, generating key knowledge for improved pandemic preparedness. Most of these adaptive changes link acquired genetic alterations of the virus to specific adaptation mechanisms that can be screened for, both genetically and phenotypically, as part of zoonotic influenza virus surveillance programs. Human-to-human transmission barriers are only sporadically crossed by zoonotic influenza viruses, eventually triggering a worldwide influenza outbreak or pandemic. This is the most devastating consequence of influenza virus cross-species transmission. Progress has been made in identifying some of the determinants of influenza virus transmissibility. However, interdisciplinary research is needed to further characterize these ultimate barriers to the development of influenza pandemics, at both the level of the individual host and that of the population.
Collapse
Affiliation(s)
- Leslie A Reperant
- Department of Virology, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | |
Collapse
|
14
|
Zhirnov OP, Klenk HD, Wright PF. Aprotinin and similar protease inhibitors as drugs against influenza. Antiviral Res 2011; 92:27-36. [PMID: 21802447 DOI: 10.1016/j.antiviral.2011.07.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/24/2011] [Accepted: 07/18/2011] [Indexed: 02/06/2023]
Abstract
Efforts to develop new antiviral chemotherapeutic approaches are focusing on compounds that target either influenza virus replication itself or host factor(s) that are critical to influenza replication. Host protease mediated influenza hemagglutinin (HA) cleavage is critical for activation of virus infectivity and as such is a chemotherapeutic target. Influenza pathogenesis involves a "vicious cycle" in which host proteases activate progeny virus which in turn amplifies replication and stimulates further protease activities which may be detrimental to the infected host. Aprotinin, a 58 amino acid polypeptide purified from bovine lung that is one of a family of host-targeted antivirals that inhibit serine proteases responsible for influenza virus activation. This drug and similar agents, such as leupeptin and camostat, suppress virus HA cleavage and limit reproduction of human and avian influenza viruses with a single arginine in the HA cleavage site. Site-directed structural modifications of aprotinin are possible to increase its intracellular targeting of cleavage of highly virulent H5 and H7 hemagglutinins possessing multi-arginine/lysine cleavage site. An additional mechanism of action for serine protease inhibitors is to target a number of host mediators of inflammation and down regulate their levels in virus-infected hosts. Aprotinin is a generic drug approved for intravenous use in humans to treat pancreatitis and limit post-operative bleeding. As an antiinfluenzal compound, aprotinin might be delivered by two routes: (i) a small-particle aerosol has been approved in Russia for local respiratory application in mild-to-moderate influenza and (ii) a proposed intravenous administration for severe influenza to provide both an antiviral effect and a decrease in systemic pathology and inflammation.
Collapse
Affiliation(s)
- O P Zhirnov
- D.I. Ivanovsky Institute of Virology, Moscow 123098, Russia.
| | | | | |
Collapse
|
15
|
Kido H, Okumura Y, Takahashi E, Pan HY, Wang S, Yao D, Yao M, Chida J, Yano M. Role of host cellular proteases in the pathogenesis of influenza and influenza-induced multiple organ failure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:186-94. [PMID: 21801859 DOI: 10.1016/j.bbapap.2011.07.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/03/2011] [Accepted: 07/05/2011] [Indexed: 10/18/2022]
Abstract
Influenza A virus (IAV) is one of the most common infectious pathogens in humans. Since the IVA genome does not have the processing protease for the viral hemagglutinin (HA) envelope glycoprotein precursors, entry of this virus into cells and infectious organ tropism of IAV are primarily determined by host cellular trypsin-type HA processing proteases. Several secretion-type HA processing proteases for seasonal IAV in the airway, and ubiquitously expressed furin and pro-protein convertases for highly pathogenic avian influenza (HPAI) virus, have been reported. Recently, other HA-processing proteases for seasonal IAV and HPAI have been identified in the membrane fraction. These proteases