1
|
Zhai L, Wan X, Wu R, Yu X, Li H, Zhong R, Zhu D, Zhang Y. Linc-RAM promotes muscle cell differentiation via regulating glycogen phosphorylase activity. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:8. [PMID: 35254536 PMCID: PMC8901937 DOI: 10.1186/s13619-022-00109-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) are important regulators of diverse biological processes, especially skeletal muscle cell differentiation. Most of the lncRNAs identified to date are localized in the nucleus and play regulatory roles in gene expression. The cytoplasmic lncRNAs are less well understood. We previously identified a long intergenic non-coding RNA (linc-RNA) activator of myogenesis (Linc-RAM) that directly binds MyoD in the nucleus to enhance muscle cell differentiation. Here, we report that a substantial fraction of Linc-RAM is localized in the cytoplasm of muscle cells. To explore the molecular functions of cytoplasmic Linc-RAM, we sought to identify Linc-RAM-binding proteins. We report here that Linc-RAM physically interacts with glycogen phosphorylase (PYGM) in the cytoplasm. Knockdown of PYGM significantly attenuates the function of Linc-RAM in promoting muscle cell differentiation. Loss-of-function and gain-of function assays demonstrated that PYGM enhances muscle cell differentiation in an enzymatic activity-dependent manner. Finally, we show that the interaction between Linc-RAM and PYGM positively regulates the enzymatic activity of PYGM in muscle cells. Collectively, our findings unveil a molecular mechanism through which cytoplasmic Linc-RAM contributes to muscle cell differentiation by regulating PYGM activity. Our findings establish that there is crosstalk between lncRNAs and cellular metabolism during myogenic cell differentiation.
Collapse
Affiliation(s)
- Lili Zhai
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,Present address: NCPC New Drug Research and Development Co., Ltd., State Key Laboratory of Antibody Research & Development, Shijiazhuang, 052165, China
| | - Xin Wan
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Rimao Wu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,The Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Xiaohua Yu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Hu Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,The Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Ran Zhong
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Dahai Zhu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China. .,The Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
2
|
Wang X, Song Q, Wang Z, Xie Y, Zhang D, Ye K, Han F. Characterizations of intracellular copper/zinc superoxide dismutase from yellow drum (Nibea albiflora, Richardson 1846) and its gene expressions under the ammonia/nitrite stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105254. [PMID: 31357109 DOI: 10.1016/j.aquatox.2019.105254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Intracellular copper/zinc superoxide dismutase (icCuZnSOD) is a member of superoxide dismutase family that is capable of catalyzing the superoxide radicals into either hydrogen peroxide (H2O2) or ordinary molecular oxygen (O2). Unlike mammals, the study of icCuZnSOD in aquatic animals is still in the infancy stage. Here, we identified the cDNA of na-iccuznsod from yellow drum (Nibea albiflora, Richardson 1846) and obtained its fusion protein for the first time. The mRNA expressions of na-iccuznsod were investigated in different tissues, and the dominant distribution was found in head-kidney, followed by brain, liver, heart, and gill. The effects of ammonia-N/nitrite-N on the mRNA expressions of na-iccuznsod were investigated. Na-iccuznsod transcription levels showed a general tendency of an initial up-regulation followed by a down-regulation in liver, gill, and head-kidney when yellow drum were exposed to ammonia-N/nitrite-N at the lethal concentration 50 at 96 h post-treatment, suggesting the important role of Na-icCuZnSOD in eliminating reactive oxygen species (ROS) induced by ammonia-N/nitrite-N. In addition, the characteristics of Na-icCuZnSOD protein and its comparative analysis with Na-ecCuZnSOD were investigated. Na-icCuZnSOD protein showed high enzyme stabilities over a wide range of temperature (10 to 60 °C) and pH (4.9 to 11.0), indicating its broad in vitro applications in many industries. Furthermore, the comparative analysis of Na-icCuZnSOD and Na-ecCuZnSOD gives a new perspective for the study of their structure-function relationship. Collectively, the present study will advance our understanding of the toxicity of ammonia-N/nitrite-N on yellow drum through testing the mRNA expression of iccuznsod gene, and broaden our knowledge of the protein characteristics of icCuZnSOD from fish.
