1
|
Osgerby A, Overton TW. Approaches for high-throughput quantification of periplasmic recombinant proteins. N Biotechnol 2023; 77:149-160. [PMID: 37708933 DOI: 10.1016/j.nbt.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The Gram-negative periplasm is a convenient location for the accumulation of many recombinant proteins including biopharmaceutical products. It is the site of disulphide bond formation, required by some proteins (such as antibody fragments) for correct folding and function. It also permits simpler protein release and downstream processing than cytoplasmic accumulation. As such, targeting of recombinant proteins to the E. coli periplasm is a key strategy in biologic manufacture. However, expression and translocation of each recombinant protein requires optimisation including selection of the best signal peptide and growth and production conditions. Traditional methods require separation and analysis of protein compositions of periplasmic and cytoplasmic fractions, a time- and labour-intensive method that is difficult to parallelise. Therefore, approaches for high throughput quantification of periplasmic protein accumulation offer advantages in rapid process development.
Collapse
Affiliation(s)
- Alexander Osgerby
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim W Overton
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
2
|
Smets D, Smit J, Xu Y, Karamanou S, Economou A. Signal Peptide-rheostat Dynamics Delay Secretory Preprotein Folding. J Mol Biol 2022; 434:167790. [PMID: 35970402 DOI: 10.1016/j.jmb.2022.167790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Sec secretory proteins are distinguished from cytoplasmic ones by N-terminal signal peptides with multiple roles during post-translational translocation. They contribute to preprotein targeting to the translocase by slowing down folding, binding receptors and triggering secretion. While signal peptides get cleaved after translocation, mature domains traffic further and/or fold into functional states. How signal peptides delay folding temporarily, to keep mature domains translocation-competent, remains unclear. We previously reported that the foldon landscape of the periplasmic prolyl-peptidyl isomerase is altered by its signal peptide and mature domain features. Here, we reveal that the dynamics of signal peptides and mature domains crosstalk. This involves the signal peptide's hydrophobic helical core, the short unstructured connector to the mature domain and the flexible rheostat at the mature domain N-terminus. Through this cis mechanism the signal peptide delays the formation of early initial foldons thus altering their hierarchy and delaying mature domain folding. We propose that sequence elements outside a protein's native core exploit their structural dynamics to influence the folding landscape.
Collapse
Affiliation(s)
- Dries Smets
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Jochem Smit
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Ying Xu
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Mercier E, Wang X, Bögeholz LAK, Wintermeyer W, Rodnina MV. Cotranslational Biogenesis of Membrane Proteins in Bacteria. Front Mol Biosci 2022; 9:871121. [PMID: 35573737 PMCID: PMC9099147 DOI: 10.3389/fmolb.2022.871121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Nascent polypeptides emerging from the ribosome during translation are rapidly scanned and processed by ribosome-associated protein biogenesis factors (RPBs). RPBs cleave the N-terminal formyl and methionine groups, assist cotranslational protein folding, and sort the proteins according to their cellular destination. Ribosomes translating inner-membrane proteins are recognized and targeted to the translocon with the help of the signal recognition particle, SRP, and SRP receptor, FtsY. The growing nascent peptide is then inserted into the phospholipid bilayer at the translocon, an inner-membrane protein complex consisting of SecY, SecE, and SecG. Folding of membrane proteins requires that transmembrane helices (TMs) attain their correct topology, the soluble domains are inserted at the correct (cytoplasmic or periplasmic) side of the membrane, and – for polytopic membrane proteins – the TMs find their interaction partner TMs in the phospholipid bilayer. This review describes the recent progress in understanding how growing nascent peptides are processed and how inner-membrane proteins are targeted to the translocon and find their correct orientation at the membrane, with the focus on biophysical approaches revealing the dynamics of the process. We describe how spontaneous fluctuations of the translocon allow diffusion of TMs into the phospholipid bilayer and argue that the ribosome orchestrates cotranslational targeting not only by providing the binding platform for the RPBs or the translocon, but also by helping the nascent chains to find their correct orientation in the membrane. Finally, we present the auxiliary role of YidC as a chaperone for inner-membrane proteins. We show how biophysical approaches provide new insights into the dynamics of membrane protein biogenesis and raise new questions as to how translation modulates protein folding.
Collapse
|
4
|
Maleki M, Hajihassan Z. De Novo Designing a Novel Signal Peptide for Secretion of Neurturin to the Periplasmic Space of Escherichia coli. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Bakkes PJ, Lenz P, Müller C, Bida A, Dohmen-Olma D, Knapp A, Oldiges M, Jaeger KE, Freudl R. Biosensor-Based Optimization of Cutinase Secretion by Corynebacterium glutamicum. Front Microbiol 2021; 12:750150. [PMID: 34777299 PMCID: PMC8581548 DOI: 10.3389/fmicb.2021.750150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The industrial microbe Corynebacterium glutamicum is gaining substantial importance as a platform host for recombinant protein secretion. We recently developed a fluorescence-based (eYFP) C. glutamicum reporter strain for the quantification of Sec-dependent protein secretion by monitoring the secretion-related stress response and now demonstrate its applicability in optimizing the secretion of the heterologous enzyme cutinase from Fusarium solani pisi. To drive secretion, either the poor-performing PelSP or the potent NprESP Sec signal peptide from Bacillus subtilis was used. To enable easy detection and quantification of the secreted cutinase we implemented the split green fluorescent protein (GFP) assay, which relies on the GFP11-tag fused to the C-terminus of the cutinase, which can complement a truncated GFP thereby reconstituting its fluorescence. The reporter strain was transformed with different mutant libraries created by error-prone PCR, which covered the region of the signal peptide and the N-terminus of the cutinase. Fluorescence-activated cell sorting (FACS) was performed to isolate cells that show increased fluorescence in response to increased protein secretion stress. Five PelSP variants were identified that showed a 4- to 6-fold increase in the amount and activity of the secreted cutinase (up to 4,100 U/L), whereas two improved NprESP variants were identified that showed a ∼35% increase in secretion, achieving ∼5,500 U/L. Most of the isolated variants carried mutations in the h-region of the signal peptide that increased its overall hydrophobicity. Using site-directed mutagenesis it was shown that the combined mutations F11I and P16S within the hydrophobic core of the PelSP are sufficient to boost cutinase secretion in batch cultivations to the same level as achieved by the NprESP. Screening of a PelSP mutant library in addition resulted in the identification of a cutinase variant with an increased specific activity, which was attributed to the mutation A85V located within the substrate-binding region. Taken together the biosensor-based optimization approach resulted in a substantial improvement of cutinase secretion by C. glutamicum, and therefore represents a valuable tool that can be applied to any secretory protein of interest.