proteolytically activate viral multiplication at the time of viral entry and budding. In addition to the role of host cellular proteases in IAV pathogenicity, IAV infection results in marked upregulation of cellular trypsins and matrix metalloproteinase-9 in various organs and cells, particularly endothelial cells, through induced pro-inflammatory cytokines. These host cellular factors interact with each other as the influenza virus-cytokine-protease cycle, which is the major mechanism that induces vascular hyperpermeability and multiorgan failure in severe influenza. This mini-review discusses the roles of cellular proteases in the pathogenesis of IAV and highlights the molecular mechanisms of upregulation of trypsins as effective targets for the control of IAV infection. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Kuranmoto-cho, Tokushima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bertram S, Glowacka I, Steffen I, Kühl A, Pöhlmann S. Novel insights into proteolytic cleavage of influenza virus hemagglutinin. Rev Med Virol 2010; 20:298-310. [PMID: 20629046 PMCID: PMC7169116 DOI: 10.1002/rmv.657] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The influenza virus hemagglutinin (HA) mediates the first essential step in the viral life cycle, virus entry into target cells. Influenza virus HA is synthesised as a precursor protein in infected cells and requires cleavage by host cell proteases to transit into an active form. Cleavage is essential for influenza virus infectivity and the HA‐processing proteases are attractive targets for therapeutic intervention. It is well established that cleavage by ubiquitously expressed subtilisin‐like proteases is a hallmark of highly pathogenic avian influenza viruses (HPAIV). In contrast, the nature of the proteases responsible for cleavage of HA of human influenza viruses and low pathogenic avian influenza viruses (LPAIV) is not well understood. Recent studies suggest that cleavage of HA of human influenza viruses might be a cell‐associated event and might be facilitated by the type II transmembrane serine proteases (TTSPs) TMPRSS2, TMPRSS4 and human airway trypsin‐like protease (HAT). Here, we will introduce the different concepts established for proteolytic activation of influenza virus HA, with a particular focus on the role of TTSPs, and we will discuss their implications for viral tropism, pathogenicity and antiviral intervention. Copyright © 2010 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stephanie Bertram
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
17
|
TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells. J Virol 2010; 84:10016-25. [PMID: 20631123 DOI: 10.1128/jvi.00239-10] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Proteolysis of influenza virus hemagglutinin by host cell proteases is essential for viral infectivity, but the proteases responsible are not well defined. Recently, we showed that engineered expression of the type II transmembrane serine proteases (TTSPs) TMPRSS2 and TMPRSS4 allows hemagglutinin (HA) cleavage. Here we analyzed whether TMPRSS2 and TMPRSS4 are expressed in influenza virus target cells and support viral spread in the absence of exogenously added protease (trypsin). We found that transient expression of TMPRSS2 and TMPRSS4 resulted in HA cleavage and trypsin-independent viral spread. Endogenous expression of TMPRSS2 and TMPRSS4 in cell lines correlated with the ability to support the spread of influenza virus in the absence of trypsin, indicating that these proteases might activate influenza virus in naturally permissive cells. Indeed, RNA interference (RNAi)-mediated knockdown of both TMPRSS2 and TMPRSS4 in Caco-2 cells, which released fully infectious virus without trypsin treatment, markedly reduced the spread of influenza virus, demonstrating that these proteases were responsible for efficient proteolytic activation of HA in this cell line. Finally, TMPRSS2 was found to be coexpressed with the major receptor determinant of human influenza viruses, 2,6-linked sialic acids, in human alveolar epithelium, indicating that viral target cells in the human respiratory tract express TMPRSS2. Collectively, our results point toward an important role for TMPRSS2 and possibly TMPRSS4 in influenza virus replication and highlight the former protease as a potential therapeutic target.
