1
|
Wu Z, Li P, Chen Y, Chen X, Feng Y, Guo Z, Zhu D, Yong Y, Chen H. Rational Design for Enhancing Cellobiose Dehydrogenase Activity and Its Synergistic Role in Straw Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24620-24631. [PMID: 39468403 DOI: 10.1021/acs.jafc.4c05991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Addressing the demand for efficient biological degradation of straw, this study employed rational design coupled with structural biology and enzyme engineering techniques to enhance the catalytic activity of cellobiose dehydrogenase (PsCDH, CDH form Pycnoporus sanguineus). By predicting and modifying the active site and key amino acids of PsCDH, several CDH immobilized enzyme preparations with higher catalytic activities were successfully obtained. The excellent mutant T1 (C286Y/A461H/F464R) exhibited a 2.7-fold increase in enzyme activity compared to the wild type. Simulated calculations indicated that the enhancement of catalytic activity was primarily due to the formation of additional intermolecular interactions between CDH and the substrate, as well as the enlargement of the substrate pocket to reduce steric hindrance effects. Additionally, molecular dynamics simulation analysis revealed a potential correlation between structural stability and enzyme activity. When PsCDH was added to a multienzyme synergistic straw degradation system, the cellulose degradation rate increased by 1.84-fold. Moreover, mutant T1 further increased the degradation of lignocellulose in the mixed system. This study provides efficient enzyme sources and modification strategies for the high-efficiency biological conversion of straw and unconventional feedstock degradation, thereby possessing significant academic value and application prospects.
Collapse
Affiliation(s)
- Zhengfen Wu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Pengfei Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yong Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xihua Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yong Feng
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhongjian Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Daochen Zhu
- Biofuels Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Yangchun Yong
- Biofuels Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
2
|
Wu Z, Li P, Chen X, Feng Y, Ma Y, Ni Z, Zhu D, Chen H. Surface display system of Bacillus subtilis: A promising approach for improving the stability and applications of cellobiose dehydrogenase. Protein Expr Purif 2024; 218:106448. [PMID: 38373510 DOI: 10.1016/j.pep.2024.106448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Cellobiose dehydrogenase (CDH) plays a crucial role in lignocellulose degradation and bioelectrochemical industries, making it highly in demand. However, the production and purification of CDH through fungal heterologous expression methods is time-consuming, costly, and challenging. In this study, we successfully displayed Pycnoporus sanguineus CDH (psCDH) on the surface of Bacillus subtilis spores for the first time. Enzymatic characterization revealed that spore surface display enhanced the tolerance of psCDH to high temperature (80 °C) and low pH levels (3.5) compared to free psCDH. Furthermore, we found that glycerol, lactic acid, and malic acid promoted the activity of immobilized spore-displayed psCDH; glycerol has a more significant stimulating effect, increasing the activity from 16.86 ± 1.27 U/mL to 46.26 ± 3.25 U/mL. After four reuse cycles, the psCDH immobilized with spores retained 48% of its initial activity, demonstrating a substantial recovery rate. In conclusion, the spore display system, relying on cotG, enables the expression and immobilization of CDH while enhancing its resistance to adverse conditions. This system demonstrates efficient enzyme recovery and reuse. This approach provides a novel method and strategy for the immobilization and stability enhancement of CDH.
Collapse
Affiliation(s)
- Zhengfen Wu
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang, 212013, China
| | - Pengfei Li
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang, 212013, China
| | - Xihua Chen
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang, 212013, China
| | - Yong Feng
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang, 212013, China
| | - Yi Ma
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang, 212013, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang, 212013, China
| | - Daochen Zhu
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang, 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Siriatcharanon AK, Sutheeworapong S, Baramee S, Waeonukul R, Pason P, Kosugi A, Uke A, Ratanakhanokchai K, Tachaapaikoon C. Discovery of a Novel Cellobiose Dehydrogenase from Cellulomonas palmilytica EW123 and Its Sugar Acids Production. J Microbiol Biotechnol 2024; 34:457-466. [PMID: 38044713 PMCID: PMC10940743 DOI: 10.4014/jmb.2307.07004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 12/05/2023]
Abstract
Cellobiose dehydrogenases (CDHs) are a group of enzymes belonging to the hemoflavoenzyme group, which are mostly found in fungi. They play an important role in the production of acid sugar. In this research, CDH annotated from the actinobacterium Cellulomonas palmilytica EW123 (CpCDH) was cloned and characterized. The CpCDH exhibited a domain architecture resembling class-I CDH found in Basidiomycota. The cytochrome c and flavin-containing dehydrogenase domains in CpCDH showed an extra-long evolutionary distance compared to fungal CDH. The amino acid sequence of CpCDH revealed conservative catalytic amino acids and a distinct flavin adenine dinucleotide region specific to CDH, setting it apart from closely related sequences. The physicochemical properties of CpCDH displayed optimal pH conditions similar to those of CDHs but differed in terms of optimal temperature. The CpCDH displayed excellent enzymatic activity at low temperatures (below 30°C), unlike other CDHs. Moreover, CpCDH showed the highest substrate specificity for disaccharides such as cellobiose and lactose, which contain a glucose molecule at the non-reducing end. The catalytic efficiency of CpCDH for cellobiose and lactose were 2.05 x 105 and 9.06 x 104 (M-1 s-1), respectively. The result from the Fourier-transform infrared spectroscopy (FT-IR) spectra confirmed the presence of cellobionic and lactobionic acids as the oxidative products of CpCDH. This study establishes CpCDH as a novel and attractive bacterial CDH, representing the first report of its kind in the Cellulomonas genus.
Collapse
Affiliation(s)
- Ake-kavitch Siriatcharanon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Sawannee Sutheeworapong
- Division of Bioinformatics and Systems Biology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Sirilak Baramee
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Patthra Pason
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Ayaka Uke
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Chakrit Tachaapaikoon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| |
Collapse
|
4
|
Adnan M, Ma X, Xie Y, Waheed A, Liu G. Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in Trichoderma reesei. Int J Mol Sci 2023; 24:17202. [PMID: 38139031 PMCID: PMC10743782 DOI: 10.3390/ijms242417202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic polysaccharide monooxygenases (LPMOs) enhances cellulose degradation in many folds. CDH increases cellulose deconstruction via coupling the oxidation of cellobiose to the reductive activation of LPMOs by catalyzing the addition of oxygen to C-H bonds of the glycosidic linkages. Fungal LPMOs show different regio-selectivity (C1 or C4) and result in oxidized products through modifications at reducing as well as nonreducing ends of the respective glucan chain. T. reesei LPMOs have shown great potential for oxidative cleavage of cellobiose at C1 and C4 glucan bonds, therefore, the incorporation of heterologous CDH further increases its potential for biofuel production for industrial purposes at a reduced cost. We introduced CDH of Phanerochaete chrysosporium (PcCDH) in Trichoderma reesei (which originally lacked CDH). We purified CDH through affinity chromatography and analyzed its enzymatic activity, electron-donating ability to LPMO, and the synergistic effect of LPMO and CDH on cellulose deconstruction. The optimum temperature of the recombinant PcCDH was found to be 45 °C and the optimum pH of PcCDH was observed as 4.5. PcCDH has high cello-oligosaccharide kcat, Km, and kcat/Km values. The synergistic effect of LPMO and cellulase significantly improved the degradation efficiency of phosphoric acid swollen cellulose (PASC) when CDH was used as the electron donor. We also found that LPMO undergoes auto-oxidative inactivation, and when PcCDH is used an electron donor has the function of a C1-type LPMO electron donor without additional substrate increments. This work provides novel insights into finding stable electron donors for LPMOs and paves the way forward in discovering efficient CDHs for enhanced cellulose degradation.