Collapse
Affiliation(s)
- Patrick J. Bakkes
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Patrick Lenz
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Carolin Müller
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Astrid Bida
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Doris Dohmen-Olma
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Marco Oldiges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Roland Freudl
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
6
|
Garcion C, Béven L, Foissac X. Comparison of Current Methods for Signal Peptide Prediction in Phytoplasmas. Front Microbiol 2021; 12:661524. [PMID: 33841387 PMCID: PMC8026896 DOI: 10.3389/fmicb.2021.661524] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Although phytoplasma studies are still hampered by the lack of axenic cultivation methods, the availability of genome sequences allowed dramatic advances in the characterization of the virulence mechanisms deployed by phytoplasmas, and highlighted the detection of signal peptides as a crucial step to identify effectors secreted by phytoplasmas. However, various signal peptide prediction methods have been used to mine phytoplasma genomes, and no general evaluation of these methods is available so far for phytoplasma sequences. In this work, we compared the prediction performance of SignalP versions 3.0, 4.0, 4.1, 5.0 and Phobius on several sequence datasets originating from all deposited phytoplasma sequences. SignalP 4.1 with specific parameters showed the most exhaustive and consistent prediction ability. However, the configuration of SignalP 4.1 for increased sensitivity induced a much higher rate of false positives on transmembrane domains located at N-terminus. Moreover, sensitive signal peptide predictions could similarly be achieved by the transmembrane domain prediction ability of TMHMM and Phobius, due to the relatedness between signal peptides and transmembrane regions. Beyond the results presented herein, the datasets assembled in this study form a valuable benchmark to compare and evaluate signal peptide predictors in a field where experimental evidence of secretion is scarce. Additionally, this study illustrates the utility of comparative genomics to strengthen confidence in bioinformatic predictions.
Collapse
Affiliation(s)
- Christophe Garcion
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Laure Béven
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Xavier Foissac
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| |
Collapse
|
7
|
Signal peptide of HIV-1 envelope modulates glycosylation impacting exposure of V1V2 and other epitopes. PLoS Pathog 2020; 16:e1009185. [PMID: 33370382 PMCID: PMC7793277 DOI: 10.1371/journal.ppat.1009185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/08/2021] [Accepted: 11/24/2020] [Indexed: 11/19/2022] Open
Abstract
HIV-1 envelope (Env) is a trimer of gp120-gp41 heterodimers, synthesized from a precursor gp160 that contains an ER-targeting signal peptide (SP) at its amino-terminus. Each trimer is swathed by ~90 N-linked glycans, comprising complex-type and oligomannose-type glycans, which play an important role in determining virus sensitivity to neutralizing antibodies. We previously examined the effects of single point SP mutations on Env properties and functions. Here, we aimed to understand the impact of the SP diversity on glycosylation of virus-derived Env and virus neutralization by swapping SPs. Analyses of site-specific glycans revealed that SP swapping altered Env glycan content and occupancy on multiple N-linked glycosites, including conserved N156 and N160 glycans in the V1V2 region at the Env trimer apex and N88 at the trimer base. Virus neutralization was also affected, especially by antibodies against V1V2, V3, and gp41. Likewise, SP swaps affected the recognition of soluble and cell-associated Env by antibodies targeting distinct V1V2 configurations, V3 crown, and gp41 epitopes. These data highlight the contribution of SP sequence diversity in shaping the Env glycan content and its impact on the configuration and accessibility of V1V2 and other Env epitopes. HIV-1 Env glycoprotein is produced by a precursor gp160 that has a signal peptide at its N-terminus. The SP is highly diverse among the HIV-1 isolates. This study presents site-specific analyses of N-linked glycosylation on HIV-1 envelope glycoproteins from infectious viruses produced with different envelope signal peptides. We show that signal peptide swapping alters the envelope glycan shield, including the conserved N156 and N160 glycans located in the V1V2 region on the trimer apex, to impact Env recognition and virus neutralization by antibodies. The data offer crucial insights into the role of signal peptide in the interplay between HIV-1 and antibodies and its potential utility to control Env glycosylation in the development of Env-based HIV-1 vaccine.
Collapse
|
8
|
Goto C, Hirano M, Hayashi K, Kikuchi Y, Hara-Kudo Y, Misawa T, Demizu Y. Development of Amphipathic Antimicrobial Peptide Foldamers Based on Magainin 2 Sequence. ChemMedChem 2019; 14:1911-1916. [PMID: 31667994 DOI: 10.1002/cmdc.201900460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/27/2019] [Indexed: 11/07/2022]
Abstract
Magainin 2 (Mag 2), which is isolated from the skin of frogs, is a representative antimicrobial peptide (AMP), exerts its antimicrobial activity via microbial membrane disruption. It has been reported that both the amphipathicity and helical structure of Mag 2 play an important role in its antimicrobial activity. In this study, we revealed that the sequence of 17 amino acid residues in Mag 2 (peptide 7) is required to exert sufficient activity. We also designed a set of Mag 2 derivatives, based on enhancement of helicity and/or amphipathicity, by incorporation of α,α-disubstituted amino acid residues into the Mag 2 fragment, and evaluated their preferred secondary structures and their antimicrobial activities against both Gram-positive and Gram-negative bacteria. As a result, peptide 11 formed a stable helical structure in solution, and possessed potent antimicrobial activities against both Gram-positive and Gram-negative bacteria without significant cytotoxicity.
