1
|
Mohammadi-Motlagh HR, Sadeghalvad M, Yavari N, Primavera R, Soltani S, Chetty S, Ganguly A, Regmi S, Fløyel T, Kaur S, Mirza AH, Thakor AS, Pociot F, Yarani R. β Cell and Autophagy: What Do We Know? Biomolecules 2023; 13:biom13040649. [PMID: 37189396 DOI: 10.3390/biom13040649] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic β cells are central to glycemic regulation through insulin production. Studies show autophagy as an essential process in β cell function and fate. Autophagy is a catabolic cellular process that regulates cell homeostasis by recycling surplus or damaged cell components. Impaired autophagy results in β cell loss of function and apoptosis and, as a result, diabetes initiation and progress. It has been shown that in response to endoplasmic reticulum stress, inflammation, and high metabolic demands, autophagy affects β cell function, insulin synthesis, and secretion. This review highlights recent evidence regarding how autophagy can affect β cells' fate in the pathogenesis of diabetes. Furthermore, we discuss the role of important intrinsic and extrinsic autophagy modulators, which can lead to β cell failure.
Collapse
Affiliation(s)
- Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67155-1616, Iran
| | - Mona Sadeghalvad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rosita Primavera
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Iran
| | - Shashank Chetty
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abantika Ganguly
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shobha Regmi
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Tina Fløyel
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Aashiq H Mirza
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Avnesh S Thakor
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Reza Yarani
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
2
|
Mechanistic and therapeutic perspectives of baicalin and baicalein on pulmonary hypertension: A comprehensive review. Biomed Pharmacother 2022; 151:113191. [PMID: 35643068 DOI: 10.1016/j.biopha.2022.113191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022] Open
Abstract
Pulmonary hypertension (PH) is a chronic and fatal disease, for which new therapeutic drugs and approaches are needed urgently. Baicalein and baicalin, the active compounds of the traditional Chinese medicine, Scutellaria baicalensis Georgi, exhibit a wide range of pharmacological activities. Numerous studies involving in vitro and in vivo models of PH have revealed that the treatment with baicalin and baicalein may be effective. This review summarizes the potential mechanisms driving the beneficial effects of baicalin and baicalein treatment on PH, including anti-inflammatory response, inhibition of pulmonary smooth muscle cell proliferation and endothelial-to-mesenchymal transformation, stabilization of the extracellular matrix, and mitigation of oxidative stress. The pharmacokinetics of these compounds have also been reviewed. The therapeutic potential of baicalin and baicalein warrants their continued study as natural treatments for PH.
Collapse
|
3
|
Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca K, Adam V. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J Hematol Oncol 2022; 15:77. [PMID: 35659268 PMCID: PMC9166526 DOI: 10.1186/s13045-022-01292-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia, a common feature of the tumor microenvironment in various types of cancers, weakens cytotoxic T cell function and causes recruitment of regulatory T cells, thereby reducing tumoral immunogenicity. Studies have demonstrated that hypoxia and hypoxia-inducible factors (HIFs) 1 and 2 alpha (HIF1A and HIF2A) are involved in tumor immune escape. Under hypoxia, activation of HIF1A induces a series of signaling events, including through programmed death receptor-1/programmed death ligand-1. Moreover, hypoxia triggers shedding of complex class I chain-associated molecules through nitric oxide signaling impairment to disrupt immune surveillance by natural killer cells. The HIF-1-galactose-3-O-sulfotransferase 1-sulfatide axis enhances tumor immune escape via increased tumor cell-platelet binding. HIF2A upregulates stem cell factor expression to recruit tumor-infiltrating mast cells and increase levels of cytokines interleukin-10 and transforming growth factor-β, resulting in an immunosuppressive tumor microenvironment. Additionally, HIF1A upregulates expression of tumor-associated long noncoding RNAs and suppresses immune cell function, enabling tumor immune escape. Overall, elucidating the underlying mechanisms by which HIFs promote evasion of tumor immune surveillance will allow for targeting HIF in tumor treatment. This review discusses the current knowledge of how hypoxia and HIFs facilitate tumor immune escape, with evidence to date implicating HIF1A as a molecular target in such immune escape. This review provides further insight into the mechanism of tumor immune escape, and strategies for tumor immunotherapy are suggested.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic. .,Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic.
