1
|
Bertling E, Blaesse P, Seja P, Kremneva E, Gateva G, Virtanen MA, Summanen M, Spoljaric I, Uvarov P, Blaesse M, Paavilainen VO, Vutskits L, Kaila K, Hotulainen P, Ruusuvuori E. Carbonic anhydrase seven bundles filamentous actin and regulates dendritic spine morphology and density. EMBO Rep 2021; 22:e50145. [PMID: 33719157 PMCID: PMC8025036 DOI: 10.15252/embr.202050145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
Intracellular pH is a potent modulator of neuronal functions. By catalyzing (de)hydration of CO2 , intracellular carbonic anhydrase (CAi ) isoforms CA2 and CA7 contribute to neuronal pH buffering and dynamics. The presence of two highly active isoforms in neurons suggests that they may serve isozyme-specific functions unrelated to CO2 -(de)hydration. Here, we show that CA7, unlike CA2, binds to filamentous actin, and its overexpression induces formation of thick actin bundles and membrane protrusions in fibroblasts. In CA7-overexpressing neurons, CA7 is enriched in dendritic spines, which leads to aberrant spine morphology. We identified amino acids unique to CA7 that are required for direct actin interactions, promoting actin filament bundling and spine targeting. Disruption of CA7 expression in neocortical neurons leads to higher spine density due to increased proportion of small spines. Thus, our work demonstrates highly distinct subcellular expression patterns of CA7 and CA2, and a novel, structural role of CA7.
Collapse
Affiliation(s)
- Enni Bertling
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Minerva Institute for Medical ResearchBiomedicum Helsinki 2UHelsinkiFinland
| | - Peter Blaesse
- Institute of Physiology IWestfälische Wilhelms‐Universität MünsterMünsterGermany
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Patricia Seja
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | | | | | - Mari A Virtanen
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
- Department of Anesthesiology, PharmacologyIntensive Care and Emergency MedicineUniversity Hospitals of GenevaGenevaSwitzerland
| | - Milla Summanen
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Inkeri Spoljaric
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Pavel Uvarov
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | | | | | - Laszlo Vutskits
- Department of Anesthesiology, PharmacologyIntensive Care and Emergency MedicineUniversity Hospitals of GenevaGenevaSwitzerland
| | - Kai Kaila
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Pirta Hotulainen
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Minerva Institute for Medical ResearchBiomedicum Helsinki 2UHelsinkiFinland
| | - Eva Ruusuvuori
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
Vemula V, Huber T, Ušaj M, Bugyi B, Månsson A. Myosin and gelsolin cooperate in actin filament severing and actomyosin motor activity. J Biol Chem 2020; 296:100181. [PMID: 33303625 PMCID: PMC7948409 DOI: 10.1074/jbc.ra120.015863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Actin is a major intracellular protein with key functions in cellular motility, signaling, and structural rearrangements. Its dynamic behavior, such as polymerization and depolymerization of actin filaments in response to intracellular and extracellular cues, is regulated by an abundance of actin binding proteins. Out of these, gelsolin is one of the most potent for filament severing. However, myosin motor activity also fragments actin filaments through motor-induced forces, suggesting that these two proteins could cooperate to regulate filament dynamics and motility. To test this idea, we used an in vitro motility assay, where actin filaments are propelled by surface-adsorbed heavy meromyosin (HMM) motor fragments. This allows studies of both motility and filament dynamics using isolated proteins. Gelsolin, at both nanomolar and micromolar Ca2+ concentration, appreciably enhanced actin filament severing caused by HMM-induced forces at 1 mM MgATP, an effect that was increased at higher HMM motor density. This finding is consistent with cooperativity between actin filament severing by myosin-induced forces and by gelsolin. We also observed reduced sliding velocity of the HMM-propelled filaments in the presence of gelsolin, providing further support of myosin-gelsolin cooperativity. Total internal reflection fluorescence microscopy–based single molecule studies corroborated that the velocity reduction was a direct effect of gelsolin binding to the filament and revealed different filament severing pattern of stationary and HMM propelled filaments. Overall, the results corroborate cooperative effects between gelsolin-induced alterations in the actin filaments and changes due to myosin motor activity leading to enhanced F-actin severing of possible physiological relevance.