Collapse
Affiliation(s)
- Chihiro Goto
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.,Graduate School of Medical Health Sciences, Yokohama City University, Yokohama-shi, Kanagawa, 230-0045, Japan
| | - Motoharu Hirano
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Katsuhiko Hayashi
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Yutaka Kikuchi
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.,Department of Nutrition, Chiba Prefectural University of Health Sciences University, 2-10-1 Wakaba, Mihama-ku, Chiba, 261-0014, Japan
| | - Yukiko Hara-Kudo
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Takashi Misawa
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Yosuke Demizu
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.,Graduate School of Medical Health Sciences, Yokohama City University, Yokohama-shi, Kanagawa, 230-0045, Japan
| |
Collapse
|
9
|
Steinberg R, Knüpffer L, Origi A, Asti R, Koch HG. Co-translational protein targeting in bacteria. FEMS Microbiol Lett 2019; 365:4966980. [PMID: 29790984 DOI: 10.1093/femsle/fny095] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023] Open
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and have to be transported into or across the cytoplasmic membrane. Bacteria use multiple protein transport systems in parallel, but the majority of proteins engage two distinct targeting systems. One is the co-translational targeting by two universally conserved GTPases, the signal recognition particle (SRP) and its receptor FtsY, which deliver inner membrane proteins to either the SecYEG translocon or the YidC insertase for membrane insertion. The other targeting system depends on the ATPase SecA, which targets secretory proteins, i.e. periplasmic and outer membrane proteins, to SecYEG for their subsequent ATP-dependent translocation. While SRP selects its substrates already very early during their synthesis, the recognition of secretory proteins by SecA is believed to occur primarily after translation termination, i.e. post-translationally. In this review we highlight recent progress on how SRP recognizes its substrates at the ribosome and how the fidelity of the targeting reaction to SecYEG is maintained. We furthermore discuss similarities and differences in the SRP-dependent targeting to either SecYEG or YidC and summarize recent results that suggest that some membrane proteins are co-translationally targeted by SecA.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Lara Knüpffer
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, Freiburg D-79104, Germany
| | - Rossella Asti
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| |
Collapse
|
10
|
Peng C, Shi C, Cao X, Li Y, Liu F, Lu F. Factors Influencing Recombinant Protein Secretion Efficiency in Gram-Positive Bacteria: Signal Peptide and Beyond. Front Bioeng Biotechnol 2019; 7:139. [PMID: 31245367 PMCID: PMC6579943 DOI: 10.3389/fbioe.2019.00139] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
Signal peptides are short peptides directing newly synthesized proteins toward the secretory pathway. These N-terminal signal sequences are ubiquitous to all prokaryotes and eukaryotes. Signal peptides play a significant role in recombinant protein production. Previous studies have demonstrated that the secretion amount of a given target protein varies significantly depending on the signal peptide that is fused to the protein. Signal peptide selection and signal peptide modification are the two main methods for the optimization of a recombinant protein secretion. However, the highly efficient signal peptide for a target protein with a specific bacterial expression host is not predictable so far. In this article, we collect several signal peptides that have previously performed well for recombinant protein secretion in gram-positive bacteria. We also discuss several factors influencing recombinant protein secretion efficiency in gram-positive bacteria. Signal peptides with a higher charge/length ratio in n-region, more consensus residues at the-3 and-1positions in c-region and a much higher proportion of coils are more likely to perform well in the secretion of recombinant proteins. These summaries can be utilized to the selection and directed modification of signal peptides for a given recombinant protein.
Collapse
Affiliation(s)
- Chong Peng
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Chaoshuo Shi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xue Cao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
11
|
Santos BD, Morones-Ramirez JR, Balderas-Renteria I, Casillas-Vega NG, Galbraith DW, Zarate X. Optimizing Periplasmic Expression in Escherichia coli for the Production of Recombinant Proteins Tagged with the Small Metal-Binding Protein SmbP. Mol Biotechnol 2019; 61:451-460. [PMID: 30997666 DOI: 10.1007/s12033-019-00176-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously shown that the small metal-binding protein (SmbP) extracted from the gram-negative bacterium Nitrosomonas europaea can be employed as a fusion protein for the expression and purification of recombinant proteins in Escherichia coli. With the goal of increasing the amounts of SmbP-tagged proteins produced in the E. coli periplasm, we replaced the native SmbP signal peptide with three different signal sequences: two were from the proteins CusF and PelB, for transport via the Sec pathway, and one was the signal peptide from TorA, for transport via the Tat pathway. Expression of SmbP-tagged Red Fluorescent Protein (RFP) using these three alternative signal peptides individually showed a considerable increase in protein levels in the periplasm of E. coli as compared to its level using the SmbP signal sequence. Therefore, for routine periplasmic expression and purification of recombinant proteins in E. coli, we highly recommend the use of the fusion proteins PelB-SmbP or CusF-SmbP, since these signal sequences increase periplasmic production considerably as compared to the wild-type. Our work, finally, demonstrates that periplasmic expression for SmbP-tagged proteins is not limited to the Sec pathway, in that the TorA-SmbP construct can export reasonable quantities of folded proteins to the periplasm. Although the Sec route has been the most widely used, sometimes, depending on the nature of the protein of interest, for example, if it contains cofactors, it is more appropriate to consider using the Tat route over the Sec. SmbP therefore can be recommended in terms of its particular versatility when combined with signal peptides for the two different routes.
Collapse
Affiliation(s)
- Bryan D Santos
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Quimicas, 66455, San Nicolas de los Garza, NL, Mexico
| | - Jose Ruben Morones-Ramirez
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Quimicas, 66455, San Nicolas de los Garza, NL, Mexico
- Universidad Autonoma de Nuevo Leon, Centro de Investigacion en Biotecnologia y Nanotecnologia, Facultad de Ciencias Quimicas, Parque de Investigacion e Innovacion Tecnologica, 66629, Apodaca, NL, Mexico
| | - Isaias Balderas-Renteria
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Quimicas, 66455, San Nicolas de los Garza, NL, Mexico
- Universidad Autonoma de Nuevo Leon, Centro de Investigacion en Biotecnologia y Nanotecnologia, Facultad de Ciencias Quimicas, Parque de Investigacion e Innovacion Tecnologica, 66629, Apodaca, NL, Mexico
| | - Nestor G Casillas-Vega
- Departamento de Patologia Clinica, Universidad Autonoma de Nuevo Leon, Hospital Universitario Dr. Jose Eleuterio Gonzalez, 64460, Monterrey, NL, Mexico
| | - David W Galbraith
- School of Plant Sciences and BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Xristo Zarate
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Quimicas, 66455, San Nicolas de los Garza, NL, Mexico.
- Universidad Autonoma de Nuevo Leon, Centro de Investigacion en Biotecnologia y Nanotecnologia, Facultad de Ciencias Quimicas, Parque de Investigacion e Innovacion Tecnologica, 66629, Apodaca, NL, Mexico.
| |
Collapse
|
12
|
Misawa T, Ohoka N, Oba M, Yamashita H, Tanaka M, Naito M, Demizu Y. Development of 2-aminoisobutyric acid (Aib)-rich cell-penetrating foldamers for efficient siRNA delivery. Chem Commun (Camb) 2019; 55:7792-7795. [DOI: 10.1039/c9cc02203a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have designed and synthesized a set of cell-penetrating foldamers (CPFs), Blocks 1–8, composed of the common amino acids Leu, Arg, and Gly, as well as the helicogenic amino acid 2-aminoisobutyric acid.