Collapse
|
18
|
Novel type II transmembrane serine proteases, MSPL and TMPRSS13, Proteolytically activate membrane fusion activity of the hemagglutinin of highly pathogenic avian influenza viruses and induce their multicycle replication. J Virol 2010; 84:5089-96. [PMID: 20219906 DOI: 10.1128/jvi.02605-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Host cellular proteases induce influenza virus entry into cells by cleaving the viral surface envelope glycoprotein hemagglutinin (HA). However, details on the cellular proteases involved in this event are not fully available. We report here that ubiquitous type II transmembrane serine proteases, MSPL and its splice variant TMPRSS13, are novel candidates for proteases processing HA proteins of highly pathogenic avian influenza (HPAI) viruses, apart from the previously identified furin and proprotein convertases 5 and 6. HAs from all HPAI virus H5 and H7 strains have one of two cleavage site motifs, the R-X-K/R-R motif with R at position P4 and the K-K/R-K/T-R motif with K at position P4. In studies of synthetic 14-residue HPAI virus HA peptides with these cleavage site motifs, furin preferentially cleaved only HA peptides with the R-K-K-R motif in the presence of calcium and not peptides with the other motif, whereas MSPL and TMPRSS13 cleaved both types of HA peptides (those with the R/K-K-K-R motif) efficiently in the absence of calcium. Full-length recombinant HPAI virus HA with the K-K-K-R cleavage motif exhibited poor susceptibility to cleavage in the absence of MSPL or TMPRSS13 and the presence of furin in infected cells, but it was converted to mature HA subunits in transfected cells expressing MSPL or TMPRSS13, with membrane-fused giant-cell formation. This conversion and membrane fusion were suppressed by inhibitors of MSPL and TMPRSS13. Furthermore, infection with and multiplication of genetically modified live HPAI virus A/Crow/Kyoto/53/2004 (H5N1) with the K-K-K-R cleavage site motif were detected only in MSPL- and TMPRSS13-expressing cells.
Collapse
|
19
|
Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro. PLoS One 2009; 4:e7870. [PMID: 19924243 PMCID: PMC2773421 DOI: 10.1371/journal.pone.0007870] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Accepted: 10/21/2009] [Indexed: 11/22/2022] Open
Abstract
Background Entry of enveloped viruses into host cells requires the activation of viral envelope glycoproteins through cleavage by either intracellular or extracellular proteases. In order to gain insight into the molecular basis of protease cleavage and its impact on the efficiency of viral entry, we investigated the susceptibility of a recombinant native full-length S-protein trimer (triSpike) of the severe acute respiratory syndrome coronavirus (SARS-CoV) to cleavage by various airway proteases. Methodology/Principal Findings Purified triSpike proteins were readily cleaved in vitro by three different airway proteases: trypsin, plasmin and TMPRSS11a. High Performance Liquid Chromatography (HPLC) and amino acid sequencing analyses identified two arginine residues (R667 and R797) as potential protease cleavage site(s). The effect of protease-dependent enhancement of SARS-CoV infection was demonstrated with ACE2 expressing human bronchial epithelial cells 16HBE. Airway proteases regulate the infectivity of SARS-CoV in a fashion dependent on previous receptor binding. The role of arginine residues was further shown with mutant constructs (R667A, R797A or R797AR667A). Mutation of R667 or R797 did not affect the expression of S-protein but resulted in a differential efficacy of pseudotyping into SARS-CoVpp. The R667A SARS-CoVpp mutant exhibited a lack of virus entry enhancement following protease treatment. Conclusions/Significance These results suggest that SARS S-protein is susceptible to airway protease cleavage and, furthermore, that protease mediated enhancement of virus entry depends on specific conformation of SARS S-protein upon ACE2 binding. These data have direct implications for the cell entry mechanism of SARS-CoV along the respiratory system and, furthermore expand the possibility of identifying potential therapeutic agents against SARS-CoV.
Collapse
|
20
|
Hashimoto D, Ohmuraya M, Hirota M, Yamamoto A, Suyama K, Ida S, Okumura Y, Takahashi E, Kido H, Araki K, Baba H, Mizushima N, Yamamura KI. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. ACTA ACUST UNITED AC 2008; 181:1065-72. [PMID: 18591426 PMCID: PMC2442206 DOI: 10.1083/jcb.200712156] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is mostly a nonselective bulk degradation system within cells. Recent reports indicate that autophagy can act both as a protector and killer of the cell depending on the stage of the disease or the surrounding cellular environment (for review see Cuervo, A.M. 2004. Trends Cell Biol. 14:70–77). We found that cytoplasmic vacuoles induced in pancreatic acinar cells by experimental pancreatitis were autophagic in origin, as demonstrated by microtubule-associated protein 1 light chain 3 expression and electron microscopy experiments. To analyze the role of macroautophagy in acute pancreatitis, we produced conditional knockout mice lacking the autophagy-related 5 gene in acinar cells. Acute pancreatitis was not observed, except for very mild edema in a restricted area, in conditional knockout mice. Unexpectedly, trypsinogen activation was greatly reduced in the absence of autophagy. These results suggest that autophagy exerts devastating effects in pancreatic acinar cells by activation of trypsinogen to trypsin in the early stage of acute pancreatitis through delivering trypsinogen to the lysosome.