Collapse
Affiliation(s)
| | | | | | | | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (X.M.); (Y.X.)
| |
Collapse
|
5
|
Grace Barrios-Gutiérrez S, Inés Vélez-Mercado M, Rodrigues Ortega J, da Silva Lima A, Luiza da Rocha Fortes Saraiva A, Leila Berto G, Segato F. Oxidative Machinery of basidiomycetes as potential enhancers in lignocellulosic biorefineries: A lytic polysaccharide monooxygenases approach. BIORESOURCE TECHNOLOGY 2023; 386:129481. [PMID: 37437815 DOI: 10.1016/j.biortech.2023.129481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Basidiomycetes are renowned as highly effective decomposers of plant materials, due to their extensive array of oxidative enzymes, which enable them to efficiently break down complex lignocellulosic biomass structures. Among the oxidative machinery of industrially relevant basidiomycetes, the role of lytic polysaccharide monooxygenases (LPMO) in lignocellulosic biomass deconstruction is highlighted. So far, only a limited number of basidiomycetes LPMOs have been identified and heterologously expressed. These LPMOs have presented activity on cellulose and hemicellulose, as well as participation in the deconstruction of lignin. Expanding on this, the current review proposes both enzymatic and non-enzymatic mechanisms of LPMOs for biomass conversion, considering the significance of the Carbohydrate-Binding Modules and other C-terminal regions domains associated with their structure, which is involved in the deconstruction of lignocellulosic biomass.
Collapse
Affiliation(s)
- Solange Grace Barrios-Gutiérrez
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Martha Inés Vélez-Mercado
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Júlia Rodrigues Ortega
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Awana da Silva Lima
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Ana Luiza da Rocha Fortes Saraiva
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Gabriela Leila Berto
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Fernando Segato
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil.
| |
Collapse
|
6
|
Liu YD, Yuan G, An YT, Zhu ZR, Li G. Molecular cloning and characterization of a novel bifunctional cellobiohydrolase/β-xylosidase from a metagenomic library of mangrove soil. Enzyme Microb Technol 2023; 162:110141. [DOI: 10.1016/j.enzmictec.2022.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
7
|
Uchiyama T, Uchihashi T, Ishida T, Nakamura A, Vermaas JV, Crowley MF, Samejima M, Beckham GT, Igarashi K. Lytic polysaccharide monooxygenase increases cellobiohydrolases activity by promoting decrystallization of cellulose surface. SCIENCE ADVANCES 2022; 8:eade5155. [PMID: 36563138 PMCID: PMC9788756 DOI: 10.1126/sciadv.ade5155] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
Efficient depolymerization of crystalline cellulose requires cooperation between multiple cellulolytic enzymes. Through biochemical approaches, molecular dynamics (MD) simulation, and single-molecule observations using high-speed atomic force microscopy (HS-AFM), we quantify and track synergistic activity for cellobiohydrolases (CBHs) with a lytic polysaccharide monooxygenase (LPMO) from Phanerochaete chrysosporium. Increasing concentrations of LPMO (AA9D) increased the activity of a glycoside hydrolase family 6 CBH, Cel6A, whereas the activity of a family 7 CBH (Cel7D) was enhanced only at lower concentrations of AA9D. MD simulation suggests that the result of AA9D action to produce chain breaks in crystalline cellulose can oxidatively disturb the crystalline surface by disrupting hydrogen bonds. HS-AFM observations showed that AA9D increased the number of Cel7D molecules moving on the substrate surface and increased the processivity of Cel7D, thereby increasing the depolymerization performance, suggesting that AA9D not only generates chain ends but also amorphizes the crystalline surface, thereby increasing the activity of CBHs.
Collapse
Affiliation(s)
- Taku Uchiyama
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Uchihashi
- Department of Physics and Structural Biology Research Center, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Physics, Structural Biology Center, and Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8602, Japan
| | - Takuya Ishida
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akihiko Nakamura
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
| | - Josh V. Vermaas
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F. Crowley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Masahiro Samejima
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Faculty of Engineering, Shinshu University, 4-17-1, Wakasato, Nagano 380-8533, Japan
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- VTT Technical Research Center of Finland Ltd., Tietotie 2, P.O. Box 1000, Espoo, FI-02044 VTT, Finland
| |
Collapse
|
8
|
The Maize Pathogen Ustilago maydis Secretes Glycoside Hydrolases and Carbohydrate Oxidases Directed toward Components of the Fungal Cell Wall. Appl Environ Microbiol 2022; 88:e0158122. [PMID: 36354345 PMCID: PMC9746322 DOI: 10.1128/aem.01581-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Filamentous fungi are keystone microorganisms in the regulation of many processes occurring on Earth, such as plant biomass decay and pathogenesis as well as symbiotic associations. In many of these processes, fungi secrete carbohydrate-active enzymes (CAZymes) to modify and/or degrade carbohydrates. Ten years ago, while evaluating the potential of a secretome from the maize pathogen Ustilago maydis to supplement lignocellulolytic cocktails, we noticed it contained many unknown or poorly characterized CAZymes. Here, and after reannotation of this data set and detailed phylogenetic analyses, we observed that several CAZymes (including glycoside hydrolases and carbohydrate oxidases) are predicted to act on the fungal cell wall (FCW), notably on β-1,3-glucans. We heterologously produced and biochemically characterized two new CAZymes, called UmGH16_1-A and UmAA3_2-A. We show that UmGH16_1-A displays β-1,3-glucanase activity, with a preference for β-1,3-glucans with short β-1,6 substitutions, and UmAA3_2-A is a dehydrogenase catalyzing the oxidation of β-1,3- and β-1,6-gluco-oligosaccharides into the corresponding aldonic acids. Working on model β-1,3-glucans, we show that the linear oligosaccharide products released by UmGH16_1-A are further oxidized by UmAA3_2-A, bringing to light a putative biocatalytic cascade. Interestingly, analysis of available transcriptomics data indicates that both UmGH16_1-A and UmAA3_2-A are coexpressed, only during early stages of U. maydis infection cycle. Altogether, our results suggest that both enzymes are connected and that additional accessory activities still need to be uncovered to fully understand the biocatalytic cascade at play and its physiological role. IMPORTANCE Filamentous fungi play a central regulatory role on Earth, notably in the global carbon cycle. Regardless of their lifestyle, filamentous fungi need to remodel their own cell wall (mostly composed of polysaccharides) to grow and proliferate. To do so, they must secrete a large arsenal of enzymes, most notably carbohydrate-active enzymes (CAZymes). However, research on fungal CAZymes over past decades has mainly focused on finding efficient plant biomass conversion processes while CAZymes directed at the fungus itself have remained little explored. In the present study, using the maize pathogen Ustilago maydis as model, we set off to evaluate the prevalence of CAZymes directed toward the fungal cell wall during growth of the fungus on plant biomass and characterized two new CAZymes active on fungal cell wall components. Our results suggest the existence of a biocatalytic cascade that remains to be fully understood.
Collapse
|
9
|
Vandhana TM, Reyre JL, Sushmaa D, Berrin JG, Bissaro B, Madhuprakash J. On the expansion of biological functions of lytic polysaccharide monooxygenases. THE NEW PHYTOLOGIST 2022; 233:2380-2396. [PMID: 34918344 DOI: 10.1111/nph.17921] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 05/21/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) constitute an enigmatic class of enzymes, the discovery of which has opened up a new arena of riveting research. LPMOs can oxidatively cleave the glycosidic bonds found in carbohydrate polymers enabling the depolymerisation of recalcitrant biomasses, such as cellulose or chitin. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. In the present review, we propose a historical perspective of LPMO research providing a succinct overview of the major achievements of LPMO research over the past decade. This journey through LPMOs landscape leads us to dive into the emerging biological functions of LPMOs and LPMO-like proteins. We notably highlight roles in fungal and oomycete plant pathogenesis (e.g. potato late blight), but also in mutualistic/commensalism symbiosis (e.g. ectomycorrhizae). We further present the potential importance of LPMOs in other microbial pathogenesis including diseases caused by bacteria (e.g. pneumonia), fungi (e.g. human meningitis), oomycetes and viruses (e.g. entomopox), as well as in (micro)organism development (including several plant pests). Our assessment of the literature leads to the formulation of outstanding questions, promising for the coming years exciting research and discoveries on these moonlighting proteins.