Collapse
Affiliation(s)
- Takashi Misawa
- Division of Organic Chemistry
- National Institute of Health Sciences
- Kawasaki-shi
- Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products
- National Institute of Health Sciences
- Kawasaki-shi
- Japan
| | - Makoto Oba
- Graduate School of Biomedical Sciences
- Nagasaki University
- Nagasaki 852-8521
- Japan
| | - Hiroko Yamashita
- Division of Organic Chemistry
- National Institute of Health Sciences
- Kawasaki-shi
- Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences
- Nagasaki University
- Nagasaki 852-8521
- Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products
- National Institute of Health Sciences
- Kawasaki-shi
- Japan
| | - Yosuke Demizu
- Division of Organic Chemistry
- National Institute of Health Sciences
- Kawasaki-shi
- Japan
| |
Collapse
|
13
|
Pohlschroder M, Pfeiffer F, Schulze S, Abdul Halim MF. Archaeal cell surface biogenesis. FEMS Microbiol Rev 2018; 42:694-717. [PMID: 29912330 PMCID: PMC6098224 DOI: 10.1093/femsre/fuy027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Cell surfaces are critical for diverse functions across all domains of life, from cell-cell communication and nutrient uptake to cell stability and surface attachment. While certain aspects of the mechanisms supporting the biosynthesis of the archaeal cell surface are unique, likely due to important differences in cell surface compositions between domains, others are shared with bacteria or eukaryotes or both. Based on recent studies completed on a phylogenetically diverse array of archaea, from a wide variety of habitats, here we discuss advances in the characterization of mechanisms underpinning archaeal cell surface biogenesis. These include those facilitating co- and post-translational protein targeting to the cell surface, transport into and across the archaeal lipid membrane, and protein anchoring strategies. We also discuss, in some detail, the assembly of specific cell surface structures, such as the archaeal S-layer and the type IV pili. We will highlight the importance of post-translational protein modifications, such as lipid attachment and glycosylation, in the biosynthesis as well as the regulation of the functions of these cell surface structures and present the differences and similarities in the biogenesis of type IV pili across prokaryotic domains.
Collapse
Affiliation(s)
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Stefan Schulze
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
14
|
Jong WSP, Vikström D, Houben D, van den Berg van Saparoea HB, de Gier JW, Luirink J. Application of an E. coli signal sequence as a versatile inclusion body tag. Microb Cell Fact 2017; 16:50. [PMID: 28320377 PMCID: PMC5359840 DOI: 10.1186/s12934-017-0662-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/10/2017] [Indexed: 12/18/2022] Open
Abstract
Background Heterologous protein production in Escherichia coli often suffers from bottlenecks such as proteolytic degradation, complex purification procedures and toxicity towards the expression host. Production of proteins in an insoluble form in inclusion bodies (IBs) can alleviate these problems. Unfortunately, the propensity of heterologous proteins to form IBs is variable and difficult to predict. Hence, fusing the target protein to an aggregation prone polypeptide or IB-tag is a useful strategy to produce difficult-to-express proteins in an insoluble form. Results When screening for signal sequences that mediate optimal targeting of heterologous proteins to the periplasmic space of E. coli, we observed that fusion to the 39 amino acid signal sequence of E. coli TorA (ssTorA) did not promote targeting but rather directed high-level expression of the human proteins hEGF, Pla2 and IL-3 in IBs. Further analysis revealed that ssTorA even mediated IB formation of the highly soluble endogenous E. coli proteins TrxA and MBP. The ssTorA also induced aggregation when fused to the C-terminus of target proteins and appeared functional as IB-tag in E. coli K-12 as well as B strains. An additive effect on IB-formation was observed upon fusion of multiple ssTorA sequences in tandem, provoking almost complete aggregation of TrxA and MBP. The ssTorA-moiety was successfully used to produce the intrinsically unstable hEGF and the toxic fusion partner SymE, demonstrating its applicability as an IB-tag for difficult-to-express and toxic proteins. Conclusions We present proof-of-concept for the use of ssTorA as a small, versatile tag for robust E. coli-based expression of heterologous proteins in IBs. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0662-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wouter S P Jong
- Abera Bioscience AB, 11145, Stockholm, Sweden. .,Department of Molecular Cell Biology, Section Molecular Microbiology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | - Jan-Willem de Gier
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Joen Luirink
- Abera Bioscience AB, 11145, Stockholm, Sweden. .,Department of Molecular Cell Biology, Section Molecular Microbiology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Abstract
The insertion and assembly of proteins into the inner membrane of bacteria are crucial for many cellular processes, including cellular respiration, signal transduction, and ion and pH homeostasis. This process requires efficient membrane targeting and insertion of proteins into the lipid bilayer in their correct orientation and proper conformation. Playing center stage in these events are the targeting components, signal recognition particle (SRP) and the SRP receptor FtsY, as well as the insertion components, the Sec translocon and the YidC insertase. Here, we will discuss new insights provided from the recent high-resolution structures of these proteins. In addition, we will review the mechanism by which a variety of proteins with different topologies are inserted into the inner membrane of Gram-negative bacteria. Finally, we report on the energetics of this process and provide information on how membrane insertion occurs in Gram-positive bacteria and Archaea. It should be noted that most of what we know about membrane protein assembly in bacteria is based on studies conducted in Escherichia coli.
Collapse
Affiliation(s)
- Andreas Kuhn
- Institute for Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Ross E Dalbey
- Department of Chemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
16
|
|
17
|
Zhou Y, Liu P, Gan Y, Sandoval W, Katakam AK, Reichelt M, Rangell L, Reilly D. Enhancing full-length antibody production by signal peptide engineering. Microb Cell Fact 2016; 15:47. [PMID: 26935575 PMCID: PMC4776426 DOI: 10.1186/s12934-016-0445-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/21/2016] [Indexed: 11/24/2022] Open
Abstract
Background Protein secretion to the periplasm of Escherichia coli offers an attractive route for producing heterologous proteins including antibodies. In this approach, a signal peptide is fused to the N-terminus of the heterologous protein. The signal peptide mediates translocation of the heterologous protein from the cytoplasm to the periplasm and is cleaved during the translocation process. It was previously shown that optimization of the translation initiation region (TIR) which overlaps with the nucleotide sequence of the signal sequence improves the production of heterologous proteins. Despite the progress, there is still room to improve yields using secretion as a means to produce protein complexes such as full-length monoclonal antibodies (mAbs). Results In this study we identified the inefficient secretion of heavy chain as the limitation for full-length mAb accumulation in the periplasm. To improve heavy chain secretion we investigated the effects of various signal peptides at controlled TIR strengths. The signal peptide of disulfide oxidoreductase (DsbA) mediated more efficient secretion of heavy chain than the other signal peptides tested. Mutagenesis studies demonstrated that at controlled translational levels, hydrophobicity of the hydrophobic core (H-region) of the signal peptide is a critical factor for heavy chain secretion and full-length mAb accumulation in the periplasm. Increasing the hydrophobicity of a signal peptide enhanced heavy chain secretion and periplasmic levels of assembled full-length mAbs, while decreasing the hydrophobicity had the opposite effect. Conclusions This study demonstrates that under similar translational strengths, the hydrophobicity of the signal peptide plays an important role in heavy chain secretion. Increasing the hydrophobicity of the H-region and controlling TIR strengths can serve as an approach to improve heavy chain secretion and full-length mAb production in E. coli. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0445-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yizhou Zhou
- Department of Early Stage Cell Culture, Genentech Inc., 1 DNA way, South San Francisco, CA, 94080, USA.
| | - Peter Liu
- Department of Protein Chemistry, Genentech Inc., 1 DNA way, South San Francisco, CA, 94080, USA.
