1
|
Montalban BM, Hinou H. Glycoblotting enables seamless and straightforward workflow for MALDI-TOF/MS-based sulphoglycomics of N- and O-glycans. Proteomics 2023; 23:e2300012. [PMID: 37316936 DOI: 10.1002/pmic.202300012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
Sulfated N- and O-glycans exist in trace levels which are challenging to detect, especially when abundant neutral and sialylated glycans are present. Current matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS)-based sulfoglycomics approaches effectively utilize permethylation to discriminate sulfated glycans from sialyl-glycans. And a charge-based separation to isolate the sulfated glycans from the rest of the permethylated neutral and sialyl-glycans. However, these approaches suffer from concomitant sample losses during cleanup steps. Herein, we describe Glycoblotting as a straightforward complementary method with seamless glycan purification, enrichment, methylation, and labeling on a single platform to address sulfated glycan enrichment, sialic acid methylation, and sample loss. Glycoblottings' on-bead chemoselective ligation of reducing sugars with hydrazide showed excellent recovery of sulfated glycans, allowing the detection of more sulfated glycan species. On-bead methyl esterification of sialic acid using 3-methyl-1-p-tolyltriazene (MTT) effectively discriminates sulfated glycans from sialyl-glycans. Furthermore, we have shown that using MTT as a methylating agent allowed us to simultaneously detect and differentiate sulfate from phosphate groups in isobaric N-glycan species. We believe that Glycoblotting will contribute significantly to the MALDI-TOF MS-based Sulphoglycomics workflow.
Collapse
Affiliation(s)
- Bryan M Montalban
- Laboratory of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Hiroshi Hinou
- Laboratory of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Advanced Life Science, Frontier Research Center for Advanced Material and Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Bakshi T, Pham D, Kaur R, Sun B. Hidden Relationships between N-Glycosylation and Disulfide Bonds in Individual Proteins. Int J Mol Sci 2022; 23:ijms23073742. [PMID: 35409101 PMCID: PMC8998389 DOI: 10.3390/ijms23073742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
N-Glycosylation (NG) and disulfide bonds (DBs) are two prevalent co/post-translational modifications (PTMs) that are often conserved and coexist in membrane and secreted proteins involved in a large number of diseases. Both in the past and in recent times, the enzymes and chaperones regulating these PTMs have been constantly discovered to directly interact with each other or colocalize in the ER. However, beyond a few model proteins, how such cooperation affects N-glycan modification and disulfide bonding at selective sites in individual proteins is largely unknown. Here, we reviewed the literature to discover the current status in understanding the relationships between NG and DBs in individual proteins. Our results showed that more than 2700 human proteins carry both PTMs, and fewer than 2% of them have been investigated in the associations between NG and DBs. We summarized both these proteins with the reported relationships in the two PTMs and the tools used to discover the relationships. We hope that, by exposing this largely understudied field, more investigations can be encouraged to unveil the hidden relationships of NG and DBs in the majority of membranes and secreted proteins for pathophysiological understanding and biotherapeutic development.
Collapse
Affiliation(s)
- Tania Bakshi
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - David Pham
- Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Raminderjeet Kaur
- Faculty of Health Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Bingyun Sun
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence:
| |
Collapse
|
3
|
Harvey DJ, Struwe WB, Behrens AJ, Vasiljevic S, Crispin M. Formation and fragmentation of doubly and triply charged ions in the negative ion spectra of neutral N-glycans from viral and other glycoproteins. Anal Bioanal Chem 2021; 413:7277-7294. [PMID: 34342671 PMCID: PMC8329908 DOI: 10.1007/s00216-021-03480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 11/05/2022]
Abstract
Structural determination of N-glycans by mass spectrometry is ideally performed by negative ion collision-induced dissociation because the spectra are dominated by cross-ring fragments leading to ions that reveal structural details not available by many other methods. Most glycans form [M - H]- or [M + adduct]- ions but larger ones (above approx. m/z 2000) typically form doubly charged ions. Differences have been reported between the fragmentation of singly and doubly charged ions but a detailed comparison does not appear to have been reported. In addition to [M + adduct]- ions (this paper uses phosphate as the adduct) other doubly, triply, and quadruply charged ions of composition [Mn + (H2PO4)n]n- have been observed in mixtures of N-glycans released from viral and other glycoproteins. This paper explores the formation and fragmentation of these different types of multiply charged ions with particular reference to the presence of diagnostic fragments in the CID spectra and comments on how these ions can be used to characterize these glycans.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK
| | - Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- GlycoEra AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
| | - Snezana Vasiljevic
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- School of Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
4
|
Gstöttner C, Zhang T, Resemann A, Ruben S, Pengelley S, Suckau D, Welsink T, Wuhrer M, Domínguez-Vega E. Structural and Functional Characterization of SARS-CoV-2 RBD Domains Produced in Mammalian Cells. Anal Chem 2021; 93:6839-6847. [PMID: 33871970 PMCID: PMC8078197 DOI: 10.1021/acs.analchem.1c00893] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is still ongoing and dramatically influences our life, the need for recombinant viral proteins for diagnostics, vaccine development, and research is very high. The spike (S) protein, and particularly its receptor-binding domain (RBD), mediates the interaction with the angiotensin-converting enzyme 2 (ACE2) receptor on host cells and may be modulated by its structural features. Therefore, well-characterized recombinant RBDs are essential. We have performed an in-depth structural and functional characterization of RBDs expressed in Chinese hamster ovary (CHO) and human embryonic kidney 293 (HEK293) cells. To structurally characterize the native RBDs (comprising N- and O-glycans and additional post translational modifications), a multilevel mass spectrometric approach was employed. Released glycan and glycopeptide analysis were integrated with intact mass analysis, glycan-enzymatic dissection, and top-down sequencing for comprehensive annotation of RBD proteoforms. The data showed distinct glycosylation for CHO- and HEK293-RBD with the latter exhibiting antenna fucosylation, a higher level of sialylation, and a combination of core 1 and core 2 type O-glycans. Additionally, using an alternative approach based on N-terminal cleavage of the O-glycosylation, the previously unknown O-glycosylation site was localized at T323. For both RBDs, the binding to SARS-CoV-2 antibodies of positive patients and affinity to the ACE2 receptor was addressed showing comparable results. This work not only offers insights into RBD structural and functional features but also provides an analytical workflow for characterization of new RBDs and batch-to-batch comparison.