Collapse
Affiliation(s)
- Theruvothu Madathil Vandhana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jean-Lou Reyre
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Dangudubiyyam Sushmaa
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jean-Guy Berrin
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
| | - Bastien Bissaro
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
10
|
Gu X, Yang S, Yang X, Yao L, Gao X, Zhang M, Liu W, Zhao H, Wang Q, Li Z, Li Z, Ding J. Comparative transcriptome analysis of two Cercospora sojina strains reveals differences in virulence under nitrogen starvation stress. BMC Microbiol 2020; 20:166. [PMID: 32546122 PMCID: PMC7298872 DOI: 10.1186/s12866-020-01853-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/12/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cercospora sojina is a fungal pathogen that causes frogeye leaf spot in soybean-producing regions, leading to severe yield losses worldwide. It exhibits variations in virulence due to race differentiation between strains. However, the candidate virulence-related genes are unknown because the infection process is slow, making it difficult to collect transcriptome samples. RESULTS In this study, virulence-related differentially expressed genes (DEGs) were obtained from the highly virulent Race 15 strain and mildly virulent Race1 strain under nitrogen starvation stress, which mimics the physiology of the pathogen during infection. Weighted gene co-expression network analysis (WGCNA) was then used to find co-expressed gene modules and assess the relationship between gene networks and phenotypes. Upon comparison of the transcriptomic differences in virulence between the strains, a total of 378 and 124 DEGs were upregulated, while 294 and 220 were downregulated in Race 1 and Race 15, respectively. Annotation of these DEGs revealed that many were associated with virulence differences, including scytalone dehydratase, 1,3,8-trihydroxynaphthalene reductase, and β-1,3-glucanase. In addition, two modules highly correlated with the highly virulent strain Race 15 and 36 virulence-related DEGs were found to contain mostly β-1,4-glucanase, β-1,4-xylanas, and cellobiose dehydrogenase. CONCLUSIONS These important nitrogen starvation-responsive DEGs are frequently involved in the synthesis of melanin, polyphosphate storage in the vacuole, lignocellulose degradation, and cellulose degradation during fungal development and differentiation. Transcriptome analysis indicated unique gene expression patterns, providing further insight into pathogenesis.
Collapse
Affiliation(s)
- Xin Gu
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Shuai Yang
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaohe Yang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Liangliang Yao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Xuedong Gao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Maoming Zhang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Wei Liu
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Haihong Zhao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Qingsheng Wang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Zengjie Li
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Zhimin Li
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Junjie Ding
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China.
| |
Collapse
|
11
|
Igarashi K, Kaneko S, Kitaoka M, Samejima M. Effect of C-6 Methylol Groups on Substrate Recognition of Glucose/Xylose Mixed Oligosaccharides by Cellobiose Dehydrogenase from the Basidiomycete Phanerochaete chrysosporium. J Appl Glycosci (1999) 2020; 67:51-57. [PMID: 34354528 PMCID: PMC8293687 DOI: 10.5458/jag.jag.jag-2020_0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/28/2020] [Indexed: 12/02/2022] Open
Abstract
Cellobiose dehydrogenase (CDH) is a flavocytochrome catalyzing oxidation of the reducing end of cellobiose and cellooligosaccharides, and has a key role in the degradation of cellulosic biomass by filamentous fungi. Here, we use a lineup of glucose/xylose-mixed β-1,4-linked disaccharides and trisaccharides, enzymatically synthesized by means of the reverse reaction of cellobiose phosphorylase and cellodextrin phosphorylase, to investigate the substrate recognition of CDH. We found that CDH utilizes β-D-xylopyranosyl-(1→4)-D-glucopyranose (Xyl-Glc) as an electron donor with similar Km and kcat values to cellobiose. β-D-Glucopyranosyl-(1→4)-D-xylopyranose (Glc-Xyl) shows a higher Km value, while xylobiose does not serve as a substrate. Trisaccharides show similar behavior; i.e., trisaccharides with cellobiose and Xyl-Glc units at the reducing end show similar kinetics, while the enzyme was less active towards those with Glc-Xyl, and inactive towards those with xylobiose. We also use docking simulation to evaluate substrate recognition of the disaccharides, and we discuss possible molecular mechanisms of substrate recognition by CDH.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- 1 Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo.,2 VTT Technical Research Centre of Finland Ltd
| | - Satoshi Kaneko
- 3 Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus
| | - Motomitsu Kitaoka
- 4 Faculty of Agriculture, Niigata University.,5 Food Research Institute, National Agriculture and Food Research Organization
| | - Masahiro Samejima
- 1 Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo.,6 Faculty of Engineering, Shinshu University
| |
Collapse
|
12
|
Cellobiose dehydrogenase. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:457-489. [DOI: 10.1016/bs.enz.2020.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Functional characterisation of cellobiohydrolase I (Cbh1) from Trichoderma virens UKM1 expressed in Aspergillus niger. Protein Expr Purif 2019; 154:52-61. [DOI: 10.1016/j.pep.2018.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/12/2018] [Accepted: 09/20/2018] [Indexed: 11/20/2022]
|
14
|
Zhong C, Wei P, Zhang YHP. A kinetic model of one-pot rapid biotransformation of cellobiose from sucrose catalyzed by three thermophilic enzymes. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2016.11.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
An aldonolactonase AltA from Penicillium oxalicum mitigates the inhibition of β-glucosidase during lignocellulose biodegradation. Appl Microbiol Biotechnol 2017; 101:3627-3636. [DOI: 10.1007/s00253-017-8134-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
|
16
|
Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina. Appl Environ Microbiol 2016; 83:AEM.02716-16. [PMID: 27836848 DOI: 10.1128/aem.02716-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/04/2016] [Indexed: 12/24/2022] Open
Abstract
Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. IMPORTANCE Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO.