Collapse
Affiliation(s)
- Venukumar Vemula
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Tamás Huber
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Beáta Bugyi
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary.
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
3
|
Abstract
Gelsolin (GSN), one of the most abundant actin-binding proteins, is involved in cell motility, shape and metabolism. As a member of the GSN superfamily, GSN is a highly structured protein in eukaryotic cells that can be regulated by calcium concentration, intracellular pH, temperature and phosphatidylinositol-4,5-bisphosphate. GSN plays an important role in cellular mechanisms as well as in different cellular interactions. Because of its participation in immunologic processes and its interaction with different cells of the immune system, GSN is a potential candidate for various therapeutic applications. In this review, we summarise the structure of GSN as well as its regulating and functional roles, focusing on distinct diseases such as Alzheimer's disease, rheumatoid arthritis and cancer. A short overview of GSN as a therapeutic target in today's medicine is also provided.
Collapse
|
4
|
Fan JS, Goh H, Ding K, Xue B, Robinson RC, Yang D. Structural Basis for pH-mediated Regulation of F-actin Severing by Gelsolin Domain 1. Sci Rep 2017; 7:45230. [PMID: 28349924 PMCID: PMC5368644 DOI: 10.1038/srep45230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/20/2017] [Indexed: 01/27/2023] Open
Abstract
Six-domain gelsolin regulates actin structural dynamics through its abilities to sever, cap and uncap F-actin. These activities are modulated by various cellular parameters like Ca2+ and pH. Until now, only the molecular activation mechanism of gelsolin by Ca2+ has been understood relatively well. The fragment comprising the first domain and six residues from the linker region into the second domain has been shown to be similar to the full-length protein in F-actin severing activity in the absence of Ca2+ at pH 5. To understand how this gelsolin fragment is activated for F-actin severing by lowering pH, we solved its NMR structures at both pH 7.3 and 5 in the absence of Ca2+ and measured the pKa values of acidic amino acid residues and histidine residues. The overall structure and dynamics of the fragment are not affected significantly by pH. Nevertheless, local structural changes caused by protonation of His29 and Asp109 result in the activation on lowering the pH, and protonation of His151 directly effects filament binding since it resides in the gelsolin/actin interface. Mutagenesis studies support that His29, Asp109 and His151 play important roles in the pH-dependent severing activity of the gelsolin fragment.
Collapse
Affiliation(s)
- Jing-song Fan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Honzhen Goh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Ke Ding
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Bo Xue
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biochemistry, National University of Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| |
Collapse
|
5
|
Stock C, Schwab A. Ion channels and transporters in metastasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2638-46. [PMID: 25445667 DOI: 10.1016/j.bbamem.2014.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 12/23/2022]
Abstract
An elaborate interplay between ion channels and transporters, components of the cytoskeleton, adhesion molecules, and signaling cascades provides the basis for each major step of the metastatic cascade. Ion channels and transporters contribute to cell motility by letting through or transporting ions essential for local Ca2+, pH and--in cooperation with water permeable aquaporins--volume homeostasis. Moreover, in addition to the actual ion transport they, or their auxiliary subunits, can display non-conducting activities. They can exert kinase activity in order to phosphorylate cytoskeletal constituents or their associates. They can become part of signaling processes by permeating Ca2+, by generating local pH-nanodomains or by being final downstream effectors. A number of channels and transporters are found at focal adhesions, interacting directly or indirectly with proteins of the extracellular matrix, with integrins or with components of the cytoskeleton. We also include the role of aquaporins in cell motility. They drive the outgrowth of lamellipodia/invadopodia or control the number of β1 integrins in the plasma membrane. The multitude of interacting ion channels and transporters (called transportome) including the associated signaling events holds great potential as therapeutic target(s) for anticancer agents that are aimed at preventing metastasis. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Christian Stock
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany.