| | - Yutian Gan
- Department of Protein Chemistry, Genentech Inc., 1 DNA way, South San Francisco, CA, 94080, USA.
| | - Wendy Sandoval
- Department of Protein Chemistry, Genentech Inc., 1 DNA way, South San Francisco, CA, 94080, USA.
| | - Anand Kumar Katakam
- Department of Pathology, Genentech Inc., 1 DNA way, South San Francisco, CA, 94080, USA.
| | - Mike Reichelt
- Department of Pathology, Genentech Inc., 1 DNA way, South San Francisco, CA, 94080, USA.
| | - Linda Rangell
- Department of Pathology, Genentech Inc., 1 DNA way, South San Francisco, CA, 94080, USA.
| | - Dorothea Reilly
- Department of Early Stage Cell Culture, Genentech Inc., 1 DNA way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
18
|
Koerber JT, Hornsby MJ, Wells JA. An improved single-chain Fab platform for efficient display and recombinant expression. J Mol Biol 2014; 427:576-86. [PMID: 25481745 DOI: 10.1016/j.jmb.2014.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/17/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022]
Abstract
Antibody phage display libraries combined with high-throughput selections have recently demonstrated tremendous promise to create the next generation of renewable, recombinant antibodies to study proteins and their many post-translational modification states; however, many challenges still remain, such as optimized antibody scaffolds. Recently, a single-chain fragment antigen binding (Fab) (scFab) format, in which the carboxy-terminus of the light chain is linked to the amino-terminus of the heavy chain, was described to potentially combine the high display levels of a single-chain fragment variable with the high stability of purified Fabs. However, this format required removal of the interchain disulfide bond to achieve modest display levels and subsequent bacterial expression resulted in high levels of aggregated scFab, hindering further use of scFabs. Here, we developed an improved scFab format that retains the interchain disulfide bond by increasing the linker length between the light and heavy chains to improve display and bacterial expression levels to 1-3 mg/L. Furthermore, rerouting of the scFab to the co-translational signal recognition particle pathway combined with reengineering of the signal peptide sequence results in display levels 24-fold above the original scFab format and 3-fold above parent Fab levels. This optimized scFab scaffold can be easily reformatted in a single step for expression in a bacterial or mammalian host to produce stable (Tm of 81 °C), predominantly monomeric (>90%) antibodies at a high yield. Ultimately, this new scFab format will advance high-throughput antibody generation platforms to discover the next generation of research and therapeutic antibodies.
Collapse
Affiliation(s)
- James T Koerber
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA; Recombinant Antibody Network, University of California, San Francisco, CA, 94158, USA
| | - Michael J Hornsby
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA; Recombinant Antibody Network, University of California, San Francisco, CA, 94158, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA; Recombinant Antibody Network, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
19
|
Low KO, Muhammad Mahadi N, Md. Illias R. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl Microbiol Biotechnol 2013; 97:3811-26. [DOI: 10.1007/s00253-013-4831-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
20
|
Gerling UIM, Brandenburg E, Berlepsch HV, Pagel K, Koksch B. Structure Analysis of an Amyloid-Forming Model Peptide by a Systematic Glycine and Proline Scan. Biomacromolecules 2011; 12:2988-96. [DOI: 10.1021/bm200587m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ulla I. M. Gerling
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Enrico Brandenburg
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Hans v. Berlepsch
- Research Center for Electron Microscopy, Freie Universität Berlin, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Kevin Pagel
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Beate Koksch
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
21
|
Abstract
Correct protein function depends on delivery to the appropriate cellular or subcellular compartment. Following the initiation of protein synthesis in the cytosol, many bacterial and eukaryotic proteins must be integrated into or transported across a membrane to reach their site of function. Whereas in the post-translational delivery pathway ATP-dependent factors bind to completed polypeptides and chaperone them until membrane translocation is initiated, a GTP-dependent co-translational pathway operates to couple ongoing protein synthesis to membrane transport. These distinct pathways provide different solutions for the maintenance of proteins in a state that is competent for membrane translocation and their delivery for export from the cytosol.
Collapse
|
22
|
Wagner S, Pop OI, Pop O, Haan GJ, Baars L, Koningstein G, Klepsch MM, Genevaux P, Luirink J, de Gier JW. Biogenesis of MalF and the MalFGK(2) maltose transport complex in Escherichia coli requires YidC. J Biol Chem 2008; 283:17881-90. [PMID: 18456666 DOI: 10.1074/jbc.m801481200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polytopic inner membrane protein MalF is a constituent of the MalFGK(2) maltose transport complex in Escherichia coli. We have studied the biogenesis of MalF using a combination of in vivo and in vitro approaches. MalF is targeted via the SRP pathway to the Sec/YidC insertion site. Despite close proximity of nascent MalF to YidC during insertion, YidC is not required for the insertion of MalF into the membrane. However, YidC is required for the stability of MalF and the formation of the MalFGK(2) maltose transport complex. Our data indicate that YidC supports the folding of MalF into a stable conformation before it is incorporated into the maltose transport complex.
Collapse
Affiliation(s)
- Samuel Wagner
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The signal recognition particle pathway is required for virulence in Streptococcus pyogenes. Infect Immun 2008; 76:2612-9. [PMID: 18411293 DOI: 10.1128/iai.00239-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signal recognition particle (SRP) pathway is a universally conserved pathway for targeting polypeptides for secretion via the cotranslational pathway. In particular, the SRP pathway is thought to be the main mechanism for targeting polypeptides in gram-positive bacteria, including a number of important human pathogens. Though widely considered to be an essential cellular component, recent advances have indicated this pathway may be dispensable in gram-positive bacteria of the genus Streptococcus under in vitro conditions. However, its importance for the pathogenesis of streptococcal disease is unknown. In this study, we investigated the importance of the SRP pathway for virulence factor secretion in the human pathogen Streptococcus pyogenes. While the SRP pathway was not found to be essential for viability in vitro, SRP mutants demonstrated a medium-specific growth defect that could be rescued by the addition of glucose. We also observed that a distinct subset of virulence factors were dependent upon the SRP pathway for secretion, whereas others were completely independent of this pathway. Significantly, deletion of the SRP pathway resulted in mutants that were highly attenuated in both a zebrafish model of necrotic myositis and a murine subcutaneous ulcer model, highlighting the importance of this pathway in vivo. These studies emphasize the importance of the SRP pathway for the in vivo survival and pathogenesis of S. pyogenes.