Collapse
Affiliation(s)
- Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Anja Resemann
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Sophia Ruben
- InVivo BioTech Services GmbH, Neuendorfstr. 24A, 16761 Hennigsdorf, Germany
| | | | - Detlev Suckau
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Tim Welsink
- InVivo BioTech Services GmbH, Neuendorfstr. 24A, 16761 Hennigsdorf, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
5
|
Harvey DJ. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS. MASS SPECTROMETRY REVIEWS 2020; 39:586-679. [PMID: 32329121 DOI: 10.1002/mas.21622] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 05/03/2023]
Abstract
N-glycans from glycoproteins are complex, branched structures whose structural determination presents many analytical problems. Mass spectrometry, usually conducted in positive ion mode, often requires extensive sample manipulation, usually by derivatization such as permethylation, to provide the necessary structure-revealing fragment ions. The newer but, so far, lesser used negative ion techniques, on the contrary, provide a wealth of structural information not present in positive ion spectra that greatly simplify the analysis of these compounds and can usually be conducted without the need for derivatization. This review describes the use of negative ion mass spectrometry for the structural analysis of N-linked glycans and emphasises the many advantages that can be gained by this mode of operation. Biosynthesis and structures of the compounds are described followed by methods for release of the glycans from the protein. Methods for ionization are discussed with emphasis on matrix-assisted laser desorption/ionization (MALDI) and methods for producing negative ions from neutral compounds. Acidic glycans naturally give deprotonated species under most ionization conditions. Fragmentation of negative ions is discussed next with particular reference to those ions that are diagnostic for specific features such as the branching topology of the glycans and substitution positions of moieties such as fucose and sulfate, features that are often difficult to identify easily by conventional techniques such as positive ion fragmentation and exoglycosidase digestions. The advantages of negative over positive ions for this structural work are emphasised with an example of a series of glycans where all other methods failed to produce a structure. Fragmentation of derivatized glycans is discussed next, both with respect to derivatives at the reducing terminus of the molecules, and to methods for neutralization of the acidic groups on sialic acids to both stabilize them for MALDI analysis and to produce the diagnostic fragments seen with the neutral glycans. The use of ion mobility, combined with conventional mass spectrometry is described with emphasis on its use to extract clean glycan spectra both before and after fragmentation, to separate isomers and its use to extract additional information from separated fragment ions. A section on applications follows with examples of the identification of novel structures from lower organisms and tables listing the use of negative ions for structural identification of specific glycoproteins, glycans from viruses and uses in the biopharmaceutical industry and in medicine. The review concludes with a summary of the advantages and disadvantages of the technique. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
6
|
Abnormal Galactosylated-Glycans recognized by Bandeiraea Simplicifolia Lectin I in saliva of patients with breast Cancer. Glycoconj J 2020; 37:373-394. [PMID: 32103424 DOI: 10.1007/s10719-020-09910-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Currently, the definitive diagnosis in breast cancer requires biopsy and histopathology, such the most effective markers are tissue-based. However, the advantages of saliva in collection and storage make it possible for assessing human pathology and contributing to the development of cancer-related biomarkers for clinical application. The present study validated alteration of salivary protein glycopatterns recognized by Bandeiraea simplicifolia lectin I (BS-I) in the saliva of patients with breast diseases using saliva microarrays, and the N/O-glycan profiles of their salivary glycoproteins isolated by the BS-I-magnetic particle conjugates from 259 female subjects (66 healthy volunteers (HV), 65 benign breast cyst or tumor patients (BB), 66 patients with breast cancer in stage I (BC-I) and 62 patients with breast cancer in stage II (BC-II)) were analyzed by MALDI-TOF/TOF-MS. The results showed that the expression level of galactosylated glycans recognized by BS-I was significantly increased in patients with breast cancer compared with HV (p < 0.05). Totally, there were 11/10, 10/19, 7/24 and 7/9 galactosylated N-/O-linked glycans were identified and annotated from the pooled salivary samples of HV, BB, BC-I and BC-II, respectively. One galactosylated N-glycan peak (m/z 2773.977), and 4 galactosylated O-glycan peaks (m/z 868.295, 882.243, 884.270 and 1030.348) were found only in BC-I. These findings could provide pivotal information on galactosylated N/O-linked glycans related to breast cancer, and promote the study of biomarkers for early-stage breast cancer based on precise alterations of galactosylated N/O-glycans in saliva.
Collapse
|
7
|
Sinevici N, Mittermayr S, Davey GP, Bones J, O’Sullivan J. Salivary N-glycosylation as a biomarker of oral cancer: A pilot study. Glycobiology 2019; 29:726-734. [DOI: 10.1093/glycob/cwz046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Abstract
Reliable biomarkers for oral cancer (OC) remain scarce, and routine tests for the detection of precancerous lesions are not routine in the clinical setting. This study addresses a current unmet need for more sensitive and quantitative tools for the management of OC. Whole saliva was used to identify and characterize the nature of glycans present in saliva and determine their potential as OC biomarkers. Proteins obtained from whole saliva were subjected to PNGase F enzymatic digestion. The resulting N-glycans were analyzed with weak anion exchange chromatography, exoglycosidase digestions coupled to ultra-high performance liquid chromatography and/or mass spectrometry. To determine N-glycan changes, 23 individuals with or without cancerous oral lesions were analyzed using Hydrophilic interaction ultra performance liquid chromatography (HILIC–UPLC), and peak-based area relative quantitation was performed. An abundant and complex salivary N-glycomic profile was identified. The main structures present in saliva were neutral oligosaccharides consisting of high mannose, hybrid and complex structures, followed by smaller fractions of mono and di-sialylated structures. To determine if differential N-glycosylation patterns distinguish between OC and control groups, Mann–Whitney testing and principle component analysis (PCA) were used. Eleven peaks were shown to be statistically significant (P ≤ 0.05), while PCA analysis showed segregation of the two groups based on their glycan profile. N-glycosylation changes are active in the oral carcinogenic process and may serve as biomarkers for early detection to reduce morbidity and mortality. Identifying which N-glycans contribute most in the carcinogenic process may lead to their use in the detection, prognosis and treatment of OC.
Collapse
Affiliation(s)
- Nicoleta Sinevici
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin D2, D02 F859, Ireland
| | - Stefan Mittermayr
- Characterisation and Comparability Laboratory, NIBRT – The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin A94 X099, Ireland
| | - Gavin P Davey
- School of Biochemistry and Immunology, Trinity College Dublin, 152-160 Pearse Street, Dublin D2, Ireland
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, NIBRT – The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin A94 X099, Ireland
| | - Jeff O’Sullivan
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin D2, D02 F859, Ireland
| |
Collapse
|
8
|
Harvey DJ, Struwe WB. Structural Studies of Fucosylated N-Glycans by Ion Mobility Mass Spectrometry and Collision-Induced Fragmentation of Negative Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1179-1193. [PMID: 29790113 PMCID: PMC6003995 DOI: 10.1007/s13361-018-1950-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 05/03/2023]
Abstract
There is considerable potential for the use of ion mobility mass spectrometry in structural glycobiology due in large part to the gas-phase separation attributes not typically observed by orthogonal methods. Here, we evaluate the capability of traveling wave ion mobility combined with negative ion collision-induced dissociation to provide structural information on N-linked glycans containing multiple fucose residues forming the Lewisx and Lewisy epitopes. These epitopes are involved in processes such as cell-cell recognition and are important as cancer biomarkers. Specific information that could be obtained from the intact N-glycans by negative ion CID included the general topology of the glycan such as the presence or absence of a bisecting GlcNAc residue and the branching pattern of the triantennary glycans. Information on the location of the fucose residues was also readily obtainable from ions specific to each antenna. Some isobaric fragment ions produced prior to ion mobility could subsequently be separated and, in some cases, provided additional valuable structural information that was missing from the CID spectra alone. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- David J Harvey
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| | - Weston B Struwe
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
9
|
Harvey DJ, Watanabe Y, Allen JD, Rudd P, Pagel K, Crispin M, Struwe WB. Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1250-1261. [PMID: 29675741 DOI: 10.1007/s13361-018-1930-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 05/17/2023]
Abstract
Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
- Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Yasunori Watanabe
- Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Joel D Allen
- Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Pauline Rudd
- NIBRT GlycoScience Group, The National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
- Institut für Chemie und Biochemie, Freien Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Max Crispin
- Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
10
|
Mucha E, Lettow M, Marianski M, Thomas DA, Struwe WB, Harvey DJ, Meijer G, Seeberger PH, von Helden G, Pagel K. Fucose-Migration in intakten protonierten Glykan-Ionen - ein universelles Phänomen in der Massenspektrometrie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Eike Mucha
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
- Institut für Chemie und Biochemie, der; Freien Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| | - Maike Lettow
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
- Institut für Chemie und Biochemie, der; Freien Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| | - Mateusz Marianski
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Daniel A. Thomas
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Weston B. Struwe
- Oxford Glycobiology Institute; Department of Biochemistry; University of Oxford; Großbritannien
| | - David J. Harvey
- Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Großbritannien
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Peter H. Seeberger
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Potsdam Deutschland
- Institut für Chemie und Biochemie; der Freien Universität Berlin; Deutschland
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Kevin Pagel
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
- Institut für Chemie und Biochemie, der; Freien Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| |
Collapse
|
11
|
Mucha E, Lettow M, Marianski M, Thomas DA, Struwe WB, Harvey DJ, Meijer G, Seeberger PH, von Helden G, Pagel K. Fucose Migration in Intact Protonated Glycan Ions: A Universal Phenomenon in Mass Spectrometry. Angew Chem Int Ed Engl 2018; 57:7440-7443. [PMID: 29688603 DOI: 10.1002/anie.201801418] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/23/2018] [Indexed: 11/10/2022]
Abstract
Fucose is an essential deoxysugar that is found in a wide range of biologically relevant glycans and glycoconjugates. A recurring problem in mass spectrometric analyses of fucosylated glycans is the intramolecular migration of fucose units, which can lead to erroneous sequence assignments. This migration reaction is typically assigned to activation during collision-induced dissociation (CID) in tandem mass spectrometry (MS). In this work, we utilized cold-ion spectroscopy and show for the first time that fucose migration is not limited to fragments obtained in tandem MS and can also be observed in intact glycan ions. This observation suggests a possible low-energy barrier for this transfer reaction and generalizes fucose migration to an issue that may universally occur in any type of mass spectrometry experiment.