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, D-48149 Münster, Germany
| |
Collapse
|
6
|
Schwab A, Stock C. Ion channels and transporters in tumour cell migration and invasion. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130102. [PMID: 24493750 DOI: 10.1098/rstb.2013.0102] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell migration is a central component of the metastatic cascade requiring a concerted action of ion channels and transporters (migration-associated transportome), cytoskeletal elements and signalling cascades. Ion transport proteins and aquaporins contribute to tumour cell migration and invasion among other things by inducing local volume changes and/or by modulating Ca(2+) and H(+) signalling. Targeting cell migration therapeutically bears great clinical potential, because it is a prerequisite for metastasis. Ion transport proteins appear to be attractive candidate target proteins for this purpose because they are easily accessible as membrane proteins and often overexpressed or activated in cancer. Importantly, a number of clinically widely used drugs are available whose anticipated efficacy as anti-tumour drugs, however, has now only begun to be evaluated.
Collapse
Affiliation(s)
- Albrecht Schwab
- Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, , Robert-Koch-Strasse 27b, Münster 48149, Germany
| | | |
Collapse
|
7
|
Jenkins EC, Debnath S, Varriano S, Gundry S, Fata JE. Na+/H+exchanger 1 (NHE1) function is necessary for maintaining mammary tissue architecture. Dev Dyn 2013; 243:229-42. [DOI: 10.1002/dvdy.24032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/18/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022] Open
Affiliation(s)
- Edmund C. Jenkins
- Department of Biology; College of Staten Island; Staten Island New York
- Biology Doctoral Program; City University of New York Graduate Center; New York New York
| | - Shawon Debnath
- Department of Biology; College of Staten Island; Staten Island New York
- Biochemistry Doctoral Program; City University of New York Graduate Center; New York New York
| | - Sophia Varriano
- Department of Biology; College of Staten Island; Staten Island New York
| | - Stephen Gundry
- Electrical Engineering Doctoral Program; City College of New York, The City University of New York; New York New York
| | - Jimmie E. Fata
- Department of Biology; College of Staten Island; Staten Island New York
- Biology Doctoral Program; City University of New York Graduate Center; New York New York
- Biochemistry Doctoral Program; City University of New York Graduate Center; New York New York
| |
Collapse
|
8
|
Nag S, Larsson M, Robinson RC, Burtnick LD. Gelsolin: The tail of a molecular gymnast. Cytoskeleton (Hoboken) 2013; 70:360-84. [DOI: 10.1002/cm.21117] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Mårten Larsson
- Institute of Molecular and Cell Biology, A*STAR; Singapore
| | | | - Leslie D. Burtnick
- Department of Chemistry and Centre for Blood Research; Life Sciences Institute, University of British Columbia; Vancouver; British Columbia; Canada
| |
Collapse
|
9
|
Garg R, Peddada N, Sagar A, Nihalani D, Ashish. Visual insight into how low pH alone can induce actin-severing ability in gelsolin under calcium-free conditions. J Biol Chem 2011; 286:20387-97. [PMID: 21498516 PMCID: PMC3121526 DOI: 10.1074/jbc.m111.236943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/07/2011] [Indexed: 01/17/2023] Open
Abstract
Gelsolin is a key actin cytoskeleton-modulating protein primarily regulated by calcium and phosphoinositides. In addition, low pH has also been suggested to activate gelsolin in the absence of Ca(2+) ions, although no structural insight on this pathway is available except for a reported decrement in its diffusion coefficient at low pH. We also observed ~1.6-fold decrease in the molecular mobility of recombinant gelsolin when buffer pH was lowered from 9 to 5. Analysis of the small angle x-ray scattering data collected over the same pH range indicated that the radius of gyration and maximum linear dimension of gelsolin molecules increased from 30.3 to 34.1 Å and from 100 to 125 Å, respectively. Models generated for each dataset indicated that similar to the Ca(2+)-induced process, low pH also promotes unwinding of this six-domain protein but only partially. It appeared that pH is able to induce extension of the G1 domain from the rest of the five domains, whereas the Ca(2+)-sensitive latch between G2 and G6 domains remains closed. Interestingly, increasing the free Ca(2+) level to merely ~40 nM, the partially open pH 5 shape "sprung open" to a shape seen earlier for this protein at pH 8 and 1 mm free Ca(2+). Also, pH alone could induce a shape where the g3-g4 linker of gelsolin was open when we truncated the C-tail latch from this protein. Our results provide insight into how under physiological conditions, a drop in pH can fully activate the F-actin-severing shape of gelsolin with micromolar levels of Ca(2+) available.