| |
Collapse
|
4
|
Yang N, Li X. Epigallocatechin gallate relieves asthmatic symptoms in mice by suppressing HIF-1α/VEGFA-mediated M2 skewing of macrophages. Biochem Pharmacol 2022; 202:115112. [DOI: 10.1016/j.bcp.2022.115112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
|
5
|
Okan A, Doğanyiğit Z, Eroğlu E, Akyüz E, Demir N. Immunoreactive definition of TNF- α, HIF-1 α, Kir6.2, Kir3.1 and M2 muscarinic receptor for cardiac and pancreatic tissues in a mouse model for type 1 diabetes. Life Sci 2021; 284:119886. [PMID: 34389402 DOI: 10.1016/j.lfs.2021.119886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Aslı Okan
- Department of Histology and Embryology, School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Züleyha Doğanyiğit
- Department of Histology and Embryology, School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Ece Eroğlu
- School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Enes Akyüz
- Department of Biophysics, School of International Medicine, University of Health Sciences, Istanbul 34668, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya 07070, Turkey.
| |
Collapse
|
6
|
Wyss CB, Duffey N, Peyvandi S, Barras D, Martinez Usatorre A, Coquoz O, Romero P, Delorenzi M, Lorusso G, Rüegg C. Gain of HIF1 Activity and Loss of miRNA let-7d Promote Breast Cancer Metastasis to the Brain via the PDGF/PDGFR Axis. Cancer Res 2021; 81:594-605. [PMID: 33526470 DOI: 10.1158/0008-5472.can-19-3560] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 09/18/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
Early detection and adjuvant therapies have significantly improved survival of patients with breast cancer over the past three decades. In contrast, management of metastatic disease remains unresolved. Brain metastasis is a late complication frequently observed among patients with metastatic breast cancer, whose poor prognosis calls for novel and more effective therapies. Here, we report that active hypoxia inducible factor-1 (HIF1) signaling and loss of the miRNA let-7d concur to promote brain metastasis in a recently established model of spontaneous breast cancer metastasis from the primary site to the brain (4T1-BM2), and additionally in murine and human experimental models of breast cancer brain metastasis (D2A1-BM2 and MDA231-BrM2). Active HIF1 and let-7d loss upregulated expression of platelet-derived growth factor (PDGF) B/A in murine and human brain metastatic cells, respectively, while either individual silencing of HIF1α and PDGF-A/B or let-7d overexpression suppressed brain metastasis formation in the tested models. Let-7d silencing upregulated HIF1α expression and HIF1 activity, indicating a regulatory hierarchy of the system. The clinical relevance of the identified targets was supported by human gene expression data analyses. Treatment of mice with nilotinib, a kinase inhibitor impinging on PDGF receptor (PDGFR) signaling, prevented formation of spontaneous brain metastases in the 4T1-BM2 model and reduced growth of established brain metastases in mouse and human models. These results identify active HIF1 signaling and let-7d loss as coordinated events promoting breast cancer brain metastasis through increased expression of PDGF-A/B. Moreover, they identify PDGFR inhibition as a potentially actionable therapeutic strategy for patients with brain metastatis. SIGNIFICANCE: These findings show that loss of miRNA let-7d and active HIF1 signaling promotes breast cancer brain metastasis via PDGF and that pharmacologic inhibition of PDGFR suppresses brain metastasis, suggesting novel therapeutic opportunities. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/3/594/F1.large.jpg.See related article by Thies et al., p. 606.
Collapse
Affiliation(s)
- Christof B Wyss
- Experimental and Translational Oncology, Pathology, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nathalie Duffey
- Experimental and Translational Oncology, Pathology, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sanam Peyvandi
- Experimental and Translational Oncology, Pathology, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - David Barras
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Amaïa Martinez Usatorre
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Oriana Coquoz
- Experimental and Translational Oncology, Pathology, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Pedro Romero
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Girieca Lorusso
- Experimental and Translational Oncology, Pathology, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Curzio Rüegg
- Experimental and Translational Oncology, Pathology, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
7
|
Abstract
Hypoxia can be defined as a relative deficiency in the amount of oxygen reaching the tissues. Hypoxia-inducible factors (HIFs) are critical regulators of the mammalian response to hypoxia. In normal circumstances, HIF-1α protein turnover is rapid, and hyperglycemia further destabilizes the protein. In addition to their role in diabetes pathogenesis, HIFs are implicated in development of the microvascular and macrovascular complications of diabetes. Improving glucose control in people with diabetes increases HIF-1α protein and has wide-ranging benefits, some of which are at least partially mediated by HIF-1α. Nevertheless, most strategies to improve diabetes or its complications via regulation of HIF-1α have not currently proven to be clinically useful. The intersection of HIF biology with diabetes is a complex area in which many further questions remain, especially regarding the well-conducted studies clearly describing discrepant effects of different methods of increasing HIF-1α, even within the same tissues. This Review presents a brief overview of HIFs; discusses the range of evidence implicating HIFs in β cell dysfunction, diabetes pathogenesis, and diabetes complications; and examines the differing outcomes of HIF-targeting approaches in these conditions.