Collapse
Affiliation(s)
- Eike Mucha
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.,Institut für Chemie und Biochemie, der Freien Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Maike Lettow
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.,Institut für Chemie und Biochemie, der Freien Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Mateusz Marianski
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Daniel A Thomas
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Peter H Seeberger
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany.,Institut für Chemie und Biochemie, der Freien Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Kevin Pagel
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.,Institut für Chemie und Biochemie, der Freien Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| |
Collapse
|
12
|
Wang C, Lu Y, Han J, Jin W, Li L, Zhang Y, Song X, Huang L, Wang Z. Simultaneous Release and Labeling of O- and N-Glycans Allowing for Rapid Glycomic Analysis by Online LC-UV-ESI-MS/MS. J Proteome Res 2018; 17:2345-2357. [DOI: 10.1021/acs.jproteome.8b00038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chengjian Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yu Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jianli Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Wanjun Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Lingmei Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Ying Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4117, Atlanta, Georgia 30322, United States
| | - Linjuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Zhongfu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
13
|
Zhang Y, Wang X, Cui D, Zhu J. Proteomic and N-glycoproteomic quantification reveal aberrant changes in the human saliva of oral ulcer patients. Proteomics 2017; 16:3173-3182. [PMID: 27763718 DOI: 10.1002/pmic.201600127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/28/2016] [Accepted: 10/19/2016] [Indexed: 12/16/2022]
Abstract
Human whole saliva is a vital body fluid for studying the physiology and pathology of the oral cavity. As a powerful technique for biomarker discovery, MS-based proteomic strategies have been introduced for saliva analysis and identified hundreds of proteins and N-glycosylation sites. However, there is still a lack of quantitative analysis, which is necessary for biomarker screening and biological research. In this study, we establish an integrated workflow by the combination of stable isotope dimethyl labeling, HILIC enrichment, and high resolution MS for both quantification of the global proteome and N-glycoproteome of human saliva from oral ulcer patients. With the help of advanced bioinformatics, we comprehensively studied oral ulcers at both protein and glycoprotein scales. Bioinformatics analyses revealed that starch digestion and protein degradation activities are inhibited while the immune response is promoted in oral ulcer saliva.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Emergency, School of Stomatology, China Medical University, Shenyang, P. R. China
| | - Xi Wang
- Department of Emergency, School of Stomatology, China Medical University, Shenyang, P. R. China
| | - Dan Cui
- Department of Emergency, School of Stomatology, China Medical University, Shenyang, P. R. China
| | - Jun Zhu
- Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou, P. R. China
| |
Collapse
|
14
|
Nashida T, Shimomura-Kuroki J, Mizuhashi F, Haga-Tsujimura M, Yoshimura K, Hayashi-Sakai S. Presence of BPIFB1 in saliva from non-obese diabetic mice. Odontology 2017; 106:117-124. [PMID: 28748269 DOI: 10.1007/s10266-017-0312-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023]
Abstract
We previously showed that mRNA expression of BPIFB1 (Bpifb1), an antibacterial protein in the palate, lung, and nasal epithelium clone protein family, was increased in parotid acinar cells in non-obese diabetic (NOD, NOD/ShiJcl) mice, which is an animal model for Sjögren's syndrome. However, we did not previously assess the protein levels. In this report, we confirmed the expression of BPIFB1 protein in the parotid glands of NOD mice. Immunoblotting of subcellular fractions revealed that BPIBB1 was localised in secretory granules in parotid glands from NOD mice, and was almost not in parotid glands from the control mice. BPIFB1 had N-linked glycan that reacted with Aleuria aurantia lectin, which caused two types of spots with a slightly different pI and molecular weight. The expression of BPIFB1 protein was also demonstrated by immunohistochemistry. BPIFB1 was detected in the saliva from NOD mice but not in the saliva from the control mice, indicating individual constitution. BPIFB1 in saliva may be applied to other research as a diagnostic marker.
Collapse
Affiliation(s)
- Tomoko Nashida
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan.
| | - Junko Shimomura-Kuroki
- Department of Pediatric Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Fumi Mizuhashi
- Department of Removable Prosthodontics, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Maiko Haga-Tsujimura
- Department of Histology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Ken Yoshimura
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Sachiko Hayashi-Sakai
- Division of Oral and Maxillofacial Radiology, Niigata University Graduate School of Medical and Dental Science, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
15
|
Hofmann J, Stuckmann A, Crispin M, Harvey DJ, Pagel K, Struwe WB. Identification of Lewis and Blood Group Carbohydrate Epitopes by Ion Mobility-Tandem-Mass Spectrometry Fingerprinting. Anal Chem 2017; 89:2318-2325. [PMID: 28192913 DOI: 10.1021/acs.analchem.6b03853] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glycans have several elements that contribute to their structural complexity, involving a range of monosaccharide building blocks, configuration of linkages between residues and various degrees of branching on a given structure. Their analysis remains challenging and resolving minor isomeric variants can be difficult, in particular terminal fucosylated Lewis and blood group antigens present on N- and O-glycans. Accurately characterizing these isomeric structures by current techniques is not straightforward and typically requires a combination of methods and/or sample derivatization. Yet the ability to monitor the occurrence of these epitopes is important as structural changes are associated with several human diseases. The use of ion mobility-mass spectrometry (IM-MS), which separates ions in the gas phase based on their size, charge and shape, offers a new potential tool for glycan analysis and recent reports have demonstrated its potential for glycomics. Here we show that Lewis and blood group isomers, which have identical fragmentation spectra, exhibit very distinctive IM drift times and collision cross sections (CCS). We show that IM-MS/MS analysis can rapidly and accurately differentiate epitopes from parotid gland N-glycans and milk oligosaccharides based on fucosylated fragment ions with characteristic CCSs.
Collapse
Affiliation(s)
- Johanna Hofmann
- Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freien Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Alexandra Stuckmann
- Institut für Chemie und Biochemie, Freien Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , OX1 3QU Oxford, United Kingdom
| | - David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , OX1 3QU Oxford, United Kingdom
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freien Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , OX1 3QU Oxford, United Kingdom
| |
Collapse
|
16
|
Ekström J, Khosravani N, Castagnola M, Messana I. Saliva and the Control of Its Secretion. Dysphagia 2017. [DOI: 10.1007/174_2017_143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Is GERD a Factor in Osteonecrosis of the Jaw? Evidence of Pathology Linked to G6PD Deficiency and Sulfomucins. DISEASE MARKERS 2016; 2016:8376979. [PMID: 27773962 PMCID: PMC5059643 DOI: 10.1155/2016/8376979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/18/2016] [Accepted: 07/20/2016] [Indexed: 11/30/2022]
Abstract
Osteonecrosis of the jaw (ONJ), a rare side effect of bisphosphonate therapy, is a debilitating disorder with a poorly understood etiology. FDA's Adverse Event Reporting System (FAERS) provides the opportunity to investigate this disease. Our goals were to analyze FAERS data to discover possible relationships between ONJ and specific conditions and drugs and then to consult the scientific literature to deduce biological explanations. Our methodology revealed a very strong association between gastroesophageal reflux and bisphosphonate-induced ONJ, suggesting acidosis as a key factor. Overgrowth of acidophilic species, particularly Streptococcus mutans, in the oral microbiome in the context of insufficient acid buffering due to impaired salivary glands maintains the low pH that sustains damage to the mucosa. Significant associations between ONJ and adrenal insufficiency, vitamin C deficiency, and Sjögren's syndrome were found. Glucose 6 phosphate dehydrogenase (G6PD) deficiency can explain much of the pathology. An inability to maintain vitamin C and other antioxidants in the reduced form leads to vascular oxidative damage and impaired adrenal function. Thus, pathogen-induced acidosis, hypoxia, and insufficient antioxidant defenses together induce ONJ. G6PD deficiency and adrenal insufficiency are underlying factors. Impaired supply of adrenal-derived sulfated sterols such as DHEA sulfate may drive the disease process.
