1
|
Ratre V, Hemmadi V, Biswas S, Biswas M. Identification and Preliminary Characterization of a Novel Single-Stranded DNA Binding Protein of Staphylococcus aureus Phage Phi11 Expressed in Escherichia coli. Mol Biotechnol 2022; 65:922-933. [DOI: 10.1007/s12033-022-00598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
|
2
|
Singh SP, Kukshal V, De Bona P, Antony E, Galletto R. The mitochondrial single-stranded DNA binding protein from S. cerevisiae, Rim1, does not form stable homo-tetramers and binds DNA as a dimer of dimers. Nucleic Acids Res 2019; 46:7193-7205. [PMID: 29931186 PMCID: PMC6101547 DOI: 10.1093/nar/gky530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/04/2018] [Indexed: 01/29/2023] Open
Abstract
Rim1 is the mitochondrial single-stranded DNA binding protein in Saccharomyces cerevisiae and functions to coordinate replication and maintenance of mtDNA. Rim1 can form homo-tetramers in solution and this species has been assumed to be solely responsible for ssDNA binding. We solved structures of tetrameric Rim1 in two crystals forms which differ in the relative orientation of the dimers within the tetramer. In testing whether the different arrangement of the dimers was due to formation of unstable tetramers, we discovered that while Rim1 forms tetramers at high protein concentration, it dissociates into a smaller oligomeric species at low protein concentrations. A single point mutation at the dimer-dimer interface generates stable dimers and provides support for a dimer-tetramer oligomerization model. The presence of Rim1 dimers in solution becomes evident in DNA binding studies using short ssDNA substrates. However, binding of the first Rim1 dimer is followed by binding of a second dimer, whose affinity depends on the length of the ssDNA. We propose a model where binding of DNA to a dimer of Rim1 induces tetramerization, modulated by the ability of the second dimer to interact with ssDNA.
Collapse
Affiliation(s)
- Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Vandna Kukshal
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Paolo De Bona
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
3
|
Singh A, Vijayan M, Varshney U. Distinct properties of a hypoxia specific paralog of single stranded DNA binding (SSB) protein in mycobacteria. Tuberculosis (Edinb) 2018. [PMID: 29523318 DOI: 10.1016/j.tube.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In addition to the canonical Single Stranded DNA Binding (SSBa) protein, many bacterial species, including mycobacteria, have a paralogous SSBb. The SSBb proteins have not been well characterized. While in B. subtilis, SSBb has been shown to be involved in genetic recombination; in S. coelicolor it mediates chromosomal segregation during sporulation. Sequence analysis of SSBs from mycobacterial species suggests low conservation of SSBb proteins, as compared to the conservation of SSBa proteins. Like most bacterial SSB proteins, M. smegmatis SSBb (MsSSBb) forms a stable tetramer. However, solution studies indicate that MsSSBb is less stable to thermal and chemical denaturation than MsSSBa. Also, in contrast to the 5-20 fold differences in DNA binding affinity between paralogous SSBs in other organisms, MsSSBb is only about two-fold poorer in its DNA binding affinity than MsSSBa. The expression levels of ssbB gene increased during UV and hypoxic stresses, while the levels of ssbA expression declined. A direct physical interaction of MsSSBb and RecA, mediated by the C-terminal tail of MsSSBb, was also established. The results obtained in this study indicate a role of MsSSBb in recombination repair during stress.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advamced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
4
|
Nigam R, Anindya R. Escherichia coli single-stranded DNA binding protein SSB promotes AlkB-mediated DNA dealkylation repair. Biochem Biophys Res Commun 2018; 496:274-279. [PMID: 29326044 DOI: 10.1016/j.bbrc.2018.01.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 11/17/2022]
Abstract
Repair of alkylation damage in DNA is essential for maintaining genome integrity. Escherichia coli (E.coli) protein AlkB removes various alkyl DNA adducts including N1-methyladenine (N1meA) and N3-methylcytosine (N3meC) by oxidative demethylation. Previous studies showed that AlkB preferentially removes N1meA and N3meC from single-stranded DNA (ssDNA). It can also remove N1meA and N3meC from double-stranded DNA by base-flipping. Notably, ssDNA produced during DNA replication and recombination, remains bound to E. coli single-stranded DNA binding protein SSB and it is not known whether AlkB can repair methyl adduct present in SSB-coated DNA. Here we have studied AlkB-mediated DNA repair using SSB-bound DNA as substrate. In vitro repair reaction revealed that AlkB could efficiently remove N3meC adducts inasmuch as DNA length is shorter than 20 nucleotides. However, when longer N3meC-containing oligonuleotides were used as the substrate, efficiency of AlkB catalyzed reaction was abated compared to SSB-bound DNA substrate of identical length. Truncated SSB containing only the DNA binding domain could also support the stimulation of AlkB activity, suggesting the importance of SSB-DNA interaction for AlkB function. Using 70-mer oligonucleotide containing single N3meC we demonstrate that SSB-AlkB interaction promotes faster repair of the methyl DNA adducts.