Collapse
|
24
|
The conserved extension of the Hbp autotransporter signal peptide does not determine targeting pathway specificity. Biochem Biophys Res Commun 2008; 368:522-7. [DOI: 10.1016/j.bbrc.2008.01.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 01/22/2008] [Indexed: 11/15/2022]
|
25
|
Abstract
Understanding the transport of hydrophilic proteins across biological membranes continues to be an important undertaking. The general secretory (Sec) pathway in Escherichia coli transports the majority of E. coli proteins from their point of synthesis in the cytoplasm to their sites of final localization, associating sequentially with a number of protein components of the transport machinery. The targeting signals for these substrates must be discriminated from those of proteins transported via other pathways. While targeting signals for each route have common overall characteristics, individual signal peptides vary greatly in their amino acid sequences. How do these diverse signals interact specifically with the proteins that comprise the appropriate transport machinery and, at the same time, avoid targeting to an alternate route? The recent publication of the crystal structures of components of the Sec transport machinery now allows a more thorough consideration of the interactions of signal sequences with these components.
Collapse
Affiliation(s)
| | - Debra A. Kendall
- To whom correspondence should be addressed. Mailing address: Department of Molecular and Cell Biology, 91 North Eagleville Road, The University of Connecticut, Storrs, CT 06269-3125. Phone: (860) 486-1891. Fax: (860) 486-4331. E-mail:
| |
Collapse
|
26
|
Bensing BA, Siboo IR, Sullam PM. Glycine residues in the hydrophobic core of the GspB signal sequence route export toward the accessory Sec pathway. J Bacteriol 2007; 189:3846-54. [PMID: 17369296 PMCID: PMC1913339 DOI: 10.1128/jb.00027-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Streptococcus gordonii cell surface glycoprotein GspB mediates high-affinity binding to distinct sialylated carbohydrate structures on human platelets and salivary proteins. GspB is glycosylated in the cytoplasm of S. gordonii and is then transported to the cell surface via a dedicated transport system that includes the accessory Sec components SecA2 and SecY2. The means by which the GspB preprotein is selectively recognized by the accessory Sec system have not been characterized fully. GspB has a 90-residue amino-terminal signal sequence that displays a traditional tripartite structure, with an atypically long amino-terminal (N) region followed by hydrophobic (H) and cleavage regions. In this report, we investigate the relative importance of the N and H regions of the GspB signal peptide for trafficking of the preprotein. The results show that the extended N region does not prevent export by the canonical Sec system. Instead, three glycine residues in the H region not only are necessary for export via the accessory Sec pathway but also interfere with export via the canonical Sec route. Replacement of the H-region glycine residues with helix-promoting residues led to a decrease in the efficiency of SecA2-dependent transport of the preprotein and a simultaneous increase in SecA2-independent translocation. Thus, the hydrophobic core of the GspB signal sequence is responsible primarily for routing towards the accessory Sec system.
Collapse
Affiliation(s)
- Barbara A Bensing
- Veterans Affairs Medical Center, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
27
|
Arts J, van Boxtel R, Filloux A, Tommassen J, Koster M. Export of the pseudopilin XcpT of the Pseudomonas aeruginosa type II secretion system via the signal recognition particle-Sec pathway. J Bacteriol 2007; 189:2069-76. [PMID: 17172336 PMCID: PMC1855739 DOI: 10.1128/jb.01236-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 12/01/2006] [Indexed: 11/20/2022] Open
Abstract
Type IV pilins and pseudopilins are found in various prokaryotic envelope protein complexes, including type IV pili and type II secretion machineries of gram-negative bacteria, competence systems of gram-positive bacteria, and flagella and sugar-binding structures in members of the archaeal kingdom. The precursors of these proteins have highly conserved N termini, consisting of a short, positively charged leader peptide, which is cleaved off by a dedicated peptidase during maturation, and a hydrophobic stretch of approximately 20 amino acid residues. Which pathway is involved in the inner membrane translocation of these proteins is unknown. We used XcpT, the major pseudopilin from the type II secretion machinery of Pseudomonas aeruginosa, as a model to study this process. Transport of an XcpT-PhoA hybrid was shown to occur in the absence of other Xcp components in P. aeruginosa and in Escherichia coli. Experiments with conditional sec mutants and reporter-protein fusions showed that this transport process involves the cotranslational signal recognition particle targeting route and is dependent on a functional Sec translocon.
Collapse
Affiliation(s)
- Jorik Arts
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Desvaux M, Scott-Tucker A, Turner SM, Cooper LM, Huber D, Nataro JP, Henderson IR. A conserved extended signal peptide region directs posttranslational protein translocation via a novel mechanism. Microbiology (Reading) 2007; 153:59-70. [PMID: 17185535 DOI: 10.1099/mic.0.29091-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the type V secretion family are among the most prevalent secreted proteins in Gram-negative bacteria. A subset of this family, including Pet, the prototypical member of the Enterobacteriaceae serine proteases, possess unusual signal peptides which can be divided into five regions termed N1 (charged), H1 (hydrophobic), N2, H2 and C (cleavage site) domains. The N1 and H1 regions, which the authors have named the extended signal peptide region (ESPR), demonstrate remarkable conservation. In contrast, the N2, H2 and C regions show significant variability, and are reminiscent of typical Sec-dependent signal sequences. Despite several investigations, the function of the ESPR remains obscure. Here, it is shown that proteins possessing the ESPR are translocated in a posttranslational fashion. The presence of the ESPR severely impairs inner membrane translocation. Mutational analysis suggests that the ESPR delays inner membrane translocation by adopting a particular conformation, or by interacting with a cytoplasmic or inner membrane co-factor, prior to inner membrane translocation.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Division of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Desvaux M, Cooper LM, Filenko NA, Scott-Tucker A, Turner SM, Cole JA, Henderson IR. The unusual extended signal peptide region of the type V secretion system is phylogenetically restricted. FEMS Microbiol Lett 2006; 264:22-30. [PMID: 17020545 DOI: 10.1111/j.1574-6968.2006.00425.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The plasmid encoded toxin, Pet, is a prototypical member of the serine protease autotransporters of the Enterobacteriaceae. In addition to the passenger and beta-domains typical of autotransporters, in silico predictions indicate that Pet possesses an unusually long N-terminal signal sequence. The signal sequence can be divided into five regions termed N1 (charged), H1 (hydrophobic), N2, H2 and C (cleavage site) domains. The N1 and H1 regions, which we have termed the extended signal peptide region, demonstrate remarkable conservation. In contrast, the N2, H2 and C regions demonstrate significant variability and are reminiscent of typical Sec-dependent signal sequences. Despite several investigations, the function of the extended signal peptide region remains obscure and surprisingly it has not been proven that the extended signal peptide region is actually synthesized as part of the signal sequence. Here, we demonstrate that the extended signal peptide region is present only in Gram-negative bacterial proteins originating from the classes Beta- and Gammaproteobacteria, and more particularly only in proteins secreted via the Type V secretion pathway: autotransporters, TpsA exoproteins of the two-partner system and trimeric autotransporters. In vitro approaches demonstrate that the DNA region encoding the extended signal peptide region is transcribed and translated.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Division of Immunity and Infection, The University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Gram-negative bacteria such as Escherichia coli are surrounded by two membranes, the inner membrane and the outer membrane. The biogenesis of most inner membrane proteins (IMPs), typical alpha-helical proteins, appears to follow a partly conserved cotranslational pathway. Targeting involves a relatively simple signal recognition particle (SRP) and SRP-receptor. Insertion of most IMPs into the membrane occurs via the Sec-translocon, which is also used for the vectorial transport of secretory proteins. Similar to eukaryotic systems, little is known about the later stages of biogenesis of IMPs, the folding and assembly in the lipid bilayer. Recently, YidC has been identified as a factor that assists in the integration, folding, and assembly of IMPs both in association with the Sec-translocon and separately. This review deals mainly with recent structural and biochemical data from various experimental systems that offer new insight into the different stages of biogenesis of E. coli IMPs.