Collapse
|
17
|
Hildebrand A, Bennett Addison J, Kasuga T, Fan Z. Cellobionic acid inhibition of cellobiohydrolase I and cellobiose dehydrogenase. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Wang M, Lu X. Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei. Front Microbiol 2016; 7:620. [PMID: 27199949 PMCID: PMC4850161 DOI: 10.3389/fmicb.2016.00620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/15/2016] [Indexed: 11/21/2022] Open
Abstract
Recent demands for the production of lignocellulose biofuels boosted research on cellulase. Hydrolysis efficiency and production cost of cellulase are two bottlenecks in “biomass to biofuels” process. The Trichoderma cellulase mixture is one of the most commonly used enzymes for cellulosic hydrolysis. During hydrolytic process cellobiose accumulation causes feedback inhibition against most cellobiohydrolases and endoglucanases. In this study, we demonstrated the synergism effects between cellobiose dehydrogenase (CDH) and cellulase both in vitro and in vivo. The CDH from Phanerochaete chrysosporium was heterologously expressed in Pichia pastoris. Supplementation of the purified CDH in Trichoderma cellulase increased the cellulase activities. Especially β-glucosidase activity was increased by 30–100% varying at different time points. On the other hand, the cdh gene was heterologously expressed in Trichoderma reesei to explore the synergism between CDH and cellulases in vivo. The analyses of gene expression and enzymatic profiles of filter paper activity, carboxymethylcellulase (CMCase) and β-glucosidase show the increased cellulase activity and the enhanced cellulase production in the cdh-expressing strains. The results elucidate a possible mechanism for diminishing the cellobiose inhibition of cellulase by CDH. These findings provide a novel perspective to make more economic enzyme cocktails for commercial application or explore alternative strategies for generating cellulase-producing strains with higher efficiency.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China; Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China; Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
| |
Collapse
|
19
|
Rytioja J, Hildén K, Mäkinen S, Vehmaanperä J, Hatakka A, Mäkelä MR. Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens. PLoS One 2015; 10:e0145166. [PMID: 26660105 PMCID: PMC4682842 DOI: 10.1371/journal.pone.0145166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023] Open
Abstract
White rot fungus Dichomitus squalens is an efficient lignocellulose degrading basidiomycete and a promising source for new plant cell wall polysaccharides depolymerizing enzymes. In this work, we focused on cellobiohydrolases (CBHs) of D. squalens. The native CBHI fraction of the fungus, consisting three isoenzymes, was purified and it maintained the activity for 60 min at 50°C, and was stable in acidic pH. Due to the lack of enzyme activity assay for detecting only CBHII activity, CBHII of D. squalens was produced recombinantly in an industrially important ascomycete host, Trichoderma reesei. CBH enzymes of D. squalens showed potential in hydrolysis of complex lignocellulose substrates sugar beet pulp and wheat bran, and microcrystalline cellulose, Avicel. Recombinant CBHII (rCel6A) of D. squalens hydrolysed all the studied plant biomasses. Compared to individual activities, synergistic effect between rCel6A and native CBHI fraction of D. squalens was significant in the hydrolysis of Avicel. Furthermore, the addition of laccase to the mixture of CBHI fraction and rCel6A significantly enhanced the amount of released reducing sugars from sugar beet pulp. Especially, synergy between individual enzymes is a crucial factor in the tailor-made enzyme mixtures needed for hydrolysis of different plant biomass feedstocks. Our data supports the importance of oxidoreductases in improved enzyme cocktails for lignocellulose saccharification.
Collapse
Affiliation(s)
- Johanna Rytioja
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kristiina Hildén
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | - Annele Hatakka
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Miia R. Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
20
|
Nam YW, Nihira T, Arakawa T, Saito Y, Kitaoka M, Nakai H, Fushinobu S. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes. J Biol Chem 2015; 290:18281-92. [PMID: 26041776 DOI: 10.1074/jbc.m115.664664] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 01/02/2023] Open
Abstract
The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes.
Collapse
Affiliation(s)
- Young-Woo Nam
- From the Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takanori Nihira
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan, and
| | - Takatoshi Arakawa
- From the Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuka Saito
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan, and
| | - Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan, and
| | - Shinya Fushinobu
- From the Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
21
|
Desai SH, Rabinovitch-Deere CA, Fan Z, Atsumi S. Isobutanol production from cellobionic acid in Escherichia coli. Microb Cell Fact 2015; 14:52. [PMID: 25889729 PMCID: PMC4403981 DOI: 10.1186/s12934-015-0232-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background Liquid fuels needed for the global transportation industry can be produced from sugars derived from plant-based lignocellulosics. Lignocellulosics contain a range of sugars, only some of which (such as cellulose) have been shown to be utilizable by microorganisms capable of producing biofuels. Cellobionic acid makes up a small but significant portion of lignocellulosic degradation products, and had not previously been investigated as an utilizable substrate. However, aldonic acids such as cellobionic acid are the primary products of a promising new group of lignocellulosic-degrading enzymes, which makes this compound group worthy of study. Cellobionic acid doesn’t inhibit cellulose degradation enzymes and so its inclusion would increase lignocellulosic degradation efficiency. Also, its use would increase overall product yield from lignocellulose substrate. For these reasons, cellobionic acid has gained increased attention for cellulosic biofuel production. Results This study describes the discovery that Escherichia coli are naturally able to utilize cellobionic acid as a sole carbon source with efficiency comparable to that of glucose and the construction of an E. coli strain able to produce the drop-in biofuel candidate isobutanol from cellobionic acid. The gene primarily responsible for growth of E. coli on cellobionic acid is ascB, a gene previously thought to be cryptic (expressed only after incurring specific mutations in nearby regulatory genes). In addition to AscB, the ascB knockout strain can be complemented by the cellobionic acid phosphorylase from the fungus Neurospora crassa. An E. coli strain engineered to express the isobutanol production pathway was successfully able to convert cellobionic acid into isobutanol. Furthermore, to demonstrate potential application of this strain in a sequential two-step bioprocessing system, E. coli was grown on hydrolysate (that was degraded by a fungus) and was successfully able to produce isobutanol. Conclusions These results demonstrate that cellobionic acid is a viable carbon source for biofuel production. This work suggests that with further optimization, a bacteria-fungus co-culture could be used in decreased-cost biomass-based biofuel production systems.
Collapse
Affiliation(s)
- Shuchi H Desai
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA. .,Microbiology Graduate Group, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| | | | - Zhiliang Fan
- Microbiology Graduate Group, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA. .,Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA. .,Microbiology Graduate Group, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
22
|
Vermaas JV, Crowley MF, Beckham GT, Payne CM. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases. J Phys Chem B 2015; 119:6129-43. [PMID: 25785779 DOI: 10.1021/acs.jpcb.5b00778] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In nature, polysaccharide glycosidic bonds are cleaved by hydrolytic enzymes for a vast array of biological functions. Recently, a new class of enzymes that utilize an oxidative mechanism to cleave glycosidic linkages was discovered; these enzymes are called lytic polysaccharide monooxygenases (LPMO). These oxidative enzymes are synergistic with cocktails of hydrolytic enzymes and are thought to act primarily on crystalline regions, in turn providing new sites of productive attachment and detachment for processive hydrolytic enzymes. In the case of cellulose, the homopolymer of β-1,4-d-glucose, enzymatic oxidation occurs at either the reducing end or the nonreducing end of glucose, depending on enzymatic specificity, and results in the generation of oxidized chemical substituents at polymer chain ends. LPMO oxidation of cellulose is thought to produce either a lactone at the reducing end of glucose that can spontaneously or enzymatically convert to aldonic acid or 4-keto-aldose at the nonreducing end that may further oxidize to a geminal diol. Here, we use molecular simulation to examine the effect of oxidation on the structure of crystalline cellulose. The simulations highlight variations in behaviors depending on the chemical identity of the oxidized species and its location within the cellulose fibril, as different oxidized species introduce steric effects that disrupt local crystallinity and in some cases reduce the work needed for polymer decrystallization. Reducing-end oxidations are easiest to decrystallize when located at the end of the fibril, whereas nonreducing end oxidations readily decrystallize from internal cleavage sites despite their lower solvent accessibility. The differential in decrystallization free energy suggests a molecular mechanism consistent with experimentally observed LPMO/cellobiohydrolase synergy. Additionally, the soluble oxidized cellobiose products released by hydrolytic cellulases may bind to the active sites of cellulases with different affinities relative to cellobiose itself, which potentially affects hydrolytic turnover through product inhibition. To examine the effect of oxidation on cello-oligomer binding, we use thermodynamic integration to compute the relative change in binding free energy between the hydrolyzed and oxidized products in the active site of Family 7 and Family 6 processive glycoside hydrolases, Trichoderma reesei Cel7A and Cel6A, which are key industrial cellulases and commonly used model systems for fungal cellulases. Our results suggest that the equilibrium between the two reducing end oxidized products, favoring the linear aldonic acid, may increase product inhibition, which would in turn reduce processive substrate turnover. In the case of LMPO action at the nonreducing end, oxidation appears to lower affinity with the nonreducing end specific cellulase, reducing product inhibition and potentially promoting processive cellulose turnover. Overall, this suggests that oxidation of recalcitrant polysaccharides by LPMOs accelerates degradation not only by increasing the concentration of chain termini but also by reducing decrystallization work, and that product inhibition may be somewhat reduced as a result.