Collapse
|
18
|
Song X, Ju H, Lasanajak Y, Kudelka MR, Smith DF, Cummings RD. Oxidative release of natural glycans for functional glycomics. Nat Methods 2016; 13:528-34. [PMID: 27135973 PMCID: PMC4887297 DOI: 10.1038/nmeth.3861] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/28/2016] [Indexed: 12/13/2022]
Abstract
Glycans have essential roles in biology and the etiology of many diseases. A major hurdle in studying glycans through functional glycomics is the lack of methods to release glycans from diverse types of biological samples. Here we describe an oxidative strategy using household bleach to release all types of free reducing N-glycans and O-glycan-acids from glycoproteins, and glycan nitriles from glycosphingolipids. Released glycans are directly useful in glycomic analyses and can be derivatized fluorescently for functional glycomics. This chemical method overcomes the limitations in glycan generation and promotes archiving and characterization of human and animal glycomes and their functions.
Collapse
Affiliation(s)
- Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yi Lasanajak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew R Kudelka
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Manconi B, Cabras T, Sanna M, Piras V, Liori B, Pisano E, Iavarone F, Vincenzoni F, Cordaro M, Faa G, Castagnola M, Messana I. N- and O-linked glycosylation site profiling of the human basic salivary proline-rich protein 3M. J Sep Sci 2016; 39:1987-97. [DOI: 10.1002/jssc.201501306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Barbara Manconi
- Dipartimento di Scienze della Vita e dell'Ambiente; Università di Cagliari; Cagliari Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell'Ambiente; Università di Cagliari; Cagliari Italy
| | - Monica Sanna
- Dipartimento di Scienze della Vita e dell'Ambiente; Università di Cagliari; Cagliari Italy
| | - Valentina Piras
- Dipartimento di Scienze della Vita e dell'Ambiente; Università di Cagliari; Cagliari Italy
| | - Barbara Liori
- Dipartimento di Scienze della Vita e dell'Ambiente; Università di Cagliari; Cagliari Italy
| | - Elisabetta Pisano
- Dipartimento di Scienze Chirurgiche; Università di Cagliari; Cagliari Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica; Università Cattolica; Roma Italy
| | - Federica Vincenzoni
- Istituto di Biochimica e Biochimica Clinica; Università Cattolica; Roma Italy
| | - Massimo Cordaro
- Istituto di Clinica Odontostomatologica, Facoltà di Medicina; Università Cattolica; Roma Italy
| | - Gavino Faa
- Dipartimento di Scienze Chirurgiche; Università di Cagliari; Cagliari Italy
| | - Massimo Castagnola
- Istituto di Biochimica e Biochimica Clinica; Università Cattolica; Roma Italy
- Istituto di Chimica del Riconoscimento Molecolare - CNR; Roma Italy
| | - Irene Messana
- Istituto di Chimica del Riconoscimento Molecolare - CNR; Roma Italy
| |
Collapse
|
20
|
Albertolle ME, Hassis ME, Ng CJ, Cuison S, Williams K, Prakobphol A, Dykstra AB, Hall SC, Niles RK, Ewa Witkowska H, Fisher SJ. Mass spectrometry-based analyses showing the effects of secretor and blood group status on salivary N-glycosylation. Clin Proteomics 2015; 12:29. [PMID: 26719750 PMCID: PMC4696288 DOI: 10.1186/s12014-015-9100-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022] Open
Abstract
Background The carbohydrate portions of salivary glycoproteins play important roles, including mediating bacterial and leukocyte adhesion. Salivary glycosylation is complex. Many of its glycoproteins present ABO and Lewis blood group determinants. An individual’s genetic complement and secretor status govern the expression of blood group antigens. We queried the extent to which salivary glycosylation varies
according to blood group and secretor status. First, we screened submandibular/sublingual and parotid salivas collected as ductal secretions for reactivity with a panel of 16 lectins. We selected three lectins that reacted with the largest number of glycoproteins and one that recognized uncommon lactosamine-containing structures. Ductal salivas representing a secretor with complex blood group expression and a nonsecretor with a simple pattern were separated by SDS-PAGE. Gel slices were trypsin digested and the glycopeptides were individually separated on each of the four lectins. The bound fractions were de-N-glycosylated. LC–MS/MS identified the original glycosylation sites, the peptide sequences, and the parent proteins. Results The results revealed novel salivary N-glycosites and glycoproteins not previously reported. As compared to the secretor, nonsecretor saliva had higher levels of N-glycosylation albeit with simpler structures. Conclusions Together, the results suggested a molecular basis for inter-individual variations in salivary protein glycosylation with functional implications for oral health. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9100-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew E Albertolle
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Maria E Hassis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Connie Jen Ng
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Severino Cuison
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Katherine Williams
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Akraporn Prakobphol
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Andrew B Dykstra
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Steven C Hall
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Richard K Niles
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - H Ewa Witkowska
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Susan J Fisher
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
21
|
Kratz EM, Waszkiewicz N, Kałuża A, Szajda SD, Zalewska-Szajda B, Szulc A, Zwierz K, Ferens-Sieczkowska M. Glycosylation Changes in the Salivary Glycoproteins of Alcohol-Dependent Patients: A Pilot Study. Alcohol Alcohol 2013; 49:23-30. [DOI: 10.1093/alcalc/agt152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Everest-Dass AV, Abrahams JL, Kolarich D, Packer NH, Campbell MP. Structural feature ions for distinguishing N- and O-linked glycan isomers by LC-ESI-IT MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:895-906. [PMID: 23605685 DOI: 10.1007/s13361-013-0610-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/22/2013] [Accepted: 02/28/2013] [Indexed: 05/13/2023]
Abstract
Glycomics is the comprehensive study of glycan expression in an organism, cell, or tissue that relies on effective analytical technologies to understand glycan structure-function relationships. Owing to the macro- and micro-heterogeneity of oligosaccharides, detailed structure characterization has required an orthogonal approach, such as a combination of specific exoglycosidase digestions, LC-MS/MS, and the development of bioinformatic resources to comprehensively profile a complex biological sample. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) has emerged as a key tool in the structural analysis of oligosaccharides because of its high sensitivity, resolution, and robustness. Here, we present a strategy that uses LC-ESI-MS/MS to characterize over 200 N- and O-glycans from human saliva glycoproteins, complemented by sequential exoglycosidase treatment, to further verify the annotated glycan structures. Fragment-specific substructure diagnostic ions were collated from an extensive screen of the literature available on the detailed structural characterization of oligosaccharides and, together with other specific glycan structure feature ions derived from cross-ring and glycosidic-linkage fragmentation, were used to characterize the glycans and differentiate isomers. The availability of such annotated mass spectrometric fragmentation spectral libraries of glycan structures, together with such substructure diagnostic ions, will be key inputs for the future development of the automated elucidation of oligosaccharide structures from MS/MS data.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- Biomolecular Frontiers Research Centre, Macquarie University, North Ryde, NSW, Australia
| | | | | | | | | |
Collapse
|
23
|
Everest-Dass AV, Jin D, Thaysen-Andersen M, Nevalainen H, Kolarich D, Packer NH. Comparative structural analysis of the glycosylation of salivary and buccal cell proteins: innate protection against infection by Candida albicans. Glycobiology 2012; 22:1465-79. [DOI: 10.1093/glycob/cws112] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
24
|
Cabras T, Boi R, Pisano E, Iavarone F, Fanali C, Nemolato S, Faa G, Castagnola M, Messana I. HPLC-ESI-MS and MS/MS structural characterization of multifucosylated N-glycoforms of the basic proline-rich protein IB-8a CON1+ in human saliva. J Sep Sci 2012; 35:1079-86. [DOI: 10.1002/jssc.201101066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tiziana Cabras