Collapse
Affiliation(s)
- Joen Luirink
- Department of Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
31
|
Desvaux M, Khan A, Scott-Tucker A, Chaudhuri RR, Pallen MJ, Henderson IR. Genomic analysis of the protein secretion systems in Clostridium acetobutylicum ATCC 824. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:223-53. [PMID: 15950297 DOI: 10.1016/j.bbamcr.2005.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 12/21/2022]
Abstract
Consistent information about protein secretion in Gram-positive bacteria is essentially restricted to the model organism Bacillus subtilis. Among genome-sequenced clostridia, Clostridium acetobutylicum has been the most extensively studied from a physiological point of view and is the organism for which the largest variety of molecular biology tools have been developed. Following in silico analyses, both secreted proteins and protein secretion systems were identified. The Tat (Twin arginine translocation; TC #2.A.64) pathway and ABC (ATP binding cassette) protein exporters (TC #3.A.1.) could not be identified, but the Sec (secretion) pathway (TC #3.A.5) appears to be used prevalently. Similarly, a flagella export apparatus (FEA; TC #3.A.6.), holins (TC #1.E.), and an ESAT-6/WXG100 (early secreted antigen target of 6 kDa/proteins with a WXG motif of approximately 100 residues) secretion system were identified. Here, we report for the first time the identification of a fimbrilin protein exporter (FPE; TC #3.A.14) and a Tad (tight adherence) export apparatus in C. acetobutylicum. This investigation highlights the potential use of this saprophytic bacterium in biotechnological and biomedical applications as well as a model organism for studying protein secretion in pathogenic Gram-positive bacteria.
Collapse
Affiliation(s)
- Mickaël Desvaux
- The Institute for Biomedical Research (IBR), The University of Birmingham-The Medical School, Division of Immunity and Infection, Bacterial Pathogenesis and Genomics Unit, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Zanen G, Houben ENG, Meima R, Tjalsma H, Jongbloed JDH, Westers H, Oudega B, Luirink J, van Dijl JM, Quax WJ. Signal peptide hydrophobicity is critical for early stages in protein export by Bacillus subtilis. FEBS J 2005; 272:4617-30. [PMID: 16156784 DOI: 10.1111/j.1742-4658.2005.04777.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Signal peptides that direct protein export in Bacillus subtilis are overall more hydrophobic than signal peptides in Escherichia coli. To study the importance of signal peptide hydrophobicity for protein export in both organisms, the alpha-amylase AmyQ was provided with leucine-rich (high hydrophobicity) or alanine-rich (low hydrophobicity) signal peptides. AmyQ export was most efficiently directed by the authentic signal peptide, both in E. coli and B. subtilis. The leucine-rich signal peptide directed AmyQ export less efficiently in both organisms, as judged from pulse-chase labelling experiments. Remarkably, the alanine-rich signal peptide was functional in protein translocation only in E. coli. Cross-linking of in vitro synthesized ribosome nascent chain complexes (RNCs) to cytoplasmic proteins showed that signal peptide hydrophobicity is a critical determinant for signal peptide binding to the Ffh component of the signal recognition particle (SRP) or to trigger factor, not only in E. coli, but also in B. subtilis. The results show that B. subtilis SRP can discriminate between signal peptides with relatively high hydrophobicities. Interestingly, the B. subtilis protein export machinery seems to be poorly adapted to handle alanine-rich signal peptides with a low hydrophobicity. Thus, signal peptide hydrophobicity appears to be more critical for the efficiency of early stages in protein export in B. subtilis than in E. coli.
Collapse
Affiliation(s)
- Geeske Zanen
- Department of Pharmaceutical Biology, University of Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jong WSP, ten Hagen-Jongman CM, Genevaux P, Brunner J, Oudega B, Luirink J. Trigger factor interacts with the signal peptide of nascent Tat substrates but does not play a critical role in Tat-mediated export. ACTA ACUST UNITED AC 2005; 271:4779-87. [PMID: 15606765 DOI: 10.1111/j.1432-1033.2004.04442.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Twin-arginine translocation (Tat)-mediated protein transport across the bacterial cytoplasmic membrane occurs only after synthesis and folding of the substrate protein that contains a signal peptide with a characteristic twin-arginine motif. This implies that premature contact between the Tat signal peptide and the Tat translocon in the membrane must be prevented. We used site-specific photo-crosslinking to demonstrate that the signal peptide of nascent Tat proteins is in close proximity to the chaperone and peptidyl-prolyl isomerase trigger factor (TF). The contact with TF was strictly dependent on the context of the translating ribosome, started early in biogenesis when the nascent chain left the ribosome near L23, and persisted until the chain reached its full length. Despite this exclusive and prolonged contact, depletion or overexpression of TF had little effect on the kinetics and efficiency of the Tat export process.
Collapse
Affiliation(s)
- Wouter S P Jong
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Huber D, Boyd D, Xia Y, Olma MH, Gerstein M, Beckwith J. Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J Bacteriol 2005; 187:2983-91. [PMID: 15838024 PMCID: PMC1082830 DOI: 10.1128/jb.187.9.2983-2991.2005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that the DsbA signal sequence promotes efficient, cotranslational translocation of the cytoplasmic protein thioredoxin-1 via the bacterial signal recognition particle (SRP) pathway. However, two commonly used signal sequences, those of PhoA and MalE, which promote export by a posttranslational mechanism, do not export thioredoxin. We proposed that this difference in efficiency of export was due to the rapid folding of thioredoxin in the cytoplasm; cotranslational export by the DsbA signal sequence avoids the problem of cytoplasmic folding (C. F. Schierle, M. Berkmen, D. Huber, C. Kumamoto, D. Boyd, and J. Beckwith, J. Bacteriol. 185:5706-5713, 2003). Here, we use thioredoxin as a reporter to distinguish SRP-dependent from non-SRP-dependent cleavable signal sequences. We screened signal sequences exhibiting a range of hydrophobicity values based on a method that estimates hydrophobicity. Successive iterations of screening and refining the method defined a threshold hydrophobicity required for SRP recognition. While all of the SRP-dependent signal sequences identified were above this threshold, there were also a few signal sequences above the threshold that did not utilize the SRP pathway. These results suggest that a simple measure of the hydrophobicity of a signal sequence is an important but not a sufficient indicator for SRP recognition. In addition, by fusing a number of both classes of signal sequences to DsbA, we found that DsbA utilizes an SRP-dependent signal sequence to achieve efficient export to the periplasm. Our results suggest that those proteins found to be exported by SRP-dependent signal sequences may require this mode of export because of their tendency to fold rapidly in the cytoplasm.