Collapse
Affiliation(s)
- Josh V Vermaas
- †Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,‡National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael F Crowley
- §Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Gregg T Beckham
- ‡National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Christina M Payne
- ∥Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States.,⊥Center for Computational Science, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
23
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
24
|
Engineering Neurospora crassa for improved cellobiose and cellobionate production. Appl Environ Microbiol 2014; 81:597-603. [PMID: 25381238 DOI: 10.1128/aem.02885-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We report engineering Neurospora crassa to improve the yield of cellobiose and cellobionate from cellulose. A previously engineered strain of N. crassa (F5) with six of seven β-glucosidase (bgl) genes knocked out was shown to produce cellobiose and cellobionate directly from cellulose without the addition of exogenous cellulases. In this study, the F5 strain was further modified to improve the yield of cellobiose and cellobionate from cellulose by increasing cellulase production and decreasing product consumption. The effects of two catabolite repression genes, cre-1 and ace-1, on cellulase production were investigated. The F5 Δace-1 mutant showed no improvement over the wild type. The F5 Δcre-1 and F5 Δace-1 Δcre-1 strains showed improved cellobiose dehydrogenase and exoglucanase expression. However, this improvement in cellulase expression did not lead to an improvement in cellobiose or cellobionate production. The cellobionate phosphorylase gene (ndvB) was deleted from the genome of F5 Δace-1 Δcre-1 to prevent the consumption of cellobiose and cellobionate. Despite a slightly reduced hydrolysis rate, the F5 Δace-1 Δcre-1 ΔndvB strain converted 75% of the cellulose consumed to the desired products, cellobiose and cellobionate, compared to 18% converted by the strain F5 Δace-1 Δcre-1.
Collapse
|
25
|
Navarro D, Rosso MN, Haon M, Olivé C, Bonnin E, Lesage-Meessen L, Chevret D, Coutinho PM, Henrissat B, Berrin JG. Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:143. [PMID: 25320637 PMCID: PMC4197297 DOI: 10.1186/s13068-014-0143-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/18/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Enzymatic breakdown of lignocellulosic biomass is a known bottleneck for the production of high-value molecules and biofuels from renewable sources. Filamentous fungi are the predominant natural source of enzymes acting on lignocellulose. We describe the extraordinary cellulose-deconstructing capacity of the basidiomycete Laetisaria arvalis, a soil-inhabiting fungus. RESULTS The L. arvalis strain displayed the capacity to grow on wheat straw as the sole carbon source and to fully digest cellulose filter paper. The cellulolytic activity exhibited in the secretomes of L. arvalis was up to 7.5 times higher than that of a reference Trichoderma reesei industrial strain, resulting in a significant improvement of the glucose release from steam-exploded wheat straw. Global transcriptome and secretome analyses revealed that L. arvalis produces a unique repertoire of carbohydrate-active enzymes in the fungal taxa, including a complete set of enzymes acting on cellulose. Temporal analyses of secretomes indicated that the unusual degradation efficiency of L. arvalis relies on its early response to the carbon source, and on the finely tuned sequential secretion of several lytic polysaccharide monooxygenases and hydrolytic enzymes targeting cellulose. CONCLUSIONS The present study illustrates the adaptation of a litter-rot fungus to the rapid breakdown of recalcitrant plant biomass. The cellulolytic capabilities of this basidiomycete fungus result from the rapid, selective and successive secretion of oxidative and hydrolytic enzymes. These enzymes expressed at critical times during biomass degradation may inspire the design of improved enzyme cocktails for the conversion of plant cell wall resources into fermentable sugars.
Collapse
Affiliation(s)
- David Navarro
- />INRA, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
- />Aix-Marseille Université, Polytech Marseille, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
- />CIRM-CF, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
| | - Marie-Noëlle Rosso
- />INRA, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
- />Aix-Marseille Université, Polytech Marseille, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
| | - Mireille Haon
- />INRA, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
- />Aix-Marseille Université, Polytech Marseille, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
| | - Caroline Olivé
- />INRA, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
- />Aix-Marseille Université, Polytech Marseille, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
| | - Estelle Bonnin
- />INRA, Unité de Recherche Biopolymères, Interactions, Assemblages, 44316 Nantes, France
| | - Laurence Lesage-Meessen
- />INRA, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
- />Aix-Marseille Université, Polytech Marseille, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
| | - Didier Chevret
- />INRA, UMR1319 Micalis, Plateforme d’Analyse Protéomique de Paris Sud-Ouest, 78352 Jouy-en-Josas, France
| | - Pedro M Coutinho
- />CNRS, UMR7257 Architecture et Fonction des Macromolécules Biologiques, 13288 Marseille, France
- />Aix-Marseille Université, UMR7257 Architecture et Fonction des Macromolécules Biologiques, 13288 Marseille, France
| | - Bernard Henrissat
- />Aix-Marseille Université, UMR7257 Architecture et Fonction des Macromolécules Biologiques, 13288 Marseille, France
- />Department of Biological Sciences, King Abdulaziz University, Abdullah Sulayman, Jeddah, 22254 Saudi Arabia
| | - Jean-Guy Berrin
- />INRA, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
- />Aix-Marseille Université, Polytech Marseille, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
| |
Collapse
|
26
|
Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. Proc Natl Acad Sci U S A 2013; 110:10189-94. [PMID: 23733951 DOI: 10.1073/pnas.1301502110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes.
Collapse
|
27
|
Characterization of extracellular lignocellulolytic enzymes of Coniochaeta sp. during corn stover bioconversion. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Redefining XynA from Penicillium funiculosum IMI 378536 as a GH7 cellobiohydrolase. ACTA ACUST UNITED AC 2012; 39:1569-76. [DOI: 10.1007/s10295-012-1166-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
Abstract
The secretome of Penicillium funiculosum contains two family GH7 enzymes, one of which (designated XynA) has been described as a xylanase. This is unusual because it is the only xylanase in family GH7, which is mainly composed of cellobiohydrolases and endoglucanases, and also because XynA is highly similar to the cellobiohydrolase I from Talaromyces emersonii and Trichoderma reesei (72 and 65 % identity, respectively). To probe this enigma, we investigated the biochemical properties of XynA, notably its activity on xylans and β-d-glucans. A highly pure sample of XynA was obtained and used to perform hydrolysis tests on polysaccharides. These revealed that XynA is 100-fold more active on β-1,4-glucan than on xylan. Likewise, XynA was active on both 4-nitrophenyl-β-d-lactopyranoside (pNP-β-d-Lac) and 4-nitrophenyl-β-d-cellobioside (pNP-cellobiose), which shows that XynA is principally an exo-acting type 1 cellobiohydrolase enzyme that displays 5.2-fold higher performance on pNP-cellobiose than on pNP-β-d-Lac. Finally, analyses performed using cellodextrins as substrate revealed that XynA mainly produced cellobiose (C2) from substrates containing three or more glucosyl subunits, and that C2 inhibits XynA at high concentrations (IC50 C2 = 17.7 μM). Overall, this study revealed that XynA displays typical cellobiohydrolase 1 activity and confirms that the description of this enzyme in public databases should be definitively amended. Moreover, the data provided here complete the information provided by a previous proteomics investigation and reveal that P. funiculosum secretes a complete set of cellulose-degrading enzymes.