Collapse
Affiliation(s)
- Xiaolong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Qing Song
- MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and Engineering, Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, PR China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Yangjie Xie
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Dongling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Kun Ye
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
3
|
Liang J, Han Q, Tan Y, Ding H, Li J. Current Advances on Structure-Function Relationships of Pyridoxal 5'-Phosphate-Dependent Enzymes. Front Mol Biosci 2019; 6:4. [PMID: 30891451 PMCID: PMC6411801 DOI: 10.3389/fmolb.2019.00004] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 01/25/2019] [Indexed: 12/23/2022] Open
Abstract
Pyridoxal 5′-phosphate (PLP) functions as a coenzyme in many enzymatic processes, including decarboxylation, deamination, transamination, racemization, and others. Enzymes, requiring PLP, are commonly termed PLP-dependent enzymes, and they are widely involved in crucial cellular metabolic pathways in most of (if not all) living organisms. The chemical mechanisms for PLP-mediated reactions have been well elaborated and accepted with an emphasis on the pure chemical steps, but how the chemical steps are processed by enzymes, especially by functions of active site residues, are not fully elucidated. Furthermore, the specific mechanism of an enzyme in relation to the one for a similar class of enzymes seems scarcely described or discussed. This discussion aims to link the specific mechanism described for the individual enzyme to the same types of enzymes from different species with aminotransferases, decarboxylases, racemase, aldolase, cystathionine β-synthase, aromatic phenylacetaldehyde synthase, et al. as models. The structural factors that contribute to the reaction mechanisms, particularly active site residues critical for dictating the reaction specificity, are summarized in this review.
Collapse
Affiliation(s)
- Jing Liang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Agriculture and Forestry, Hainan University, Haikou, China
| | - Yang Tan
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haizhen Ding
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jianyong Li
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
4
|
Gaboriaud-Kolar N, Skaltsounis AL. Glycogen phosphorylase inhibitors: a patent review (2008 - 2012). Expert Opin Ther Pat 2013; 23:1017-32. [PMID: 23627914 DOI: 10.1517/13543776.2013.794790] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Glycogen phosphorylase (GP) is the enzyme responsible for the synthesis of glucose-1-phosphate, the source of energy for muscles and the rest of the body. The binding of different ligands in catalytic or allosteric sites assures activation and deactivation of the enzyme. A description of the regulation mechanism and the implications in glycogen metabolism are given. AREAS COVERED Deregulation of GP has been observed in diseases such as diabetes mellitus or cancers. Therefore, it appears as an attractive therapeutic target for the treatment of such pathologies. Numbers of inhibitors have been published in academic literature or patented in the last two decades. This review presents the main patent claims published between 2008 and 2012. EXPERT OPINION Good inhibitors with interesting IC50 and in vivo results are presented. However, such therapeutic strategy raises questions and some answers are proposed to bring new insights in the field.
Collapse
|
5
|
Chen W, Goldfine H, Ananthanarayanan B, Cho W, Roberts MF. Listeria monocytogenes phosphatidylinositol-specific phospholipase C: Kinetic activation and homing in on different interfaces. Biochemistry 2009; 48:3578-92. [PMID: 19281241 DOI: 10.1021/bi802312d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The phosphatidylinositol-specific phospholipase C (PI-PLC) from Listeria monocytogenes forms aggregates with anionic lipids leading to low activity. The specific activity of the enzyme can be enhanced by dilution of the protein or by addition of both zwitterionic and neutral amphiphiles (e.g., diheptanoylphosphatidylcholine or Triton X-100) or 0.1-0.2 M inorganic salts. Activation by amphiphiles occurs with both micellar (phosphatidylinositol dispersed in detergents) and monomeric [dibutroylphosphatidylinositol (diC(4)PI)] phosphotransferase substrates and inositol 1,2-(cyclic)-phosphate (cIP), the phosphodiesterase substrate. The presence of zwitterionic and neutral amphiphiles (to which the protein binds weakly) dilutes the surface concentration of the interfacial anionic substrate and thereby reduces the level of enzyme-phospholipid particle aggregation. Zwitterionic amphiphiles also can bind directly to the protein and enhance catalysis since they enhance both diC(4)PI and cIP hydrolysis. In contrast to activation by amphiphiles, the rate enhancement by salt occurs for only the phosphotransferase step of the reaction. Added salt has a synergistic effect with zwitterionic phospholipids, leading to high specific activities for PI cleavage with only moderate dilution of the anionic substrate in the interface. This kinetic activation correlates with weakening of strong PI-PLC hydrophobic interactions with the interface as monitored by a decrease in the maximum monolayer surface pressure for insertion of the protein. Several point mutations of surface hydrophobic residues (W49A, L51A, L235A, and F237W) can dramatically alter the unusual kinetics of this secreted enzyme. The high affinity of PI-PLC for anionic phospholipids along with a strong hydrophobic interaction, which gives rise to the unusual kinetic behavior, is considered in terms of how it might contribute to the role of this phospholipase in L. monocytogenes infectivity.
Collapse
Affiliation(s)
- Wei Chen
- Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|