Collapse
Affiliation(s)
- Renu Garg
- the Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India
| | - Nagesh Peddada
- the Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India
| | - Amin Sagar
- the Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India
| | - Deepak Nihalani
- From the Renal, Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Ashish
- the Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India
| |
Collapse
|
10
|
Certal AC, Almeida RB, Carvalho LM, Wong E, Moreno N, Michard E, Carneiro J, Rodriguéz-Léon J, Wu HM, Cheung AY, Feijó JA. Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes. THE PLANT CELL 2008; 20:614-34. [PMID: 18364468 PMCID: PMC2329945 DOI: 10.1105/tpc.106.047423] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 02/13/2008] [Accepted: 02/29/2008] [Indexed: 05/18/2023]
Abstract
Polarized growth in pollen tubes results from exocytosis at the tip and is associated with conspicuous polarization of Ca(2+), H(+), K(+), and Cl(-) -fluxes. Here, we show that cell polarity in Nicotiana tabacum pollen is associated with the exclusion of a novel pollen-specific H(+)-ATPase, Nt AHA, from the growing apex. Nt AHA colocalizes with extracellular H(+) effluxes, which revert to influxes where Nt AHA is absent. Fluorescence recovery after photobleaching analysis showed that Nt AHA moves toward the apex of growing pollen tubes, suggesting that the major mechanism of insertion is not through apical exocytosis. Nt AHA mRNA is also excluded from the tip, suggesting a mechanism of polarization acting at the level of translation. Localized applications of the cation ionophore gramicidin A had no effect where Nt AHA was present but acidified the cytosol and induced reorientation of the pollen tube where Nt AHA was absent. Transgenic pollen overexpressing Nt AHA-GFP developed abnormal callose plugs accompanied by abnormal H(+) flux profiles. Furthermore, there is no net flux of H(+) in defined patches of membrane where callose plugs are to be formed. Taken together, our results suggest that proton dynamics may underlie basic mechanisms of polarity and spatial regulation in growing pollen tubes.
Collapse
Affiliation(s)
- Ana C Certal
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, 2780-156 Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Paine MS, Perryman PB, Yang L, Yin HL, Krueger JK. Global structure changes associated with Ca2+ activation of full-length human plasma gelsolin. J Biol Chem 2007; 282:25884-92. [PMID: 17604278 DOI: 10.1074/jbc.m702446200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gelsolin regulates the dynamic assembly and disassembly of the actin-based cytoskeleton in non-muscle cells and clears the circulation of filaments released following cell death. Gelsolin is a six-domain (G1-G6) protein activated by calcium via a multi-step process that involves unfolding from a compact form to a more open form in which the three actin-binding sites (on the G1, G2, and G4 subdomains) become exposed. To follow the global structural changes that accompany calcium activation of gelsolin, small-angle x-ray scattering (SAXS) data were collected for full-length human plasma gelsolin at nanomolar to millimolar concentrations of free Ca2+. Analysis of these data showed that, upon increasing free Ca2+ levels, the radius of gyration (Rg) increased nearly 12 A, from 31.1+/-0.3 to 43+/-2 A, and the maximum linear dimension (Dmax) of the gelsolin molecule increased 55 A, from 100 to 155A. Structural reconstruction of gelsolin from these data provided a striking visual tracking of the gradual Ca2+-induced opening of the gelsolin molecule and highlighted the critical role played by the flexible linkers between homologous domains. The tightly packed architecture of calcium-free gelsolin, seen from both SAXS and x-ray crystallographic models, is already partially opened up in as low as 0.5 nM Ca2+. Our data confirm that, although the molecule springs open from 0 to 1 microM free Ca2+, even higher calcium concentrations help to stabilize a more open structure, with increases in Rg and Dmax of approximately 2 and approximately 15 A, respectively. At these higher calcium levels, the SAXS-based models provide a molecular shape that is compatible with that of the crystal structures solved for Ca2+/gelsolin C-terminal and N-terminal halves+/-monomeric G-actin. Placement of these crystal structures within the boundaries of the SAXS-based model suggests a movement of the G1/G2 subunits that would be required upon binding to actin.