Collapse
Affiliation(s)
- Daisuke Hashimoto
- Division of Developmental Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Böttcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 2006; 80:9896-8. [PMID: 16973594 PMCID: PMC1617224 DOI: 10.1128/jvi.01118-06] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Host cell proteases that cleave the hemagglutinin (HA) of influenza viruses in the human respiratory tract are still not identified. Here we cloned two human type II transmembrane serine proteases with known airway localization, TMPRSS2 and HAT, into mammalian expression vector. Cotransfection of mammalian cells with plasmids encoding HA and either protease resulted in HA cleavage in situ. Transient expression of either protease in MDCK cells enabled multicycle replication of influenza viruses in these cells in the absence of exogenous trypsin. These data suggest that TMPRSS2 and HAT are candidates for proteolytic activation of influenza viruses in vivo.
Collapse
Affiliation(s)
- Eva Böttcher
- Institute of Virology, Philipps University, Hans-Meerwein str. 3, 35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Cederqvist K, Janer J, Tervahartiala T, Sorsa T, Haglund C, Salmenkivi K, Stenman UH, Andersson S. Up-regulation of trypsin and mesenchymal MMP-8 during development of hyperoxic lung injury in the rat. Pediatr Res 2006; 60:395-400. [PMID: 16940237 DOI: 10.1203/01.pdr.0000238342.16081.f9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute lung injury is marked by damage to alveolar-capillary barrier. High pulmonary levels of matrix-degrading serine proteinase trypsin and matrix metalloproteinases (MMP)-2, -8, and -9 have been shown in preterm infants with respiratory distress syndrome (RDS). We studied expression of trypsin and MMP-2, -8, and -9 in rats exposed to >95% oxygen for 24, 48, or 60 h. As demonstrated by zymography and Western immunoblotting, levels of trypsin and MMP-2, -8, and -9 in bronchoalveolar lavage fluid (BALF) sharply increased after 48 h of hyperoxia relative to normoxia controls. This coincided with increase in alveolar-capillary permeability, as indicated by increased protein concentration in BALF. Both neutrophil-derived 80-kD and mesenchymal cell-derived 60-kD MMP-8 isoforms were detected in BALF. Of them, mesenchymal-type MMP-8 predominated. In immunohistochemistry, alveolar epithelium showed strong trypsin expression at 48 and 60 h of hyperoxia, whereas it was predominantly negative in controls. MMP-8 was mostly expressed in macrophages. Marked up-regulation of trypsin and MMP-8 early during hyperoxic lung injury suggests that these enzymes play a role in the pathogenesis of acute lung injury and may therefore be potential targets for therapy of lung injury.
Collapse
Affiliation(s)
- Katariina Cederqvist
- Department of Pediatrics, Helsinki University Central Hospital and University of Helsinki, FIN-00290 Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yao D, Kuwajima M, Chen Y, Shiota M, Okumura Y, Yamada H, Kido H. Impaired long-chain fatty acid metabolism in mitochondria causes brain vascular invasion by a non-neurotropic epidemic influenza A virus in the newborn/suckling period: implications for influenza-associated encephalopathy. Mol Cell Biochem 2006; 299:85-92. [PMID: 16896540 DOI: 10.1007/s11010-005-9046-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 08/23/2005] [Indexed: 10/24/2022]
Abstract
The neuropathogenesis of influenza-associated encephalopathy in children and Reye's syndrome remains unclear. A surveillance effort conducted during 2000-2003 in South-West Japan reveals that almost all fatal and handicapped influenza-associated encephalopathy patients exhibit a disorder of mitochondrial beta-oxidation with elevated serum acylcarnitine ratios (C(16:0)+C(18:1))/C(2). Here we show invasion by a non-neurotropic epidemic influenza A H3N2 virus in cerebral capillaries with progressive brain edema after intranasal infection of mice having impaired mitochondrial beta-oxidation congenitally or posteriorly in the newborn/ suckling periods. Mice genetically lacking of carnitine transporter OCTN2, resulting in carnitine deficiency and impaired beta-oxidation, exhibited significant higher virus-genome numbers in the brain, accumulation of virus antigen exclusively in the cerebral capillaries and increased brain vascular permeability compared to in wild type mice. Mini-plasmin, which proteolytically potentiates influenza virus multiplication in vivo and destroys the blood-brain barrier, accumulated with virus antigen in the brain capillaries of OCTN2-deficient mice but only a little in wild-type mice. These results suggest that the impaired mitochondrial beta-oxidation changes the susceptibility to a non-neurotropic influenza A virus as to multiplication in the brain capillaries and to cause brain edema. These pathological findings in the brain of mice having impaired mitochondrial beta-oxidation after influenza virus infection may have implications for human influenza-associated encephalopathy.