- Dipartimento di Scienze della Vita e dell'Ambiente; Università di Cagliari; Italy
| | - Roberto Boi
- Istituto di Biochimica e Biochimica Clinica and/or Istituto per la Chimica del Riconoscimento Molecolare; Consiglio Nazionale delle Ricerche; Università Cattolica; Roma; Italy
| | - Elisabetta Pisano
- Dipartimento di Chirurgia e Scienze Odontostomatologiche; Università di Cagliari; Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica and/or Istituto per la Chimica del Riconoscimento Molecolare; Consiglio Nazionale delle Ricerche; Università Cattolica; Roma; Italy
| | - Chiara Fanali
- Istituto di Biochimica e Biochimica Clinica and/or Istituto per la Chimica del Riconoscimento Molecolare; Consiglio Nazionale delle Ricerche; Università Cattolica; Roma; Italy
| | - Sonia Nemolato
- Dipartimento di Citomorfologia; Università di Cagliari; Italy
| | - Gavino Faa
- Dipartimento di Citomorfologia; Università di Cagliari; Italy
| | - Massimo Castagnola
- Istituto di Biochimica e Biochimica Clinica and/or Istituto per la Chimica del Riconoscimento Molecolare; Consiglio Nazionale delle Ricerche; Università Cattolica; Roma; Italy
| | - Irene Messana
- Dipartimento di Scienze della Vita e dell'Ambiente; Università di Cagliari; Italy
| |
Collapse
|
25
|
Huang H, Mackeen MM, Cook M, Oriero E, Locke E, Thézénas ML, Kessler BM, Nwakanma D, Casals-Pascual C. Proteomic identification of host and parasite biomarkers in saliva from patients with uncomplicated Plasmodium falciparum malaria. Malar J 2012; 11:178. [PMID: 22640863 PMCID: PMC3407698 DOI: 10.1186/1475-2875-11-178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/28/2012] [Indexed: 11/23/2022] Open
Abstract
Background Malaria cases attributed to Plasmodium falciparum account for approximately 600,000 deaths yearly, mainly in African children. The gold standard method to diagnose malaria requires the visualization of the parasite in blood. The role of non-invasive diagnostic methods to diagnose malaria remains unclear. Methods A protocol was optimized to deplete highly abundant proteins from saliva to improve the dynamic range of the proteins identified and assess their suitability as candidate biomarkers of malaria infection. A starch-based amylase depletion strategy was used in combination with four different lectins to deplete glycoproteins (Concanavalin A and Aleuria aurantia for N-linked glycoproteins; jacalin and peanut agglutinin for O-linked glycoproteins). A proteomic analysis of depleted saliva samples was performed in 17 children with fever and a positive–malaria slide and compared with that of 17 malaria-negative children with fever. Results The proteomic signature of malaria-positive patients revealed a strong up-regulation of erythrocyte-derived and inflammatory proteins. Three P. falciparum proteins, PFL0480w, PF08_0054 and PFI0875w, were identified in malaria patients and not in controls. Aleuria aurantia and jacalin showed the best results for parasite protein identification. Conclusions This study shows that saliva is a suitable clinical specimen for biomarker discovery. Parasite proteins and several potential biomarkers were identified in patients with malaria but not in patients with other causes of fever. The diagnostic performance of these markers should be addressed prospectively.
Collapse
Affiliation(s)
- Honglei Huang
- Wellcome Trust Centre for Human Genetics and Centre for Cellular and Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Glycosylation is one of the most abundant posttranslation modifications of proteins, and accumulating evidence indicate that the vast majority of proteins in eukaryotes are glycosylated. Glycosylation plays a role in protein folding, interaction, stability, and mobility, as well as in signal transduction. Thus, by regulating protein activity, glycosylation is involved in the normal functioning of the cell and in the development of diseases. Indeed, in the past few decades there has been a growing realization of the importance of protein glycosylation, as aberrant glycosylation has been implicated in metabolic, neurodegenerative, and neoplastic diseases. Thus, the identification and quantification of protein-borne oligosaccharides have become increasingly important both in the basic sciences of biochemistry and glycobiology and in the applicative sciences, particularly biomedicine and biotechnology. Here, we review the state-of-the-art methodologies for the identification and quantification of oligosaccharides, specifically N- and O-glycosylated proteins.
Collapse
|
27
|
|
28
|
Harvey DJ, Jaeken J, Butler M, Armitage AJ, Rudd PM, Dwek RA. Fragmentation of negative ions from N-linked carbohydrates, part 4. Fragmentation of complex glycans lacking substitution on the 6-antenna. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:528-35. [PMID: 20446311 DOI: 10.1002/jms.1736] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Negative ion CID spectra of N-linked glycans released from glycoproteins contain many ions that are diagnostic for specific structural features such as the detailed arrangement of antennae and the location of fucose residues. Identification of such ions requires reference glycans that are often difficult to acquire in a pure state. The recent acquisition of a sample of N-glycans from a patient lacking the enzyme N-acetylglucosaminyltransferase-2 provided an opportunity to investigate fragmentation of glycans lacking a 6-antenna. These glycans contained one or two galactose-N-acetylglucosamine-chains attached to the 3-linked mannose residue of the trimannosyl-chitobiose core with and without fucose substitution. The spectra from the patient sample clearly defined the antenna distribution and showed striking differences from the spectra of isomeric compounds obtained from normal subjects. Furthermore, they provided additional information on previously identified antenna-specific fragment ions and indicated the presence of additional ions that were diagnostic of fucose substitution. Glycans obtained from such enzyme-deficient patients can, thus, be a valuable way of obtaining spectra of specific isomers in a relatively pure state for interpretation of mass spectra.
Collapse
Affiliation(s)
- David J Harvey
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Carbohydrate analysis throughout the development of a protein therapeutic. Glycoconj J 2009; 27:211-25. [PMID: 19888650 PMCID: PMC2821524 DOI: 10.1007/s10719-009-9261-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/26/2009] [Accepted: 09/23/2009] [Indexed: 10/25/2022]
Abstract
This review discusses the challenges involved in the characterization of the glycosylation of therapeutic glycoproteins. The focus is on methods that are most commonly used in regulatory filings and lot release testing of therapeutic glycoproteins. The different types of assays for carbohydrate analysis are reviewed, including the distinction between assays appropriate for lot release or better suited to testing during early drug development or in-depth characterization of the glycosylation. Characteristics of the glycoprotein and production process that should be considered when determining the amount of testing, the number of different methods to employ and when the testing should be performed during development of protein therapeutics is also discussed.
Collapse
|
30
|
Messana I, Inzitari R, Fanali C, Cabras T, Castagnola M. Facts and artifacts in proteomics of body fluids. What proteomics of saliva is telling us? J Sep Sci 2008; 31:1948-63. [PMID: 18491358 DOI: 10.1002/jssc.200800100] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review briefly depicts several salient points of the current status of knowledge on salivary peptidoma. It outlines the intrinsic difficulties in its characterization connected to different factors of variability, such as: i) the high genetic polymorphisms, complicated by individual insertions/deletions and alternative splicing; ii) complex post-translational maturations comprehending different proteolytic cleavages, glycosylation, phosphorylation and sulfation processes; iii) physiological variations and different contributions to the whole. Moreover, several technological and analytical problems and pitfalls that had to be surmounted during our studies focussed on the extensive qualitative and quantitative characterization of salivary peptidoma and mainly based on LC-MS analyses of intact naturally occurring peptides are here described. The hope is that the information provided might be helpful to other groups engaged on the analysis of saliva or other body fluids for clinical applications.