Collapse
Affiliation(s)
- Jenny E Gunton
- Centre for Diabetes, Obesity and Endocrinology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Westmead Hospital, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| |
Collapse
|
8
|
Neddylation activity modulates the neurodegeneration associated with fragile X associated tremor/ataxia syndrome (FXTAS) through regulating Sima. Neurobiol Dis 2020; 143:105013. [PMID: 32653676 DOI: 10.1016/j.nbd.2020.105013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/25/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022] Open
Abstract
Fragile X associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by expansion of CGG repeats in the 5' UTR of the fragile X mental retardation 1 (FMR1) gene. Using the well-established FXTAS Drosophila model, we performed a high-throughput chemical screen using 3200 small molecules. NSC363998 was identified to suppress the neurodegeneration caused by riboCGG (rCGG) repeats. Three predicted targets of a NSC363998 derivative are isopeptidases in the neddylation pathway and could modulate the neurotoxicity caused by the rCGG repeats. Decreasing levels of neddylation resulted in enhancing neurodegeneration phenotypes, while up-regulation could rescue the phenotypes. Furthermore, known neddylation substrates, Cul3 and Vhl, and their downstream target, Sima, were found to modulate rCGG90-dependent neurotoxicity. Our results suggest that altered neddylation activity can modulate the rCGG repeat-mediated toxicity by regulating Sima protein levels, which could serve as a potential therapeutic target for FXTAS.
Collapse
|
9
|
McLennan HJ, Saini A, Sylvia GM, Schartner EP, Dunning KR, Purdey MS, Monro TM, Abell AD, Thompson JG. A biophotonic approach to measure pH in small volumes in vitro: Quantifiable differences in metabolic flux around the cumulus-oocyte-complex (COC). JOURNAL OF BIOPHOTONICS 2020; 13:e201960038. [PMID: 31725948 DOI: 10.1002/jbio.201960038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Unfertilised eggs (oocytes) release chemical biomarkers into the medium surrounding them. This provides an opportunity to monitor cell health and development during assisted reproductive processes if detected in a non-invasive manner. Here we report the measurement of pH using an optical fibre probe, OFP1, in 5 μL drops of culture medium containing single mouse cumulus oocyte complexes (COCs). This allowed for the detection of statistically significant differences in pH between COCs in culture medium with no additives and those incubated with either a chemical (cobalt chloride) or hormonal treatment (follicle stimulating hormone); both of which serve to induce the release of lactic acid into the medium immediately surrounding the COC. Importantly, OFP1 was shown to be cell-safe with no inherent cell toxicity or light-induced phototoxicity indicated by negative DNA damage staining. Pre-measurement photobleaching of the probe reduced fluorescence signal variability, providing improved measurement precision (0.01-0.05 pH units) compared to previous studies. This optical technology presents a promising platform for the measurement of pH and the detection of other extracellular biomarkers to assess cell health during assisted reproduction.