Collapse
Affiliation(s)
- Damon Huber
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
35
|
Dalbey RE, Chen M. Sec-translocase mediated membrane protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:37-53. [DOI: 10.1016/j.bbamcr.2004.03.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 03/08/2004] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
|
36
|
Abstract
The signal recognition particle (SRP) directs integral membrane and secretory proteins to the cellular protein translocation machinery during translation. The SRP is an evolutionarily conserved RNA-protein complex whose activities are regulated by GTP hydrolysis. Recent structural investigations of SRP functional domains and interactions provide new insights into the mechanisms of SRP activity in all cells, leading toward a comprehensive understanding of protein trafficking by this elegant pathway.
Collapse
Affiliation(s)
- Jennifer A Doudna
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94705, USA.
| | | |
Collapse
|
37
|
van Bloois E, Jan Haan G, de Gier JW, Oudega B, Luirink J. F1F0ATP synthase subunit c is targeted by the SRP to YidC in theE. coliinner membrane. FEBS Lett 2004; 576:97-100. [PMID: 15474018 DOI: 10.1016/j.febslet.2004.08.069] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 08/24/2004] [Accepted: 08/24/2004] [Indexed: 11/28/2022]
Abstract
Escherichia coli inner membrane proteins (IMPs) use different pathways for targeting and membrane integration. We have examined the biogenesis of the F1F0 ATP synthase subunit c, a small double spanning IMP, using complementary in vivo and in vitro approaches. The data suggest that F0c is targeted by the SRP to the membrane, where it inserts at YidC in a Sec-independent mechanism. F0c appears to be the first natural substrate of this novel pathway.
Collapse
Affiliation(s)
- Edwin van Bloois
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Bowers CW, Lau F, Silhavy TJ. Secretion of LamB-LacZ by the signal recognition particle pathway of Escherichia coli. J Bacteriol 2003; 185:5697-705. [PMID: 13129940 PMCID: PMC193965 DOI: 10.1128/jb.185.19.5697-5705.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LamB-LacZ fusion proteins have classically been used in studies of the general secretion pathway of Escherichia coli. Here we describe how increasing signal sequence hydrophobicity routes LamB-LacZ Hyb42-1 to the signal recognition particle (SRP) pathway. Secretion of this hydrophobic fusion variant (H*LamB-LacZ) was reduced in the absence of fully functional Ffh and Ffs, and the translocator jamming caused by Hyb42-1 was prevented by efficient delivery of the fusion to the periplasm. Finally, we found that in the absence of the ribosome-associated chaperone, trigger factor (Tig), LamB-LacZ localized to the periplasm in a SecA-dependent, SRP-independent fashion. Collectively, our results provide compelling in vivo evidence that there is an SRP-dependent cotranslational targeting mechanism in E. coli and argue against a role for trigger factor in pathway discrimination.
Collapse
|
39
|
Beha D, Deitermann S, Müller M, Koch HG. Export of beta-lactamase is independent of the signal recognition particle. J Biol Chem 2003; 278:22161-7. [PMID: 12682042 DOI: 10.1074/jbc.m300929200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, three different types of proteins engage the SecY translocon of the inner bacterial membrane for translocation or insertion: 1) polytopic membrane proteins that prior to their insertion into the membrane are targeted to the translocon using the bacterial signal recognition particle (SRP) and its receptor; 2) secretory proteins that are targeted to and translocated across the SecY translocon in a SecA- and SecB-dependent reaction; and 3) membrane proteins with large periplasmic domains, requiring SRP for targeting and SecA for the translocation of the periplasmic moiety. In addition to its role as a targeting device for membrane proteins, a function of the bacterial SRP in the export of SecB-independent secretory proteins has also been postulated. In particular, beta-lactamase, a hydrolytic enzyme responsible for cleavage of the beta-lactam ring containing antibiotics, is considered to be recognized and targeted by SRP. To examine the role of the SRP pathway in beta-lactamase targeting and export, we performed a detailed in vitro analysis. Chemical cross-linking and membrane binding assays did not reveal any significant interaction between SRP and beta-lactamase nascent chains. More importantly, membrane vesicles prepared from mutants lacking a functional SRP pathway did block the integration of SRP-dependent membrane proteins but supported the export of beta-lactamase in the same way as that of the SRP-independent protein OmpA. These data demonstrate that in contrast to previous results, the bacterial SRP is not involved in the export of beta-lactamase and further suggest that secretory proteins of Gram-negative bacteria in general are not substrates of SRP.
Collapse
Affiliation(s)
- Daniel Beha
- Institute for Biochemistry and Molecular Biology, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
40
|
Adams H, Scotti PA, Luirink J, Tommassen J. Defective translocation of a signal sequence mutant in a prlA4 suppressor strain of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5572-80. [PMID: 12423356 DOI: 10.1046/j.1432-1033.2002.03263.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the accompanying paper [Adams, H., Scotti, P.A., de Cock, H., Luirink, J. & Tommassen, J. (2002) Eur. J. Biochem.269, 5564-5571], we showed that the precursor of outer-membrane protein PhoE of Escherichia coli with a Gly to Leu substitution at position -10 in the signal sequence (G-10L) is targeted to the SecYEG translocon via the signal-recognition particle (SRP) route, instead of via the SecB pathway. Here, we studied the fate of the mutant precursor in a prlA4 mutant strain. prlA mutations, located in the secY gene, have been isolated as suppressors that restore the export of precursors with defective signal sequences. Remarkably, the G-10L mutant precursor, which is normally exported in a wild-type strain, accumulated strongly in a prlA4 mutant strain. In vitro cross-linking experiments revealed that the precursor is correctly targeted to the prlA4 mutant translocon. However, translocation across the cytoplasmic membrane was defective, as appeared from proteinase K-accessibility experiments in pulse-labeled cells. Furthermore, the mutant precursor was found to accumulate when expressed in a secY40 mutant, which is defective in the insertion of integral-membrane proteins but not in protein translocation. Together, these data suggest that SecB and SRP substrates are differently processed at the SecYEG translocon.
Collapse
Affiliation(s)
- Hendrik Adams
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|