Collapse
Affiliation(s)
- Irene Messana
- Department of Sciences Applied to Biosystems, Cagliari University, Cagliari, Italy
| | | | | | | | | |
Collapse
|
31
|
Fenaille F, Groseil C, Ramon C, Riandé S, Siret L, Chtourou S, Bihoreau N. Mass spectrometric characterization of N- and O-glycans of plasma-derived coagulation factor VII. Glycoconj J 2008; 25:827-42. [DOI: 10.1007/s10719-008-9143-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 05/07/2008] [Accepted: 05/09/2008] [Indexed: 12/01/2022]
|
32
|
Increased levels of galactose-deficient anti-Gal immunoglobulin G in the sera of hepatitis C virus-infected individuals with fibrosis and cirrhosis. J Virol 2007; 82:1259-70. [PMID: 18045939 DOI: 10.1128/jvi.01600-07] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B and C viruses are major causative agents of liver fibrosis, cirrhosis, and liver cancer. Using comparative glycoproteomics, we identified a glycoprotein that is altered both in amount and in glycosylation as a function of liver fibrosis and cirrhosis. Specifically, this altered glycoprotein is an immunoglobulin G (IgG) molecule reactive to the heterophilic alpha-Gal epitope [Galalpha-1-3Galbeta1-(3)4GlcNAc-R]. While similar changes in glycosylation have been observed in several autoimmune diseases, the specific immunoglobulins and their antigen recognition profiles were not determined. Thus, we provide the first report identifying the specific antigenic recognition profile of an immunoglobulin molecule containing altered glycosylation as a function of liver disease. This change in glycosylation allowed increased reactivity with several fucose binding lectins and permitted the development of a plate-based assay to measure this change. Increased lectin reactivity was observed in 100% of the more than 200 individuals with stage III or greater fibrosis and appeared to be correlated with the degree of fibrosis. The reason for the alteration in the glycosylation of anti-Gal IgG is currently unclear but may be related to the natural history of the disease and may be useful in the noninvasive detection of fibrosis and cirrhosis.
Collapse
|
33
|
Kolarich D, Loos A, Léonard R, Mach L, Marzban G, Hemmer W, Altmann F. A proteomic study of the major allergens from yellow jacket venoms. Proteomics 2007; 7:1615-23. [PMID: 17443842 DOI: 10.1002/pmic.200600800] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The venoms of stinging insects belong to the most dangerous allergen sources and can cause fatal anaphylactic reactions. Reliable prediction of a patient's risk to anaphylactic reactions is vital, and diagnosis requires the knowledge of the relevant allergens. Recently, a new hyaluronidase -like glycoprotein from Vespula vulgaris (Ves v 2b) was identified. This led us to investigate hyaluronidases and also other major allergens from V. germanica and four additional Vespula species. By MALDI-Q-TOF-MS, the new hyaluronidase-like protein was shown to be the major component of the 43-kDa band in all Vespula species studied. LC-ESI-Q-TOF-MS/MS sequencing of Ves g 2a and Ves g 2b facilitated the cloning of their cDNA. Ves v 2b and Ves g 2b turned out to be essentially identical on protein level. Whereas the less abundant "a" form displayed enzymatic activity, the new "b" homologue did not. This is probably caused by amino acid exchanges in the active site, and it raises questions about the physiological role of this protein. Sequence comparisons by MS/MS of antigen 5 and phospholipases from V. vulgaris, germanica, maculifrons, pensylvanica, flavopilosa and squamosa revealed the latter as a taxonomic outlier and led to the discovery of several not previously reported amino acid differences.
Collapse
Affiliation(s)
- Daniel Kolarich
- Biochemistry Division, Department of Chemistry, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
34
|
Ramachandran P, Boontheung P, Xie Y, Sondej M, Wong DT, Loo JA. Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry. J Proteome Res 2006; 5:1493-503. [PMID: 16740002 DOI: 10.1021/pr050492k] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoproteins make up a major and important part of the salivary proteome and play a vital role in maintaining the health of the oral cavity. Because changes in the physiological state of a person are reflected as changes in the glycoproteome composition, mapping the salivary glycoproteome will provide insights into various processes in the body. Salivary glycoproteins were identified by the hydrazide coupling and release method. In this approach, glycoproteins were coupled onto a hydrazide resin, the proteins were then digested and formerly N-glycosylated peptides were selectively released with the enzyme PNGase F and analyzed by LC-MS/MS. Employing this method, coupled with in-solution isoelectric focusing separation as an additional means for pre-fractionation, we identified 84 formerly N-glycosylated peptides from 45 unique N-glycoproteins. Of these, 16 glycoproteins have not been reported previously in saliva. In addition, we identified 44 new sites of N-linked glycosylation on the proteins.
Collapse
Affiliation(s)
- Prasanna Ramachandran
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
35
|
Comunale MA, Lowman M, Long RE, Krakover J, Philip R, Seeholzer S, Evans AA, Hann HWL, Block TM, Mehta AS. Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. J Proteome Res 2006; 5:308-15. [PMID: 16457596 DOI: 10.1021/pr050328x] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Changes in N-linked glycosylation are known to occur during the development of cancer. For example, increased branching of oligosaccharides has been associated with metastasis and has been correlated to tumor progression in human cancers of the breast, colon and melanomas. Increases in core fucosylation have also been associated with the development of hepatocellular carcinoma (HCC). Chronic infection with the hepatitis B virus is associated with more than 55% of all cases of hepatocellular carcinoma. We show here that increased levels of core fucosylation can be observed via glycan analysis of total serum and are associated with the development of HCC. In a blinded study, the serum glycoproteins derived from people diagnosed with HBV induced liver cancer were found to possess a dramatically higher level of fucosylation. This change occurs on both immunoglobulin molecules and on other serum glycoproteins. Targeted glycoproteomic analysis was used to identify those glycoproteins that are hyperfucosylated in cancer. In total, 19 proteins were found to be hyperfucosylated in cancer. The potential of these proteins as biomarkers of cancer is discussed.
Collapse
Affiliation(s)
- Mary Ann Comunale
- Drexel Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania 18901, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Royle L, Dwek RA, Rudd PM. Determining the structure of oligosaccharides N- and O-linked to glycoproteins. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2006; Chapter 12:12.6.1-12.6.45. [PMID: 18429295 DOI: 10.1002/0471140864.ps1206s43] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many proteins involved in biological events are glycosylated. A glycoprotein consists of a mixture of glycosylation variants of a single polypeptide chain, known as glycoforms. It has become clear that a detailed understanding of the roles which glycosylation plays in the biosynthesis, transport, biological function, and degradation of a glycoprotein can only be achieved when the protein and sugar(s) are viewed as an entity. Many glycoproteins can now be modeled by combining glycan sequencing data and oligosaccharide structural information with protein structural data. Pivotal to this approach is sensitive, state-of-the-art oligosaccharide sequencing technology which can give a rapid insight into the glycosylation of a glycoprotein without the need for sophisticated equipment and expertise. This unit gives a detailed introduction into the analysis of glycans, and the many figures will help the user identify which type of experiment needs to be undertaken. Methods for releasing glycans from glycoproteins are followed by protocols for labeling and purifying (by HPLC) the glycans from the rest of the components. Strategies for N- and O-glycan analysis are also included.