Collapse
Affiliation(s)
- Hanna J McLennan
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Avishkar Saini
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Georgina M Sylvia
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Erik P Schartner
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Kylie R Dunning
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Malcolm S Purdey
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
| | - Tanya M Monro
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
- Laser Physics and Photonic Devices Laboratories, School of Engineering, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jeremy G Thompson
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
The Phosphatase SHP-2 Activates HIF-1α in Wounds In Vivo by Inhibition of 26S Proteasome Activity. Int J Mol Sci 2019; 20:ijms20184404. [PMID: 31500245 PMCID: PMC6769879 DOI: 10.3390/ijms20184404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Vascular remodeling and angiogenesis are required to improve the perfusion of ischemic tissues. The hypoxic environment, induced by ischemia, is a potent stimulus for hypoxia inducible factor 1α (HIF-1α) upregulation and activation, which induce pro-angiogenic gene expression. We previously showed that the tyrosine phosphatase SHP-2 drives hypoxia mediated HIF-1α upregulation via inhibition of the proteasomal pathway, resulting in revascularization of wounds in vivo. However, it is still unknown if SHP-2 mediates HIF-1α upregulation by affecting 26S proteasome activity and how the proteasome is regulated upon hypoxia. Using a reporter construct containing the oxygen-dependent degradation (ODD) domain of HIF-1α and a fluorogenic proteasome substrate in combination with SHP-2 mutant constructs, we show that SHP-2 inhibits the 26S proteasome activity in endothelial cells under hypoxic conditions in vitro via Src kinase/p38 mitogen-activated protein kinase (MAPK) signalling. Moreover, the simultaneous expression of constitutively active SHP-2 (E76A) and inactive SHP-2 (CS) in separate hypoxic wounds in the mice dorsal skin fold chamber by localized magnetic nanoparticle-assisted lentiviral transduction showed specific regulation of proteasome activity in vivo. Thus, we identified a new additional mechanism of SHP-2 mediated HIF-1α upregulation and proteasome activity, being functionally important for revascularization of wounds in vivo. SHP-2 may therefore constitute a potential novel therapeutic target for the induction of angiogenesis in ischemic vascular disease.
Collapse
|
11
|
Román CL, Maiztegui B, Mencucci MV, Ahrtz L, Algañarás M, Del Zotto H, Gagliardino JJ, Flores LE. Effects of islet neogenesis associated protein depend on vascular endothelial growth factor gene expression modulated by hypoxia-inducible factor 1-alpha. Peptides 2019; 117:170090. [PMID: 31121197 DOI: 10.1016/j.peptides.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pharmacology has provided efficient tools to improve insulin effect/secretion but the decrease in β-cell mass remains elusive. INGAP-PP could provide a therapeutic alternative to meet that challenge. AIM To further understand the mechanism that links INGAP-PP effects upon β-cell mass and function with islet angiogenesis. METHODOLOGY Normal male Wistar rats were divided into 2 groups and injected with a single dose of 100 mg/Kg suramin or saline. Both groups were divided into 2 subgroups that received daily doses of 2 mg/kg INGAP-PP or saline for ten days. Plasma glucose, triacylglycerol, TBARS, and insulin levels were measured. Pancreas immunomorphometric analyses were also performed. Pancreatic islets were isolated to measure glucose-stimulated insulin secretion (GSIS). Specific islet mRNA levels were studied by qRT-PCR. Statistical analysis was done using ANOVA. RESULTS No differences were recorded in body weight, food intake, or any other plasma parameter measured in all groups. Islets from INGAP-PP-treated rats significantly increased GSIS, β-cell mass, and mRNA levels of Bcl-2, Ngn-3, VEGF-A, VEGF-R2, CD31, Ang1 and Ang2, Laminin β-1, and Integrin β-1, and decreased mRNA levels of Caspase-8, Bad, and Bax. Islets from suramin-treated rats showed significant opposite effects, but INGAPP-PP administration rescued most of the suramin effects in animals treated with both compounds. CONCLUSION Our results reinforce the concept that INGAP-PP enhances insulin secretion and β-cell mass, acting through PI3K/Akt/mTOR pathways and simultaneously activating angiogenesis through HIF-1α-mediated VEGF-A secretion. Therefore, INGAP-PP might be a suitable antidiabetic agent able to overcome two major alterations present in T2D.
Collapse
Affiliation(s)
- C L Román
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina
| | - B Maiztegui
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina
| | - M V Mencucci
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina
| | - L Ahrtz
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina
| | - M Algañarás
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina
| | - H Del Zotto
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina
| | - J J Gagliardino
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina
| | - L E Flores
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina.