Collapse
Affiliation(s)
- Dengfu Yao
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Yamada H, Le QT, Kousaka A, Higashi Y, Tsukane M, Kido H. Sendai virus infection up-regulates trypsin I and matrix metalloproteinase-9, triggering viral multiplication and matrix degradation in rat lungs and lung L2 cells. Arch Virol 2006; 151:2529-37. [PMID: 16816895 DOI: 10.1007/s00705-006-0807-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 05/16/2006] [Indexed: 11/29/2022]
Abstract
To elucidate the virus-host cell interaction, we analyzed quantitatively the expression of various cellular proteases and tumor necrosis factor-alpha (TNF-alpha) after Sendai virus infection in rat lungs and lung L2 cells. After infection, TNF-alpha mRNA levels increased rapidly to a peak on day one, and then trypsin I and matrix metalloproteinase (MMP)-9, but not MMP-2, were significantly up-regulated with a peak on day 2 in vivo. These up-regulations were confirmed in L2 cells. Up-regulation of proMMP-9 and its active convertase trypsin I seems to synergistically enhance virus multiplication and the destruction of lung matrix, resulting in the progression of pneumonia.
Collapse
Affiliation(s)
- H Yamada
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Le TQ, Kawachi M, Yamada H, Shiota M, Okumura Y, Kido H. Identification of trypsin I as a candidate for influenza A virus and Sendai virus envelope glycoprotein processing protease in rat brain. Biol Chem 2006; 387:467-75. [PMID: 16606346 DOI: 10.1515/bc.2006.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Extracellular cleavage of virus envelope fusion glycoprotein hemagglutinin (HA0) by host trypsin-like proteases is a prerequisite for the infectivity and pathogenicity of human influenza A viruses and Sendai virus. The common epidemic influenza A viruses are pneumotropic, but occasionally cause encephalopathy or encephalitis, although the HA0 processing enzyme in the brain has not been identified. In searching for the brain processing proteases, we identified a processing enzyme in rat brain that was inducible by infection with these viruses. The purified enzyme exhibited an apparent molecular mass of approximately 22 kDa on SDS-PAGE and the N-terminal amino acid sequence was consistent with that of rat pancreatic trypsin I. Its substrate specificities and inhibition profiles were the same as those of pancreatic trypsin I. In situ hybridization and immunohistochemical studies on trypsin I distribution revealed heavy deposits in the brain capillaries, particularly in the allocortex, as well as in clustered neuronal cells of the hippocampus. The purified enzyme efficiently processed the HA0 of human influenza A virus and the fusion glycoprotein precursor of Sendai virus. Our results suggest that trypsin I in the brain potentiates virus multiplication in the pathogenesis and progression of influenza-associated encephalopathy or encephalitis.