Collapse
|
37
|
Harvey DJ. Fragmentation of negative ions from carbohydrates: part 3. Fragmentation of hybrid and complex N-linked glycans. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:647-59. [PMID: 15862766 DOI: 10.1016/j.jasms.2005.01.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 01/05/2005] [Accepted: 01/05/2005] [Indexed: 05/16/2023]
Abstract
Hybrid and complex N-linked glycans were ionized by electrospray in the presence of ammonium nitrate to give [M + NO3]- and [M + (NO3)2]2- ions. Low energy collision-induced decomposition (CID) spectra of both types of ions were almost identical and were dominated by C-type glycosidic and cross-ring fragments, unlike the corresponding spectra of the positive ions that contained mainly B- and Y-type glycosidic fragments. Also, in contrast to fragments in the positive ion spectra, many of these ions appeared to be produced by single pathways following proton abstraction from specific hydroxy groups. Consequently, many ions were diagnostic for specific structural features. Such features included the composition of each of the two antennas, the presence or absence of a bisecting GlcNAc residue, and the location of fucose residues on the core GlcNAc residues and on the antennas. C-ions defined the sequence of the constituent monosaccharide residues. Detailed fragmentation mechanisms are proposed to account for several of the diagnostic ions.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Glycobiology Institute, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
38
|
Zhang J, Lindsay LL, Hedrick JL, Lebrilla CB. Strategy for Profiling and Structure Elucidation of Mucin-Type Oligosaccharides by Mass Spectrometry. Anal Chem 2004; 76:5990-6001. [PMID: 15481946 DOI: 10.1021/ac049666s] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy combining accurate mass determination, tandem mass spectrometry, structure homology, and exoglycosidases is described that allows the structural characterization of mucin-type O-linked oligosaccharides. The method is used to profile with quantitation the O-linked oligosaccharide (both neutral and anionic) components of the only diploid Xenopus frog, Xenopus tropicalis. Collision-induced dissociation was used to determine connectivity, to identify previously characterized oligosaccharides, and to determine the presence of structural motifs in unknown oligosaccharides. Exoglycosidase digestion was used to identify the individual residues along with the linkages. The enzymes were also used to cleave larger oligosaccharides to smaller units that are similar to previously elucidated components. By using CID, isomeric structures were compared to determine whether they were identical. In this way, the exoglycosidases were more effectively used, and their use was minimized. A total of 35 oligosaccharides including neutral, sialylated, and sulfated were characterized in this way. The relative abundances of all components were also determined based on HPLC.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Chemistry and School of Medicine, Biological Chemistry, and Department of Animal Science, University of California at Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
39
|
Harvey DJ, Martin RL, Jackson KA, Sutton CW. Fragmentation of N-linked glycans with a matrix-assisted laser desorption/ionization ion trap time-of-flight mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2004; 18:2997-3007. [PMID: 15536626 DOI: 10.1002/rcm.1709] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
N-Linked glycans were ionized from several matrices with a Shimadzu-Biotech AXIMA-QIT matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometer. [M+Na]+ ions were produced from all matrices and were accompanied by varying amounts of in-source fragmentation products. The least fragmentation was produced by 2,5-dihydroxybenzoic acid and the most by alpha-cyano-4-hydroxycinnamic acid and 6-aza-2-thiothymine. Sialic acid loss was extensive but could be prevented by formation of methyl esters. Fragmentation produced typical low-energy-type spectra dominated by ions formed by glycosidic cleavages. MS(n) spectra (n = 3 and 4) were used to probe the pathways leading to the major diagnostic ions. Thus, for example, an ion that was formed by loss of the core GlcNAc residues and the 3-antenna was confirmed as being formed by a B/Y rather than a C/Z mechanism. The proposed structures of several cross-ring cleavage ions were confirmed and it was shown that MS3 spectra could be obtained from as little as 10 fmol of glycan.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | |
Collapse
|
40
|
Satomi Y, Shimonishi Y, Hase T, Takao T. Site-specific carbohydrate profiling of human transferrin by nano-flow liquid chromatography/electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2004; 18:2983-2988. [PMID: 15536627 DOI: 10.1002/rcm.1718] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glycopeptides derived from a lysylendopeptidase digest of commercially available human transferrin were analyzed by nano-flow liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS), which permitted the carbohydrate profiles at Asn432 and Asn630 to be determined. Both are located in a well-known motif for N-glycosylation, Asn-Xaa-Ser/Thr. The contents of the carbohydrates at each site were significantly different from each other, and consisted of a variety of minor types of oligosaccharides in addition to the major one, a biantennary complex-type oligosaccharide. Nano-flow ESI tandem mass spectrometry (MS/MS) of the glycopeptides (Cys421-Lys433 and Ile619-Lys646) containing these two sites yielded predominantly ions originating from the non-reducing termini (oxonium ions) and reducing terminus, resulting from cleavage of the glycosidic bonds of the carbohydrate moieties; this permitted the structural read-out of a small minority of the carbohydrate moieties. In particular, the observation of oxonium ions at m/z 512.2 and 803.2 is useful for probing outer non-reducing terminal fucosylation, which represented carbohydrate structures consisting of Hex, dHex, and HexNAc, and NeuNAc, Hex, dHex, and HexNAc, respectively, from which the Lewis X structure (Galbeta1-4(Fucalpha1-3)GlcNAc) was readily deduced. Moreover, fucosylation at the reducing-terminal GlcNAc (Fucalpha1-6GlcNAc) specifically occurred at Asn630, as demonstrated by treatment of the glycopeptides with alpha1-3/4-L-fucosidase.
Collapse
Affiliation(s)
- Yoshinori Satomi
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
41
|
Royle L, Mattu TS, Hart E, Langridge JI, Merry AH, Murphy N, Harvey DJ, Dwek RA, Rudd PM. An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal Biochem 2002; 304:70-90. [PMID: 11969191 DOI: 10.1006/abio.2002.5619] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A sensitive, rapid, quantitative strategy has been developed for O-glycan analysis. A structural database has been constructed that currently contains analytical parameters for more than 50 glycans, enabling identification of O-glycans at the subpicomole level. The database contains the structure, molecular weight, and both normal and reversed-phase HPLC elution positions for each glycan. These observed parameters reflect the mass, three-dimensional shape, and hydrophobicity of the glycans and, therefore, provide information relating to linkage and arm specificity as well as monosaccharide composition. Initially the database was constructed by analyzing glycans released by mild hydrazinolysis from bovine serum fetuin, synthetic glycopeptides, human glycophorin A, and serum IgA1. The structures of the fluorescently labeled sugars were determined from a combination of HPLC data, mass spectrometric composition and mass fragmentation data, and exoglycosidase digestions. This approach was then applied to human neutrophil gelatinase B and secretory IgA, where 18 and 25 O-glycans were identified, respectively, and the parameters of these glycans were added to the database. This approach provides a basis for the analysis of subpicomole quantities of O-glycans from normal levels of natural glycoproteins.
Collapse
Affiliation(s)
- Louise Royle
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Yehia Mechref
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
43
|
Wing DR, Garner B, Hunnam V, Reinkensmeier G, Andersson U, Harvey DJ, Dwek RA, Platt FM, Butters TD. High-performance liquid chromatography analysis of ganglioside carbohydrates at the picomole level after ceramide glycanase digestion and fluorescent labeling with 2-aminobenzamide. Anal Biochem 2001; 298:207-17. [PMID: 11700975 DOI: 10.1006/abio.2001.5393] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functional importance of glycolipids has emphasized the need for more sensitive methods of detection, characterization, and quantification than has often been possible using traditional thin-layer chromatographic techniques. We describe the use of ceramide glycanase and HPLC to identify and quantify gangliosides in which the carbohydrate is in Glcbeta1--> linkage with ceramide. Detection of released carbohydrate was by fluorescent labeling with 2-aminobenzamide at the reducing terminal prior to HPLC analysis. Under the conditions described, ceramide glycanase hydrolyzed all of the common gangliosides studied, offering a broad spectrum of specificity. Release and detection of carbohydrate were linear over a wide range (over two orders of magnitude) of micromolar glycolipid substrate concentrations. Use of an N-linked glycan as an internal standard allowed accurate quantification and a recovery of 93% was achieved. The method additionally maintained the sensitivity (chromatographic peaks containing 1 pmol were readily detected from tissue samples) and comparable resolution to related assays. This was shown by the separation, not only of isomeric carbohydrates from the "a" and "b" series, but also of ganglioside carbohydrate differing only by the presence of either N-acetyl- or N-glycolylneuraminic acid. Application of the method to neutral glycosphingolipids and to tissue samples, including 10-microl quantities of plasma, is illustrated. Glycan structures were confirmed by exoglycosidase digestion and/or matrix-assisted laser desorption/ionization mass spectrometry.