| |
Collapse
|
12
|
Lim JH, Kim DG, Yu DY, Kang HM, Noh KH, Kim DS, Park D, Chang TK, Im DS, Jung CR. Stabilization of E2-EPF UCP protein is implicated in hepatitis B virus-associated hepatocellular carcinoma progression. Cell Mol Life Sci 2019; 76:2647-2662. [PMID: 30903204 PMCID: PMC6586911 DOI: 10.1007/s00018-019-03066-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/18/2019] [Accepted: 03/07/2019] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) X protein (HBx) is associated with hepatocarcinogenesis. E2-EPF ubiquitin carrier protein (UCP) catalyzes ubiquitination of itself and von Hippel-Lindau protein (pVHL) for degradation and associates with tumor growth and metastasis. However, it remains unknown whether HBx modulates the enzyme activity of UCP and thereby influences hepatocarcinogenesis. Here, we show that UCP is highly expressed in liver tissues of HBx-transgenic mice, but not non-transgenic mice. UCP was more frequently expressed in HBV-positive liver cancers than in HBV-negative liver cancers. HBx binds to UCP specifically and serotype independently, and forms a ternary complex with UCP and pVHL. HBx inhibits self-ubiquitination of UCP, but enhances UCP-mediated pVHL ubiquitination, resulting in stabilization of hypoxia-inducible factor-1α and -2α. HBx and UCP stabilize each other by mutually inhibiting their ubiquitination. HBx promotes cellular proliferation and metastasis via UCP. Our findings suggest that UCP plays a key role in HBV-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Jung Hwa Lim
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dae-Ghon Kim
- Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Dae-Yeul Yu
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hyun Mi Kang
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kyung Hee Noh
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dongmin Park
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Tae Kyung Chang
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dong-Soo Im
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
| | - Cho-Rok Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
13
|
Lalwani A, Warren J, Liuwantara D, Hawthorne WJ, O'Connell PJ, Gonzalez FJ, Stokes RA, Chen J, Laybutt DR, Craig ME, Swarbrick MM, King C, Gunton JE. β Cell Hypoxia-Inducible Factor-1α Is Required for the Prevention of Type 1 Diabetes. Cell Rep 2019; 27:2370-2384.e6. [PMID: 31116982 PMCID: PMC6661122 DOI: 10.1016/j.celrep.2019.04.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/31/2019] [Accepted: 04/18/2019] [Indexed: 12/28/2022] Open
Abstract
The development of autoimmune disease type 1 diabetes (T1D) is determined by both genetic background and environmental factors. Environmental triggers include RNA viruses, particularly coxsackievirus (CV), but how they induce T1D is not understood. Here, we demonstrate that deletion of the transcription factor hypoxia-inducible factor-1α (HIF-1α) from β cells increases the susceptibility of non-obese diabetic (NOD) mice to environmentally triggered T1D from coxsackieviruses and the β cell toxin streptozotocin. Similarly, knockdown of HIF-1α in human islets leads to a poorer response to coxsackievirus infection. Studies in coxsackievirus-infected islets demonstrate that lack of HIF-1α leads to impaired viral clearance, increased viral load, inflammation, pancreatitis, and loss of β cell mass. These findings show an important role for β cells and, specifically, lack of β cell HIF-1α in the development of T1D. These data suggest new strategies for the prevention of T1D.
Collapse
Affiliation(s)
- Amit Lalwani
- Center for Diabetes, Obesity, and Endocrinology (CDOE), The Westmead Institute for Medical Research (WIMR), The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Joanna Warren
- Mucosal Autoimmunity, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - David Liuwantara
- National Pancreas Transplant Unit (NPTU), Westmead Hospital, Sydney, NSW, Australia
| | - Wayne J Hawthorne
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; National Pancreas Transplant Unit (NPTU), Westmead Hospital, Sydney, NSW, Australia
| | - Philip J O'Connell
- National Pancreas Transplant Unit (NPTU), Westmead Hospital, Sydney, NSW, Australia
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, USA
| | - Rebecca A Stokes
- Center for Diabetes, Obesity, and Endocrinology (CDOE), The Westmead Institute for Medical Research (WIMR), The University of Sydney, Sydney, NSW, Australia
| | - Jennifer Chen
- Center for Diabetes, Obesity, and Endocrinology (CDOE), The Westmead Institute for Medical Research (WIMR), The University of Sydney, Sydney, NSW, Australia
| | - D Ross Laybutt
- Islet Biology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Maria E Craig
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; The Children's Hospital at Westmead, Sydney, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Kensington, NSW, Australia
| | - Michael M Swarbrick
- Center for Diabetes, Obesity, and Endocrinology (CDOE), The Westmead Institute for Medical Research (WIMR), The University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Cecile King
- Mucosal Autoimmunity, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jenny E Gunton