Collapse
|
29
|
Egusa S, Goto M, Kitaoka T. One-step synthesis of cellulose from cellobiose via protic acid-assisted enzymatic dehydration in aprotic organic media. Biomacromolecules 2012; 13:2716-22. [PMID: 22871106 DOI: 10.1021/bm3006775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Direct and efficient enzymatic synthesis of long-chain cellulose from cellobiose in its original form was successfully achieved via the combination of a surfactant-enveloped enzyme (SEE) and a protic acid in an aprotic organic solvent, lithium chloride/N,N-dimethylacetamide system. The SEE biocatalyst was prepared by protecting the surface of cellulase with the nonionic surfactant dioleyl-N-D-glucona-L-glutamate for keeping its enzymatic activity in nonaqueous media. Fourier transform infrared and nuclear magnetic resonance analyses elucidated the successful synthesis of cellulose, β-1,4-linked D-glucopyranose polymer, through the reverse hydrolysis of cellobiose. By using protic acid cocatalysts, a degree of polymerization of as-synthesized cellulose reached more than 120, in a ca. 26% conversion, which was 5 times higher than that obtained in an acid-free SEE system. A novel-concept biocatalysis, i.e., a protic acid-assisted SEE-mediated reaction, enables a facile, one-step chain elongation of carbohydrates without any activation via multistep organic chemistry, and can provide potential applications in the functional design of glycomaterials.
Collapse
Affiliation(s)
- Shizuka Egusa
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, and Biotron Application Center, Kyushu University, 6-10-1 Hakozaki, Fukuoka, 812-8581 Japan
| | | | | |
Collapse
|
30
|
Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH. Novel enzymes for the degradation of cellulose. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:45. [PMID: 22747961 PMCID: PMC3492096 DOI: 10.1186/1754-6834-5-45] [Citation(s) in RCA: 586] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/18/2012] [Indexed: 05/02/2023]
Abstract
The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases) by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first "extracting" these chains from their crystalline matrix.
Collapse
Affiliation(s)
- Svein Jarle Horn
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, Aas, Norway
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, Aas, Norway
| | - Bjørge Westereng
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, Aas, Norway
| | - Vincent GH Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, Aas, Norway
| |
Collapse
|
31
|
Transcriptional response of the cellobiose dehydrogenase gene to cello- and xylooligosaccharides in the basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 2012; 78:3770-3. [PMID: 22407682 DOI: 10.1128/aem.00150-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellobiose dehydrogenase (CDH) gene transcripts were quantified by reverse transcription-PCR (RT-PCR) in cultures of Phanerochaete chrysosporium supplemented with various cello- and xylooligosaccharides in order to elucidate the mechanism of enhanced CDH production in xylan/cellulose culture. Cellotriose and cellotetraose induced cdh expression, while xylobiose and xylotriose induced expression of cellobiohydrolase genes, especially cel7C.
Collapse
|
32
|
MacDonald J, Suzuki H, Master ER. Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete. Appl Microbiol Biotechnol 2012; 94:339-51. [PMID: 22391967 DOI: 10.1007/s00253-012-3937-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
Abstract
As white-rot basidiomycetes, Phanerochaete species are critical to the cycling of carbon sequestered as woody biomass, and are predicted to encode many enzymes that can be harnessed to promote the conversion of lignocellulose to sugars for fermentation to fuels and chemicals. Advances in genomic, transcriptomic, and proteomic technologies have enabled detailed analyses of different Phanerochaete species and have revealed numerous enzyme families required for lignocellulose utilization, as well as insight into the regulation of corresponding genes. Recent studies of Phanerochaete are also exemplified by molecular analyses following cultivation on different wood preparations, and show substrate-dependent responses that were difficult to predict using model compounds or isolated plant polysaccharides. The aim of this mini-review is to synthesize results from studies that have applied recent advances in molecular tools to evaluate the expression and regulation of proteins that contribute to lignocellulose conversion in Phanerochaete species. The identification of proteins with as yet unknown function are also highlighted and noted as important targets for future investigation of white-rot decay.
Collapse
Affiliation(s)
- Jacqueline MacDonald
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
33
|
Hori C, Igarashi K, Katayama A, Samejima M. Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiol Lett 2011; 321:14-23. [DOI: 10.1111/j.1574-6968.2011.02307.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Terauchi T, Koyama Y, Machida S, Kasumi T, Komba S. Synthesis of Novel Thioglycoside Analogs as the Substrates and/or the Inhibitors of Cellobiohydrolases. J Appl Glycosci (1999) 2011. [DOI: 10.5458/jag.jag.jag-2011_012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
35
|
Ogata M, Kameshima Y, Hattori T, Michishita K, Suzuki T, Kawagishi H, Totani K, Hiratake J, Usui T. Lactosylamidine-based affinity purification for cellulolytic enzymes EG I and CBH I from Hypocrea jecorina and their properties. Carbohydr Res 2010; 345:2623-9. [DOI: 10.1016/j.carres.2010.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/15/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022]
|
36
|
Lee KM, Joo AR, Jeya M, Lee KM, Moon HJ, Lee JK. Production and characterization of cellobiohydrolase from a novel strain of Penicillium purpurogenum KJS506. Appl Biochem Biotechnol 2010; 163:25-39. [PMID: 20582640 DOI: 10.1007/s12010-010-9013-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
A high cellobiohydrolase (CBH)-producing strain was isolated and identified as Penicillium purpurogenum KJS506 according to the morphology and comparison of internal transcribed spacer rDNA gene sequence. When rice straw and corn steep powder were used as carbon and nitrogen sources, respectively, a maximum CBH activity of 2.6 U mg-protein(-1), one of the highest among CBH-producing microorganisms, was obtained. The optimum temperature and pH for CBH production were 30 °C and 4.0, respectively. The increased production of CBH in P. purpurogenum culture at 30 °C was confirmed by two-dimensional electrophoresis followed by MS/MS sequencing of the partial peptide. The internal amino acid sequences of P. purpurogenum CBH showed a significant homology with hydrolases from glycoside hydrolase family 7. The extracellular CBH was purified to homogeneity by sequential chromatography of P. purpurogenum culture supernatants on a DEAE-sepharose column, a gel filtration column, and then on a Mono Q column with fast-protein liquid chromatography. The purified CBH was a monomeric protein with a molecular weight of 60 kDa and showed broad substrate specificity with maximum activity towards p-nitrophenyl β-D: -cellobiopyranoside. P. purpurogenum CBH showed t (1/2) value of 4 h at 60 °C and V (max) value of 11.9 μmol min(-1) mg-protein(-1) for p-nitrophenyl-D: -cellobiopyranoside. Although CBHs have been reported, the high specific activity distinguishes P. purpurogenum CBH.
Collapse
Affiliation(s)
- Kyoung-Mi Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
37
|
Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M. High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 2009; 284:36186-36190. [PMID: 19858200 PMCID: PMC2794734 DOI: 10.1074/jbc.m109.034611] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/13/2009] [Indexed: 11/06/2022] Open
Abstract
Fungal cellobiohydrolases act at liquid-solid interfaces. They have the ability to hydrolyze cellulose chains of a crystalline substrate because of their two-domain structure, i.e. cellulose-binding domain and catalytic domain, and unique active site architecture. However, the details of the action of the two domains on crystalline cellulose are still unclear. Here, we present real time observations of Trichoderma reesei (Tr) cellobiohydrolase I (Cel7A) molecules sliding on crystalline cellulose, obtained with a high speed atomic force microscope. The average velocity of the sliding movement on crystalline cellulose was 3.5 nm/s, and interestingly, the catalytic domain without the cellulose-binding domain moved with a velocity similar to that of the intact TrCel7A enzyme. However, no sliding of a catalytically inactive enzyme (mutant E212Q) or a variant lacking tryptophan at the entrance of the active site tunnel (mutant W40A) could be detected. This indicates that, besides the hydrolysis of glycosidic bonds, the loading of a cellulose chain into the active site tunnel is also essential for the enzyme movement.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.