Collapse
Affiliation(s)
- Trong Quang Le
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Schickli JH, Kaur J, Ulbrandt N, Spaete RR, Tang RS. An S101P substitution in the putative cleavage motif of the human metapneumovirus fusion protein is a major determinant for trypsin-independent growth in vero cells and does not alter tissue tropism in hamsters. J Virol 2005; 79:10678-89. [PMID: 16051860 PMCID: PMC1182652 DOI: 10.1128/jvi.79.16.10678-10689.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human metapneumovirus (hMPV), a recently described paramyxovirus, is a major etiological agent for lower respiratory tract disease in young children that can manifest with severe cough, bronchiolitis, and pneumonia. The hMPV fusion glycoprotein (F) shares conserved functional domains with other paramyxovirus F proteins that are important for virus entry and spread. For other paramyxovirus F proteins, cleavage of a precursor protein (F0) into F1 and F2 exposes a fusion peptide at the N terminus of the F1 fragment, a likely prerequisite for fusion activity. Many hMPV strains have been reported to require trypsin for growth in tissue culture. The majority of these strains contain RQSR at the putative cleavage site. However, strains hMPV/NL/1/00 and hMPV/NL/1/99 expanded in our laboratory contain the sequence RQPR and do not require trypsin for growth in Vero cells. The contribution of this single amino acid change was verified directly by generating recombinant virus (rhMPV/NL/1/00) with either proline or serine at position 101 in F. These results suggested that cleavage of F protein in Vero cells could be achieved by trypsin or S101P amino acid substitution in the putative cleavage site motif. Moreover, trypsin-independent cleavage of hMPV F containing 101P was enhanced by the amino acid substitution E93K. In hamsters, rhMPV/93K/101S and rhMPV/93K/101P grew to equivalent titers in the respiratory tract and replication was restricted to respiratory tissues. The ability of these hMPV strains to replicate efficiently in the absence of trypsin should greatly facilitate the generation, preclinical testing, and manufacturing of attenuated hMPV vaccine candidates.
Collapse
Affiliation(s)
- Jeanne H Schickli
- MedImmune Vaccines, Inc., 297 N. Bernardo Ave., Mountain View, CA 94043, USA.
| | | | | | | | | |
Collapse
|
27
|
Kido H, Okumura Y, Yamada H, Mizuno D, Higashi Y, Yano M. Secretory leukoprotease inhibitor and pulmonary surfactant serve as principal defenses against influenza A virus infection in the airway and chemical agents up-regulating their levels may have therapeutic potential. Biol Chem 2005; 385:1029-34. [PMID: 15576322 DOI: 10.1515/bc.2004.133] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Influenza A virus (IAV) is one of the most common infectious pathogens in humans. Entry of this virus into cells is primarily determined by host cellular trypsin-type processing proteases, which proteolytically activate viral membrane fusion glycoprotein precursors. Human IAV and murine parainfluenza virus type 1 Sendai virus are exclusively pneumotropic, and the infectious organ tropism of these viruses is determined by the susceptibility of the viral envelope glycoprotein to cleavage by proteases in the airway. Proteases in the upper respiratory tract are suppressed by secretory leukoprotease inhibitor, and those in the lower respiratory tract are suppressed by pulmonary surfactant, which by adsorption inhibits the interaction between the proteases and viral membrane proteins. Although the protease activities are predominant over the activities of inhibitory compounds under normal airway conditions, intranasal administration of inhibitors was able to significantly suppress multi-cycles of viral replication in the airway. In addition, we identified chemical agents that could act as defensive factors by up-regulating the levels of the natural inhibitors and immunoglobulin A (IgA) in airway fluids. One of these compounds, ambroxol, is a mucolytic and anti-oxidant agent that stimulates the release of secretory leukoprotease inhibitor and pulmonary surfactant in the early phase, and IgA in the late phase of infection at an optimal dose, i.e. a dose sufficient to inhibit virus proliferation and increase the survival rate of animals after treatment with a lethal dose of IAV. Another agent, clarithromycin, is a macrolide antibiotic that increases IgA levels through augmentation of interleukin-12 levels and mucosal immunization in the airway. In addition to the sialidase inhibitors, which prevent the release of IAV from infected cells, inhibitors of the processing proteases and chemical agents that augment mucosal immunity and/or levels of the relevant defensive compounds may also ultimately prove to be useful as new anti-influenza agents.