Collapse
|
12
|
Roustan C, Ferjani I, Maciver SK, Fattoum A, Rebière B, Benyamin Y. Calcium-induced conformational changes in the amino-terminal half of gelsolin. FEBS Lett 2007; 581:681-6. [PMID: 17258204 DOI: 10.1016/j.febslet.2007.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 12/05/2006] [Accepted: 01/15/2007] [Indexed: 11/27/2022]
Abstract
Gelsolin is an actin-binding protein that is regulated by the occupancy of multiple calcium-binding sites. We have studied calcium induced conformational changes in the G1-2 and G1-3 sub-domains, and report the binding affinities for the three type II sites. A new probe for G3 has been produced and a K(d) of 5 microM has been measured for calcium in the context of G1-3. The two halves of gelsolin, G1-3 and G4-6 bind weakly with or without calcium, suggesting that once separated by apoptotic proteolysis, G1-3 and G4-6 remain apart allowing G1-3 to sever actin in a calcium free manner.
Collapse
Affiliation(s)
- Claude Roustan
- UMR 5539 (CNRS) Laboratoire de motilité cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
13
|
Ferjani I, Fattoum A, Maciver S, Bénistant C, Chahinian A, Manai M, Benyamin Y, Roustan C. A direct interaction with calponin inhibits the actin-nucleating activity of gelsolin. Biochem J 2006; 396:461-8. [PMID: 16536729 PMCID: PMC1482823 DOI: 10.1042/bj20051690] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 03/02/2006] [Accepted: 03/15/2006] [Indexed: 12/26/2022]
Abstract
Gelsolin and calponin are well-characterized cytoskeletal proteins that are abundant and widely expressed in vertebrate tissues. It is also becoming apparent, however, that they are involved in cell signalling. In the present study, we show that gelsolin and calponin interact directly to form a high-affinity (K(d)=16 nM) 1:1 complex, by the use of fluorescent probes attached to both proteins, by affinity chromatography and by immunoprecipitation. These methods show that gelsolin can form high-affinity complexes with two calponin isoforms (basic h1 and acidic h3). They also show that gelsolin binds calponin through regions that have been identified previously as being calponin's actin-binding sites. Moreover, gelsolin does not interact with calponin while calponin is bound to F-actin. Reciprocal experiments to find calponin-binding sites on gelsolin show that these are in both the N- and C-terminal halves of gelsolin. Calponin has minimal effects on actin severing by gelsolin. In contrast, calponin markedly affects the nucleation activity of gelsolin. The maximum inhibition of nucleation by gelsolin was 50%, which was achieved with a ratio of two calponins for every gelsolin. Thus the interaction of calponin with gelsolin may play a regulatory role in the formation of actin filaments through modulation of gelsolin's actin-binding function and through the prevention of calponin's actin-binding activities.
Collapse
Affiliation(s)
- Imen Ferjani
- *UMR 5539 (CNRS) Laboratoire de Motilité Cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
- †Unité de Biochimie et Biololgie Moléculaire, Faculté des Sciences de Tunis, Campus Universitaire 2092 El Manar, Tunis, Tunisia
| | - Abdellatif Fattoum
- ‡School of Biomedical and Clinical Laboratory Sciences, Division of Biomedical Sciences, College of Medicine, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland
| | - Sutherland K. Maciver
- §Centre de Recherches de Biochimie Macromoléculaire, FRE 2593 (CNRS), 1919 rte de Mende, 34293 Montpellier Cedex 5, France
| | - Christine Bénistant
- ‡School of Biomedical and Clinical Laboratory Sciences, Division of Biomedical Sciences, College of Medicine, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland
| | - Anne Chahinian
- *UMR 5539 (CNRS) Laboratoire de Motilité Cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| | - Mohamed Manai
- †Unité de Biochimie et Biololgie Moléculaire, Faculté des Sciences de Tunis, Campus Universitaire 2092 El Manar, Tunis, Tunisia
| | - Yves Benyamin
- *UMR 5539 (CNRS) Laboratoire de Motilité Cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| | - Claude Roustan
- *UMR 5539 (CNRS) Laboratoire de Motilité Cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| |
Collapse
|
14
|
Abstract
Cell migration plays a basic role in many physiological and pathophysiological processes such as embryogenesis, immune defence, wound healing or metastasis. The activity of the ubiquitously expressed NHE1 isoform of the plasma membrane Na+/H+ exchanger is one of the requirements for directed locomotion of migrating cells and also contributes to cell adhesion. The mechanisms by which NHE1 is involved in cell migration are multiple. NHE1 contributes to cell migration by affecting the cell volume, by regulating the intracellular pH and thereby the assembly and activity of cytoskeletal elements, by anchoring the cytoskeleton to the plasma membrane, by signalling, by regulating gene expression and by controlling cell adhesion. The present article gives a review of the different ways in which NHE1 is involved in and contributes to cell migration. These different mechanisms complement one another forming an intricate, integrative process.