| | - Anu Koivula
- VTT Technical Research Centre of Finland, Espoo, 02044 VTT, Finland
| | - Masahisa Wada
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Satoshi Kimura
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Espoo, 02044 VTT, Finland
| | - Masahiro Samejima
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
38
|
Suzuki H, Igarashi K, Samejima M. Quantitative transcriptional analysis of the genes encoding glycoside hydrolase family 7 cellulase isozymes in the basidiomycete Phanerochaete chrysosporium. FEMS Microbiol Lett 2009; 299:159-65. [PMID: 19709307 DOI: 10.1111/j.1574-6968.2009.01753.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cellulolytic fungi generally secrete a cellulase mixture consisting mainly of glycoside hydrolase family 7 cellulases (Cel7s) during degradation of crystalline cellulose. Although several Cel7s have been investigated so far, the marked similarity in their amino acid and nucleotide sequences makes independent quantitative analysis difficult. Here, we present a real-time PCR method for the detection and quantification of Cel7 genes (cel7A-F/G) in the basidiomycete Phanerochaete chrysosporium using PCR primer sets designed based on the 3' untranslated region sequences. It was confirmed by agarose gel electrophoresis, sequencing, and dissociation curve analysis of the PCR products that each cel7 transcript was specifically amplified by the corresponding primers. We applied this real-time reverse-transcription PCR method using the presented primer sets to evaluate quantitatively the expression changes of cel7 genes in P. chrysosporium under conditions of carbon catabolite derepression.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo, Japan
| | | | | |
Collapse
|
39
|
|
40
|
Nijikken Y, Tsukada T, Igarashi K, Samejima M, Wakagi T, Shoun H, Fushinobu S. Crystal structure of intracellular family 1 β-glucosidase BGL1A from the basidiomycetePhanerochaete chrysosporium. FEBS Lett 2007; 581:1514-20. [PMID: 17376440 DOI: 10.1016/j.febslet.2007.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 03/01/2007] [Accepted: 03/05/2007] [Indexed: 11/20/2022]
Abstract
The white-rot fungus Phanerochaete chrysosporium has two intracellular beta-glucosidases (BGL1A and BGL1B) belonging to glycoside hydrolase (GH) family 1. BGL1B effectively hydrolyzes cellobiose and cellobionolactone, but BGL1A does not. We have determined the crystal structure of BGL1A in substrate-free and gluconolactone complexed forms. The overall structure and the characteristic of subsite -1 (glycone site) were similar to those of other known GH1 enzymes. The loop regions covering on the (beta/alpha)(8) barrel was significantly deviated, and they form a unique subsite +1 (aglycone site) of BGL1A.
Collapse
Affiliation(s)
- Yuri Nijikken
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Lahjouji K, Storms R, Xiao Z, Joung KB, Zheng Y, Powlowski J, Tsang A, Varin L. Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor. Appl Microbiol Biotechnol 2007; 75:337-46. [PMID: 17333176 DOI: 10.1007/s00253-006-0824-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 12/15/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
A cellobiohydrolase-encoding cDNA, Tvcel7a, from Trametes versicolor has been cloned and expressed in Aspergillus niger. The deduced amino acid sequence shows that Tvcel7a encodes a 456-amino acid polypeptide belonging to glycosyl hydrolase family 7. TvCel7a possesses a 19-amino acid secretion signal but does not possess a linker region nor a carbohydrate-binding domain. Two peaks of activity were obtained after TvCel7a was purified to apparent homogeneity by gel-filtration followed by anion-exchange chromatography. Mass spectrometry performed on the purified proteins confirmed that both peaks corresponded to the predicted sequence of the T. versicolor cellulase. The biochemical properties of the purified TvCel7a obtained from both peaks were studied in detail. The pH and temperature optima were 5.0 and 40 degrees C, respectively. The enzyme was stable over a pH range extending from pH 3.0 to 9.0 and at temperatures lower than 50 degrees C. The kinetic parameters with the substrate p-nitrophenyl beta-D: -cellobioside (pNPC) were 0.58 mM and 1.0 micromol/min/mg protein for the purified TvCel7a found in both peaks 1 and 2. TvCel7a catalyzes the hydrolysis of pNPC, filter paper, beta-glucan, and avicel to varying extents, but no detectable hydrolysis was observed when using the substrates carboxymethylcellulose, laminarin and pNPG.
Collapse
Affiliation(s)
- Karim Lahjouji
- Centre for Structural and Functional Genomics, Biology Department, Concordia University, 7141 Sherbrooke street West, Montréal, Quebec, H4B 1R6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 2007; 44:77-87. [PMID: 16971147 DOI: 10.1016/j.fgb.2006.07.007] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 07/20/2006] [Indexed: 11/17/2022]
Abstract
The US Department of Energy has assembled a high quality draft genome of Phanerochaete chrysosporium, a white rot Basidiomycete capable of completely degrading all major components of plant cell walls including cellulose, hemicellulose and lignin. Hundreds of sequences are predicted to encode extracellular enzymes including an impressive number of oxidative enzymes potentially involved in lignocellulose degradation. Herein, we summarize the number, organization, and expression of genes encoding peroxidases, copper radical oxidases, FAD-dependent oxidases, and multicopper oxidases. Possibly relevant to extracellular oxidative systems are genes involved in posttranslational processes and a large number of hypothetical proteins.
Collapse
Affiliation(s)
- Phil Kersten
- Forest Products Laboratory, USDA, One Gifford Pinchot Drive, Madison, WI 53705, USA
| | | |
Collapse
|
43
|
Igarashi K, Tani T, Rie K, Masahiro S. Family 3 beta-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium is a glucan 1,3-beta-glucosidase. J Biosci Bioeng 2005; 95:572-6. [PMID: 16233459 DOI: 10.1016/s1389-1723(03)80164-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Accepted: 01/28/2003] [Indexed: 11/18/2022]
Abstract
The substrate specificity of an extracellular beta-glucosidase (BGL) from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium was investigated, using a variety of compounds with beta-glucosidic linkages. Amino acid sequencing data for the purified BGL showed that the enzyme is identical to the glycoside hydrolase (GH) family 3 BGL of the same fungus previously reported [Li, B. and Renganathan, V, Appl. Environ. Microbiol., 64, 2748-2754 (1998)]. The BGL can hydrolyze both cellobiose and cellobionolactone, but cellobionolactone was hydrolyzed very much more slowly than cellobiose. Moreover, cellobionolactone inhibited cellobiose hydrolysis by the BGL, suggesting that this enzyme cannot cooperate with cellobiose dehydrogenase (CDH) in cellulose degradation by P. chrysosporium. In addition to cellobiose, BGL utilized various glucosyl-beta-glucosides, such as sophorose, laminaribiose and gentiobiose, as substrates. Among the four substrates, laminaribiose (beta-1,3-glucosidic linkage) was hydrolyzed most effectively. Moreover, the hydrolytic rate of laminarioligosaccharides increased proportionally to the degree of polymerization (DP), and the activity of BGL even towards laminarin with an average DP of 25 was similar to that towards laminaripentaose (DP 5). Therefore, we conclude that the extracellular BGL from P. chrysosporium is primarily a glucan 1,3-beta-glucosidase (EC 3.2.1.58), which might play a role on fungal cell wall metabolism, rather than a beta-glucosidase (EC 3.2.1.21), which might be involved in the hydrolysis of beta-1,4-glucosidic compounds during cellulose degradation.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- Department ofBiomaterials Sciences, Graduate School ofAgricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
44
|
Kajisa T, Yoshida M, Igarashi K, Katayama A, Nishino T, Samejima M. Characterization and molecular cloning of cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana. J Biosci Bioeng 2005; 98:57-63. [PMID: 16233666 DOI: 10.1016/s1389-1723(04)70242-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 05/13/2004] [Indexed: 11/21/2022]
Abstract
Cellobiose dehydrogenase (CDH) was purified from the brown-rot fungus Coniophora puteana grown in culture containing crystalline cellulose as a carbon source. The purified enzyme gave a single band at 115 kDa on SDS-PAGE and showed a typical flavocytochrome absorption spectrum. The enzyme oxidized both cellobiose and cellooligosaccharides, but not their monomer, glucose, suggesting typical kinetic features of CDH. A cDNA encoding CDH was cloned by RT-PCR using primers designed from the consensus sequences of known CDHs from white-rot fungi. The cDNA consists of 2448 bp, including an open reading frame encoding the 18 amino acids of the putative signal peptide and the 756 amino acids of the mature protein. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) data for tryptic fragments of the purified C. puteana CDH were consistent with partial amino acid sequences of the mature protein deduced from the cloned cDNA. Moreover, the sequences contained common characteristics of CDH, i.e., two possible residues for a heme ligand (Met 64 and His 160), a flavin-binding motif, and two glucose-methanol-choline oxidoreductase motifs. This is the first cloning of CDH from a brown-rot fungus, and the results suggest structural and kinetic similarity of C. puteana CDH to white-rot fungal CDHs.