Collapse
Affiliation(s)
- Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Guan H, Arany E, van Beek JP, Chamson-Reig A, Thyssen S, Hill DJ, Yang K. Adipose tissue gene expression profiling reveals distinct molecular pathways that define visceral adiposity in offspring of maternal protein-restricted rats. Am J Physiol Endocrinol Metab 2005; 288:E663-73. [PMID: 15562247 DOI: 10.1152/ajpendo.00461.2004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is increasing evidence that poor early growth confers an increased risk of type 2 diabetes, hypertension, and other features of the metabolic syndrome in later life. We hypothesized that this may result from poor nutrition during early life exerting permanent effects on the structure and function of key metabolic organ systems. To study the long-term impact of early-life undernutrition on susceptibility to visceral adiposity, we used a rat model of maternal protein restriction (MPR) in which dams were fed a low-protein diet (containing 8% instead of 20% protein in control diet) throughout pregnancy and lactation. MPR offspring were born smaller than controls (offspring of dams on control diet) and in adulthood developed visceral adiposity. We compared the pattern of gene expression in visceral adipose tissue (VAT) between MPR offspring and controls with Affymetrix rat expression arrays. Of the total number of genes and expressed sequence tags analyzed (15,923 probe sets), 9,790 (61.5%) were expressed in VAT. We identified 650 transcripts as differentially expressed > or =1.5-fold in the VAT of MPR offspring. Gene ontology analysis revealed a global upregulation of genes involved in carbohydrate, lipid, and protein metabolism. A number of genes involved in adipocyte differentiation, angiogenesis, and extracellular matrix remodeling were also upregulated. However, in marked contrast to other rodent models of obesity, the expression of a large number of genes associated with inflammation was reduced in this rat model. Thus visceral adiposity in this early-life programmed rat model is marked by dynamic changes in the transcriptional profile of VAT. Our data provide new insights into the molecular mechanisms that underlie the early-life programming of visceral adiposity.
Collapse
Affiliation(s)
- Haiyan Guan
- Department of Obstetrics and Gynaecology, Canadian Institutes of Health Research Group in Fetal and Neonatal Health and Development, Children's Health Research Institute, University of Western Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Yao D, Chen Y, Kuwajima M, Shiota M, Kido H. Accumulation of mini-plasmin in the cerebral capillaries causes vascular invasion of the murine brain by a pneumotropic influenza A virus: implications for influenza-associated encephalopathy. Biol Chem 2004; 385:487-92. [PMID: 15255180 DOI: 10.1515/bc.2004.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The infectivity and pathogenicity of influenza virus are primarily determined by host cellular trypsin-type processing proteases which cleave the viral membrane fusion glycoprotein hemagglutinin (HA). Therefore the distribution of the processing protease is a major determinant of the infectious organ tropism. The common epidemic human influenza A virus is pneumotropic and the HA processing proteases tryptase Clara, mini-plasmin, tryptase TC30 and ectopic anionic trypsin have all been isolated from mammalian airways. However, the pneumotropic influenza virus occasionally causes severe brain edema, particularly in children presenting with Reye's syndrome treated with aspirin, or in children with influenza-associated encephalopathy without antipyretic treatment. We have observed that, after influenza virus infection, the accumulation of mini-plasmin in the cerebral capillaries in mice with a congenital or acquired abnormality of mitochondrial beta-oxidation mimicking the pathological findings of Reye's syndrome, causes an invasion and multiplication of the pneumotropic influenza virus at these same locations. From these findings, we hypothesize that the accumulated mini-plasmin modifies the brain capillaries from a non-permissive to a permissive state, thereby allowing multiplication of pneumotropic influenza virus. In addition, mini-plasmin proteolytically destroys the blood-brain barrier. These pathologic findings, consistent with encephalopathy in mice with a systemic impairment of beta-oxidation, may have implications for human influenza encephalopathy.