- Center for Diabetes, Obesity, and Endocrinology (CDOE), The Westmead Institute for Medical Research (WIMR), The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Kensington, NSW, Australia; Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Serša I, Bajd F, Savarin M, Jesenko T, Čemažar M, Serša G. Multiparametric High-Resolution MRI as a Tool for Mapping of Hypoxic Level in Tumors. Technol Cancer Res Treat 2019; 17:1533033818797066. [PMID: 30176769 PMCID: PMC6122235 DOI: 10.1177/1533033818797066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hypoxia is a condition, common to most malignant tumors, where oxygen tension in the tissue is below the physiological level. Among consequences of tumor hypoxia is also altered cancer cell metabolism that contributes to cancer therapy resistance. Therefore, precise assessment of tumor hypoxia is important for monitoring the tumor treatment progression. In this study, we propose a simple model for prediction of hypoxic level in tumors based on multiparametric magnetic resonance imaging. The study was performed on B16F1 murine melanoma tumors ex vivo that were first magnetic resonance scanned and then analyzed for hypoxic level using hypoxia-inducable factor 1-alpha antibody staining. Each tumor was analyzed in identical sections and in identical regions of interest for pairs of hypoxic level and magnetic resonance values (apparent diffusion coefficient and T2). This was followed by correlation analysis between hypoxic level and respective magnetic resonance values. A moderate correlation was found between hypoxic level and apparent diffusion coefficient (ρ = 0.56, P < .00001) and lower between hypoxic level and T2 (ρ = 0.38, P < .00001). The data were analyzed further to obtain simple predictive models based on the multiple linear regression analysis of the measured hypoxic level (dependent variable) and apparent diffusion coefficient and T2 (independent variables). Among the hypoxic level models, the most efficient was the 3-parameter model given by relation (HL = kADCADC + kT2T2 + b), where kADC = 26%/µm2/ms, kT2 = 0.8%/ms, and b = −32%. The model can be used for calculation of the predicted hypoxic level map based on magnetic resonance–measured apparent diffusion coefficient and T2 maps. Similar prediction models, based on tumor apparent diffusion coefficient and T2 maps, can be done also for other tumor types in vivo and can therefore help in assessment of tumor treatment as well as to better understand the role of hypoxia in cancer progression.
Collapse
Affiliation(s)
- Igor Serša
- 1 Jožef Stefan Institute, Ljubljana, Slovenia.,2 Institute of Physiology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Franci Bajd
- 3 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | | | - Tanja Jesenko
- 4 Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Čemažar
- 4 Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Gregor Serša
- 4 Institute of Oncology Ljubljana, Ljubljana, Slovenia.,5 Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Muñoz‐Sánchez J, Chánez‐Cárdenas ME. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol 2018; 39:556-570. [DOI: 10.1002/jat.3749] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/13/2018] [Accepted: 10/07/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jorge Muñoz‐Sánchez
- Laboratorio de Patología Vascular CerebralInstituto Nacional de Neurología y Neurología (INNN) Insurgentes Sur 3877, la Fama 14269 Tlalpan Ciudad de México Mexico
| | - María E. Chánez‐Cárdenas
- Laboratorio de Patología Vascular CerebralInstituto Nacional de Neurología y Neurología (INNN) Insurgentes Sur 3877, la Fama 14269 Tlalpan Ciudad de México Mexico
| |
Collapse
|
16
|
Progesterone attenuates airway remodeling and glucocorticoid resistance in a murine model of exposing to ozone. Mol Immunol 2018; 96:69-77. [PMID: 29501934 DOI: 10.1016/j.molimm.2018.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/26/2018] [Accepted: 02/09/2018] [Indexed: 12/20/2022]
Abstract
Airway remodeling is a vital component of chronic obstructive pulmonary disease (COPD). Despite the broad anti-inflammation effects of glucocorticoids, they exhibit relatively little therapeutic benefit in COPD, indicating the accelerating demands of new agents for COPD. We aim to explore the effect of progesterone on airway remodeling in a murine modeling of exposing to ozone and to further examine the potential effect of progesterone on glucocorticoid insensitivity. C57/BL6 mice were exposed to ozone for 12 times over 6 weeks, and were administered with progesterone alone or combined with budesonide (BUD) after each exposure until the 10th week. The peribronchial collagen deposition was measured. The protein levels of MMP8 and MMP9 in bronchoalveolar lavage fluid (BALF) and lungs were assessed. Western blot analysis was used to detect the levels of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), a-smooth muscle actin (α-SMA), glycogen synthase kinase-3β (GSK-3β). The expression of VEGF and histone deacetylase 2 (HDAC2) in the lung were determined by Immunohistochemical analyses. We observe that progesterone attenuates the peribronchial collagen deposition, as well as the expression of MMP8, MMP9, HIF-1α, VEGF, α-SMA, and GSK-3β in BALF or lung tissues. Progesterone or BUD monotherapy has no effect on HDAC2 production. Progesterone combines with BUD induce dramatically enhanced effects. Thus, these results demonstrate novel roles of progesterone for the pathogenesis and airway remodeling in COPD. Progesterone plus BUD administration exerts more significant inhibition on airway remodeling with dose-independent. Additionally, progesterone may, to some extent, improve the glucocorticoid insensitivity.