Collapse
Affiliation(s)
- C Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | |
Collapse
|
15
|
Méré J, Chahinian A, Maciver S, Fattoum A, Bettache N, Benyamin Y, Roustan C. Gelsolin binds to polyphosphoinositide-free lipid vesicles and simultaneously to actin microfilaments. Biochem J 2005; 386:47-56. [PMID: 15527423 PMCID: PMC1134765 DOI: 10.1042/bj20041054] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gelsolin is a calcium-, pH- and lipid-dependent actin filament severing/capping protein whose main function is to regulate the assembly state of the actin cytoskeleton. Gelsolin is associated with membranes in cells, and it is generally assumed that this interaction is mediated by PPIs (polyphosphoinositides), since an interaction with these lipids has been characterized in vitro. We demonstrate that non-PPI lipids also bind gelsolin, especially at low pH. The data suggest further that gelsolin becomes partially buried in the lipid bilayer under mildly acidic conditions, in a manner that is not dependent of the presence of PPIs. Our data also suggest that lipid binding involves a number of sites that are spread throughout the gelsolin molecule. Linker regions between gelsolin domains have been implicated by other work, notably the linker between G1 and G2 (gelsolin domains 1 and 2 respectively), and we postulate that the linker region between the N-terminal and C-terminal halves of gelsolin (between G3 and G4) is also involved in the interaction with lipids. This region is compatible with other studies in which additional binding sites have been located within G4-6. The lipid-gelsolin interactions reported in the present paper are not calcium-dependent, and are likely to involve significant conformational changes to the gelsolin molecule, as the chymotryptic digest pattern is altered by the presence of lipids under our conditions. We also report that vesicle-bound gelsolin is capable of binding to actin filaments, presumably through barbed end capping. Gelsolin bound to vesicles can nucleate actin assembly, but is less active in severing microfilaments.
Collapse
Affiliation(s)
- Jocelyn Méré
- *UMR 5539 (CNRS) Laboratoire de motilité cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| | - Anne Chahinian
- *UMR 5539 (CNRS) Laboratoire de motilité cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| | - Sutherland K. Maciver
- †School of Biomedical and Clinical Laboratory Sciences, Division of Biomedical Sciences, College of Medicine, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, U.K
| | - Abdellatif Fattoum
- ‡Centre de Recherches de Biochimie Macromoléculaire, FRE 2593 (CNRS), 1919 rte de Mende, 34293 Montpellier Cedex 5, France
| | - Nadir Bettache
- *UMR 5539 (CNRS) Laboratoire de motilité cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| | - Yves Benyamin
- *UMR 5539 (CNRS) Laboratoire de motilité cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| | - Claude Roustan
- *UMR 5539 (CNRS) Laboratoire de motilité cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
16
|
Revenu C, Athman R, Robine S, Louvard D. The co-workers of actin filaments: from cell structures to signals. Nat Rev Mol Cell Biol 2004; 5:635-46. [PMID: 15366707 DOI: 10.1038/nrm1437] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cells have various surface architectures, which allow them to carry out different specialized functions. Actin microfilaments that are associated with the plasma membrane are important for generating these cell-surface specializations, and also provide the driving force for remodelling cell morphology and triggering new cell behaviour when the environment is modified. This phenomenon is achieved through a tight coupling between cell structure and signal transduction, a process that is modulated by the regulation of actin-binding proteins.
Collapse
Affiliation(s)
- Céline Revenu
- UMR144 Centre National de la Recherche Scientifique/Institut Curie, Paris, France
| | | | | | | |
Collapse
|