Collapse
Affiliation(s)
- Dengfu Yao
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan
| | | | | | | | | |
Collapse
|
30
|
Kido H, Chen Y, Yamada H, Okumura Y. [Host cellular proteases trigger the infectivity of the influenza virus in the airway and brain]. Nihon Yakurigaku Zasshi 2003; 122:45-53. [PMID: 12843572 DOI: 10.1254/fpj.122.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The pathogenesis of the influenza and Sendai viruses is primarily determined by host cellular trypsin-type processing proteases that activate viral fusion activity and infectivity. We isolated three secretory trypsin-type proteases from rat lungs, such as tryptase Clara, mini-plasmin, and ectopic anionic trypsin, candidates for the processing proteases of viral envelope glycoproteins. These enzymes specifically cleave the precursor of fusion glycoprotein hemagglutinin (HA) of influenza virus at Arg(325) and the F(0) of Sendai virus at Arg(116) in the consensus cleavage motif, Gln(Glu)-X-Arg, resulting in the induction of infectivity of these viruses. These proteases show different localization in the airway and susceptibility for the processing of various subtypes of influenza virus HA, suggesting that these processing proteases determine the viral pathogenicity. Influenza virus readily infects and replicates in the airway epithelial cells but occasionally replicates in the central nervous system, particularly in children below 5-6 years of age and Reye's syndrome patients. We found an invasion by a non-neurovirulent influenza virus in cerebral capillaries with progressive brain edema of mice having impaired mitochondrial fatty acid metabolism congenitally or posteriorly in the newborn period. In the brain of these mice, mini-plasmin, which potentiates viral-multiplication in vivo and destroys the blood-brain barrier, accumulated with virus antigen in the brain capillaries but only a little in the control mice without impaired mitochondrial fatty acid metabolism.
Collapse
Affiliation(s)
- Hiroshi Kido
- Institute for Enzyme Research, The University of Tokushima, Japan.
| | | | | | | |
Collapse
|
31
|
Imamura Y, Katsu M, Sakai K, Okumura Y, Ariga H, Kido H. Trypsinogen hL expressed in the human lung is a new member of the trypsinogen family. Biol Pharm Bull 2003; 26:361-4. [PMID: 12612448 DOI: 10.1248/bpb.26.361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular cloning of cDNA encoding a new member of the trypsinogen family, named trypsinogen hL, was carried out by PCR using human lung cDNAs as templates. The primary structure of trypsinogen hL was found to be a prepro-protein and a catalytic triad, 64His, 108Asp and 201Ser. It was also found that trypsinogen hL is specifically expressed in the human lung, the expression level being 30-times higher than those in other tissues tested. A phylogenic tree analysis showed that trypsinogen hL is a new member of the trypsinogen family, a family of serine protease family proteins.
Collapse
Affiliation(s)
- Yasuhiro Imamura
- Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Sato M, Yoshida S, Iida K, Tomozawa T, Kido H, Yamashita M. A novel influenza A virus activating enzyme from porcine lung: purification and characterization. Biol Chem 2003; 384:219-27. [PMID: 12675514 DOI: 10.1515/bc.2003.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Proteolytic activation of hemagglutinin, an envelope glycoprotein of the influenza virus, by host proteases is essential for infection and proliferation of the virus. However, there is no well-defined, inherent source of host proteases in man or swine, both of which are natural hosts for human influenza viruses. We have recently isolated a 32 kDa protein in a high salt extract from porcine lungs, which possess the hemagglutinin processing activity. In this study, we attempted to purify another hemagglutinin processing enzyme from porcine lung. The purified enzyme, named tryptase TC30, exhibited a molecular mass of about 30 kDa by SDS-PAGE and 28.5 kDa by gel filtration chromatography, suggesting that it is a monomer. Tryptase TC30 cleaved peptide substrates with Arg at the P1 position, and preferentially substrates with the Ser-Ile-Gin-Ser-Arg sequence corresponding to the HA cleavage site sequence of the A/PR/8/34 influenza virus. Among various inhibitors tested, trypsin-type serine protease inhibitors, such as aprotinin, antipain, benzamidine and leupeptin, efficiently inhibited the proteolytic activity of the enzyme. The N-terminal 40 amino acid sequence of tryptase TC30 exhibits more than 60% homology to mast cell tryptases from mice MCP-6 and human tryptase-alpha and -beta. These data indicate that tryptase TC30, the 30 kDa enzyme from porcine lung, is a novel hemagglutinin-cleaving enzyme.
Collapse
Affiliation(s)
- Masayuki Sato
- Biological Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | | | | | | | | | | |
Collapse
|