Collapse
Affiliation(s)
- Taira Kajisa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Yoshida M, Igarashi K, Wada M, Kaneko S, Suzuki N, Matsumura H, Nakamura N, Ohno H, Samejima M. Characterization of carbohydrate-binding cytochrome b562 from the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 2005; 71:4548-55. [PMID: 16085848 PMCID: PMC1183321 DOI: 10.1128/aem.71.8.4548-4555.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 02/18/2005] [Indexed: 11/20/2022] Open
Abstract
cDNA encoding a hemoprotein similar to the cytochrome domain of extracellular flavocytochrome cellobiose dehydrogenase (CDH) was cloned from the white-rot fungus Phanerochaete chrysosporium. The deduced amino acid sequence implies that there is a two-domain structure consisting of an N-terminal cytochrome domain and a C-terminal family 1 carbohydrate-binding module (CBM1) but that the flavin-containing domain of CDH is not present. The gene transcripts were observed in cultures in cellulose medium but not in cultures in glucose medium, suggesting that there is regulation by carbon catabolite repression. The gene was successfully overexpressed in Pichia pastoris, and the recombinant protein was designated carbohydrate-binding cytochrome b562 (CBCyt. b562). The resonance Raman spectrum suggested that the heme of CBCyt. b562 is 6-coordinated in both the ferric and ferrous states. Moreover, the redox potential measured by cyclic voltammetry was similar to that of the cytochrome domain of CDH. These results suggest that the redox characteristics may be similar to those of the cytochrome domain of CDH, and so CBCyt. b562 may have an electron transfer function. In a binding study with various carbohydrates, CBCyt. b562 was adsorbed with high affinity on both cellulose and chitin. As far as we know, this is the first example of a CBM1 connected to a domain without apparent catalytic activity for carbohydrate; this CBM1 may play a role in localization of the redox protein on the surface of cellulose or on the fungal sheath in vivo.
Collapse
Affiliation(s)
- Makoto Yoshida
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Igarashi K, Yoshida M, Matsumura H, Nakamura N, Ohno H, Samejima M, Nishino T. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium. FEBS J 2005; 272:2869-77. [PMID: 15943818 DOI: 10.1111/j.1742-4658.2005.04707.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellobiose dehydrogenase (CDH) is an extracellular flavocytochrome containing flavin and b-type heme, and plays a key role in cellulose degradation by filamentous fungi. To investigate intermolecular electron transfer from CDH to cytochrome c, Phe166, which is located in the cytochrome domain and approaches one of propionates of heme, was mutated to Tyr, and the thermodynamic and kinetic properties of the mutant (F166Y) were compared with those of the wild-type (WT) enzyme. The mid-point potential of heme in F166Y was measured by cyclic voltammetry, and was estimated to be 25 mV lower than that of WT at pH 4.0. Although presteady-state reduction of flavin was not affected by the mutation, the rate of subsequent electron transfer from flavin to heme was halved in F166Y. When WT or F166Y was reduced with cellobiose and then mixed with cytochrome c, heme re-oxidation and cytochrome c reduction occurred synchronously, suggesting that the initial electron is transferred from reduced heme to cytochrome c. Moreover, in both enzymes the observed rate of the initial phase of cytochrome c reduction was concentration dependent, whereas the second phase of cytochrome c reduction was dependent on the rate of electron transfer from flavin to heme, but not on the cytochrome c concentration. In addition, the electron transfer rate from flavin to heme was identical to the steady-state reduction rate of cytochrome c in both WT and F166Y. These results clearly indicate that the first and second electrons of two-electron-reduced CDH are both transferred via heme, and that the redox reaction of CDH involves an electron-transfer chain mechanism in cytochrome c reduction.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Ubhayasekera W, Muñoz IG, Vasella A, Ståhlberg J, Mowbray SL. Structures of Phanerochaete chrysosporium Cel7D in complex with product and inhibitors. FEBS J 2005; 272:1952-64. [PMID: 15819888 DOI: 10.1111/j.1742-4658.2005.04625.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cellobiohydrolase Pc_Cel7D is the major cellulase produced by the white-rot fungus Phanerochaete chrysosporium, constituting approximately 10% of the total secreted protein in liquid culture on cellulose. The enzyme is classified into family 7 of the glycoside hydrolases and, like other family members, catalyses cellulose hydrolysis with net retention of the anomeric carbon configuration. Previous work described the apo structure of the enzyme. Here we investigate the binding of the product, cellobiose, and several inhibitors, i.e. lactose, cellobioimidazole, Tris/HCl, calcium and a thio-linked substrate analogue, methyl 4-S-beta-cellobiosyl-4-thio-beta-cellobioside (GG-S-GG). The three disaccharides bind in the glucosyl-binding subsites +1 and +2, close to the exit of the cellulose-binding tunnel/cleft. Pc_Cel7D binds to lactose more strongly than cellobiose, while the opposite is true for the homologous Trichoderma reesei cellobiohydrolase Tr_Cel7A. Although both sugars bind Pc_Cel7D in a similar fashion, the different preferences can be explained by varying interactions with nearby loops. Cellobioimidazole is bound at a slightly different position, displaced approximately 2 A toward the catalytic centre. Thus the Pc_Cel7D complexes provide evidence for two binding modes of the reducing-end cellobiosyl moiety; this conclusion is confirmed by comparison with other available structures. The combined results suggest that hydrolysis of the glycosyl-enzyme intermediate may not require the prior release of the cellobiose product from the enzyme. Further, the structure obtained in the presence of both GG-S-GG and cellobiose revealed electron density for Tris at the catalytic centre. Inhibition experiments confirm that both Tris and calcium are effective inhibitors at the conditions used for crystallization.
Collapse
Affiliation(s)
- Wimal Ubhayasekera
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
48
|
Phanerochaete chrysosporium Genomics. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Stapleton P, O’Brien M, O’Callaghan J, Dobson A. Molecular cloning of the cellobiose dehydrogenase gene from Trametes versicolor and expression in Pichia pastoris. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2003.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
IGARASHI KIYOHIKO, TANI TOMOMI, KAWAI RIE, SAMEJIMA MASAHIRO. Family 3 .BETA.-Glucosidase from Cellulose-Degrading Culture of the White-Rot Fungus Phanerochaete chysosporium is a Glucan 1,3-.BETA.-Glucosidase. J Biosci Bioeng 2003. [DOI: 10.1263/jbb.95.572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|