Collapse
Affiliation(s)
- D R Wing
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tran NT, Daali Y, Cherkaoui S, Taverna M, Neeser JR, Veuthey JL. Routine o-glycan characterization in nutritional supplements--a comparison of analytical methods for the monitoring of the bovine kappa-casein macropeptide glycosylation. J Chromatogr A 2001; 929:151-63. [PMID: 11594397 DOI: 10.1016/s0021-9673(01)01176-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Analytical procedures, including capillary isoelectric focusing (CIEF), high-performance anion-exchange chromatography coupled to amperometric detection (HPAEC-PAD) and normal-phase chromatography with fluorescence detection are presented for the characterization of a highly O-glycosylated caseinomacropeptide (CGMP) and the detection of subtle glycosylation differences between CGMP Batches obtained with two different preparation procedures. Modified two-step CIEF allowed monitoring of glycopeptide heterogeneity and determination of the isoelectric points of acidic glycoforms. The mixture of wide and narrow pH range ampholytes was optimized to improve glycoform resolution. The pI of the different CGMP glycoforms was evaluated with pI internal standards and found to range between 3.08 and 3.58, which indicates a very acidic glycopeptide. Moreover, the monosaccharide composition was determined with HPAEC-PAD after neutral and amino sugars release by using adequate acidic hydrolysis of CGMP. Results indicated a similar composition for Batches I and II, but the monosaccharide percentages were 3-4 fold higher in Batch I, particularly for galactose and glucose. This likely reflects a higher content in lactose in the case of Batch I. Finally, O-linked oligosaccharides were released with an automated hydrazinolysis and derivatized with a sensitive labelling reagent, 2-aminobenzamide. The derivatives were then analyzed by normal-phase HPLC coupled with fluorescence detection, and separated on the basis of hydrophilic interaction, which allowed oligosaccharide mapping of the two CGMP. It appeared that the two CGMP preparations had an almost identical O-glycan population, but CGMP Batch I was more glycosylated than Batch II. Additionally, the sizes of the separated glycans, expressed as the number of glucose units, were tentatively assigned using calibration with a partial hydrolysate of dextran. In conclusion, a combination of electrophoretic and chromatographic techniques was found powerful in studying glycoprotein heterogeneity and assessing batch-to-batch consistency.
Collapse
Affiliation(s)
- N T Tran
- Laboratoire de Chimie Analytique, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
45
|
Albach C, Klein RA, Schmitz B. Do rodent and human brains have different N-glycosylation patterns? Biol Chem 2001; 382:187-94. [PMID: 11308017 DOI: 10.1515/bc.2001.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A large number of studies on the structure of N-glycosidically linked oligosaccharides from glycoproteins of different organs and/or different species have been carried out in the past using various combinations of techniques such as monosaccharide analysis, permethylation, peracteylation, exoglycosidase sequencing, normal and reversed phase HPLC, mass spectrometry and nuclear magnetic resonance spectroscopy. Although it is widely accepted that the processing of N-glycans in the ER and Golgi of mammalian cells follows the same principal metabolic rules, analyses have revealed that the glycosylation pattern of a particular protein may differ depending on the cell type in which it is expressed. N-glycans from brain glycoproteins have been shown to include a variety of hybrid- and complex-type structures with structural features that are not so commonly found on glycoproteins from other organs and which have, therefore, been classified as 'brain-specific'. Comparison of the N-glycans of glycoproteins from homogenates of rat, mouse and human brains confirm that, in general, glycoproteins from human brain show a similar profile of brain-specific N-glycans as glycoproteins from mouse and rat brain.
Collapse
Affiliation(s)
- C Albach
- Department of Biochemistry, Institute of Animal Anatomy and Physiology, University of Bonn, Germany
| | | | | |
Collapse
|
46
|
Mattu TS, Royle L, Langridge J, Wormald MR, Van den Steen PE, Van Damme J, Opdenakker G, Harvey DJ, Dwek RA, Rudd PM. O-glycan analysis of natural human neutrophil gelatinase B using a combination of normal phase-HPLC and online tandem mass spectrometry: implications for the domain organization of the enzyme. Biochemistry 2000; 39:15695-704. [PMID: 11123894 DOI: 10.1021/bi001367j] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gelatinase B is a matrix metalloproteinase (MMP-9) expressed under strict control by many cell types including neutrophils, monocytes, macrophages, and tumor cells. MMP-9 is a key mediator in the physiological maintenance of the extracellular matrix both in tissue remodeling and development, while uncontrolled enzyme activity contributes to pathologies such as cancer and inflammation. Neutrophils release MMP-9 from granules in response to IL-8 stimulation. Human MMP-9 has three potential N-linked glycosylation sites and contains a Ser/Pro/Thr rich domain, known as the type V collagen-like domain, which is expected to be heavily O-glycosylated. Indeed, approximately 85% of the total sugars on human neutrophil MMP-9 are O-linked. This paper presents the detailed analysis of picomole amounts of these O-glycans using a novel HPLC-based strategy for O-glycan analysis that provides linkage and arm specific information in addition to monosaccharide sequence. The initial structural assignments were confirmed using HPLC with online MS/MS fragmentation analysis. Twelve sugars were identified that contained from two to nine monosaccharide residues. Most of these contained type 2 core structures with Galbeta1-4GlcNAc (N-acetyl lactosamine) extensions, with or without sialic acid or fucose. The O-glycans were modeled using the oligosaccharide structural database. On the basis of the structure of gelatinase A (MMP-2), a model of MMP-9 suggests that the type V collagen-like domain in gelatinase B is located on a loop remote from the active site. Fourteen potential O-glycosylation sites are multiply presented on this loop of 52 amino acids. Many of the O-glycans identified contain terminal galactose residues that may provide recognition epitopes. Importantly, heavy glycosylation of this loop region, absent in gelatinase A, has considerable implications for the domain organization of MMP-9.
Collapse
Affiliation(s)
- T S Mattu
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
This review describes the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to carbohydrate analysis and covers the period 1991-1998. The technique is particularly valuable for carbohydrates because it enables underivatised, as well as derivatised compounds to be examined. The various MALDI matrices that have been used for carbohydrate analysis are described, and the use of derivatization for improving mass spectral detection limits is also discussed. Methods for sample preparation and for extracting carbohydrates from biological media prior to mass spectrometric analysis are compared with emphasis on highly sensitive mass spectrometric methods. Quantitative aspects of MALDI are covered with respect to the relationship between signal strength and both mass and compound structure. The value of mass measurements by MALDI to provide a carbohydrate composition is stressed, together with the ability of the technique to provide fragmentation spectra. The use of in-source and post-source decay and collision-induced fragmentation in this context is described with emphasis on ions that provide information on the linkage and branching patterns of carbohydrates. The use of MALDI mass spectrometry, linked with exoglycosidase sequencing, is described for N-linked glycans derived from glycoproteins, and methods for the analysis of O-linked glycans are also covered. The review ends with a description of various applications of the technique to carbohydrates found as constituents of glycoproteins, bacterial glycolipids, sphingolipids, and glycolipid anchors.
Collapse
Affiliation(s)
- D J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, UK.
| |
Collapse
|
48
|
Mo W, Sakamoto H, Nishikawa A, Kagi N, Langridge JI, Shimonishi Y, Takao T. Structural characterization of chemically derivatized oligosaccharides by nanoflow electrospray ionization mass spectrometry. Anal Chem 1999; 71:4100-6. [PMID: 10500493 DOI: 10.1021/ac990247i] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligosaccharides released from several glycoproteins were derivatized with either 4-aminobenzoic acid 2-(diethylamino)ethyl ester (ABDEAE) (Yoshino, K.; et al. Anal. Chem. 1995, 67, 4028-4031) or 2-aminopyridine. The resulting derivatives were analyzed on a nanoflow electrospray ionization (ESI) quadrupole-inlet time-of-flight mass spectrometer using the low-energy collision-induced dissociation technique. In the MS/MS spectra, the oxonium (b or internal series) and y series ions, which are derived from the multiply charged precursor ions, were predominant and were used for the structural readout. Some oxonium ions that were observed in the low-mass region, but that were not found in the PSD analyses (Mo, W.; et al. Anal. Chem. 1998, 70, 4520-4526), rendered a more detailed structural insight. The oxonium ions at m/z 512.2, which are derived from the fucosylated oligosaccharides of immunoglobulin Y and thyroglobulin, were observed, suggesting that fucosylation had occurred proximal to the outer nonreducing terminus. In addition, the data herein show that structural elucidation can be routinely achieved at a low sample concentration. For the case of ABDEAE derivatives, this can be achieved at the 50 fmol/microL level and with the actual sample consumption at the attomole level using nanoflow ESI MS/MS.
Collapse
Affiliation(s)
- W Mo
- Institute for Protein Research, Osaka University, Japan
| | | | | | | | | | | | | |
Collapse
|