Collapse
|
17
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018; 94:199-212. [PMID: 29164625 PMCID: PMC5844808 DOI: 10.1111/php.12864] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/31/2017] [Indexed: 12/23/2022]
Abstract
Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Department of Dermatology, Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
18
|
Cai FF, Xu C, Pan X, Cai L, Lin XY, Chen S, Biskup E. Prognostic value of plasma levels of HIF-1a and PGC-1a in breast cancer. Oncotarget 2018; 7:77793-77806. [PMID: 27780920 PMCID: PMC5363621 DOI: 10.18632/oncotarget.12796] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023] Open
Abstract
Cellular adaptive mechanisms are crucial for tumorigenesis and a common feature in solid tumor progression. Hypoxia-inducible factor-1α (HIF-1α) facilitates the biological response to hypoxia, advancing angiogenesis and metastatic potential of the tumor. The peroxisome proliferator–activated receptor γ coactivators 1α (PGC-1α) enhances mitochondrial biogenesis, favored by migratory/invasive cancer cells. We conducted a prospective, long-term follow up study to determine whether HIF-1α and PGC-1α can be implemented as predictive biomarker in breast cancer. HIF-1α and PGC-1α plasma concentrations were measured in patients and in healthy controls by enzyme linked immune sorbent assay. Breast cancer patients had significantly higher HIF-1α and PGC-1α levels, which correlated with clinicopathological features, overall with more aggressive cancer characteristics. Disease free and overall survival of breast cancer patients with high HIF-1α and PGC-1α were significantly poorer than in patients with low plasma levels. In multivariate analysis, high amount of PGC-1α showed independent prognostic value. Our data suggests that HIF-1α and PGC-1α may be promising, noninvasive, biomarkers with a high potential for future clinical implication to identify subgroups of patients with poorer prognosis and to indicate early, subclinical metastasis.
Collapse
Affiliation(s)
- Feng-Feng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Cheng Xu
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xin Pan
- Department of Central Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Lu Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiao-Yan Lin
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Su Chen
- Department of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Ewelina Biskup
- Department of Oncology, Department of Internal Medicine, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
19
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
20
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
21
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
22
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and make_set(2234=2234,4853)-- tppa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
23
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or updatexml(4295,concat(0x2e,0x717a717671,(select (elt(4295=4295,1))),0x71706a6271),3985)-- bssu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
24
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 3194=3194# dgnj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
25
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and (select (case when (5719=8223) then null else ctxsys.drithsx.sn(1,5719) end) from dual) is null] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
26
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
27
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
28
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 8885=3318-- bykq] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
29
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
30
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 8779=2113# mdth] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
31
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 5169=2257-- ejdi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
32
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 2019=2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
33
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 1705=('qzqvq'||(select case 1705 when 1705 then 1 else 0 end from rdb$database)||'qpjbq')-- qsrj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
34
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and extractvalue(6022,concat(0x5c,0x717a717671,(select (elt(6022=6022,1))),0x71706a6271))# igpm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
35
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
36
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
37
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
38
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
39
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 2341=9012# mbxq] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
40
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
41
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 9689=3416#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
42
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
43
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
44
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and updatexml(3081,concat(0x2e,0x717a717671,(select (elt(3081=3081,1))),0x71706a6271),1398)# ymdb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
45
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
46
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
47
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
48
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 1705=('qzqvq'||(select case 1705 when 1705 then 1 else 0 end from rdb$database)||'qpjbq')# flsh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
49
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
50
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 rlike (select (case when (3831=3831) then 0x31302e313131312f7068702e3132383634 else 0x28 end))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|