Collapse
Affiliation(s)
- Richa Nigam
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad 502285, Telangana, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad 502285, Telangana, India.
| |
Collapse
|
5
|
Singh A, Varshney U, Vijayan M. Structure of the second Single Stranded DNA Binding protein (SSBb) from Mycobacterium smegmatis. J Struct Biol 2016; 196:448-454. [DOI: 10.1016/j.jsb.2016.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 10/21/2022]
|
6
|
Olszewski M, Balsewicz J, Nowak M, Maciejewska N, Cyranka-Czaja A, Zalewska-Piątek B, Piątek R, Kur J. Characterization of a Single-Stranded DNA-Binding-Like Protein from Nanoarchaeum equitans--A Nucleic Acid Binding Protein with Broad Substrate Specificity. PLoS One 2015; 10:e0126563. [PMID: 25973760 PMCID: PMC4431734 DOI: 10.1371/journal.pone.0126563] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/03/2015] [Indexed: 11/18/2022] Open
Abstract
Background SSB (single-stranded DNA-binding) proteins play an essential role in all living cells and viruses, as they are involved in processes connected with ssDNA metabolism. There has recently been an increasing interest in SSBs, since they can be applied in molecular biology techniques and analytical methods. Nanoarchaeum equitans, the only known representative of Archaea phylum Nanoarchaeota, is a hyperthermophilic, nanosized, obligatory parasite/symbiont of Ignicoccus hospitalis. Results This paper reports on the ssb-like gene cloning, gene expression and characterization of a novel nucleic acid binding protein from Nanoarchaeum equitans archaeon (NeqSSB-like protein). This protein consists of 243 amino acid residues and one OB fold per monomer. It is biologically active as a monomer like as SSBs from some viruses. The NeqSSB-like protein displays a low sequence similarity to the Escherichia coli SSB, namely 10% identity and 29% similarity, and is the most similar to the Sulfolobus solfataricus SSB (14% identity and 32% similarity). The NeqSSB-like protein binds to ssDNA, although it can also bind mRNA and, surprisingly, various dsDNA forms, with no structure-dependent preferences as evidenced by gel mobility shift assays. The size of the ssDNA binding site, which was estimated using fluorescence spectroscopy, is 7±1 nt. No salt-dependent binding mode transition was observed. NeqSSB-like protein probably utilizes a different model for ssDNA binding than the SSB proteins studied so far. This protein is highly thermostable; the half-life of the ssDNA binding activity is 5 min at 100°C and melting temperature (Tm) is 100.2°C as shown by differential scanning calorimetry (DSC) analysis. Conclusion NeqSSB-like protein is a novel highly thermostable protein which possesses a unique broad substrate specificity and is able to bind all types of nucleic acids.
Collapse
Affiliation(s)
- Marcin Olszewski
- Gdańsk University of Technology, Chemical Faculty, Department of Molecular Biotechnology and Microbiology, 80–233, Gdańsk, Poland
- * E-mail:
| | - Jan Balsewicz
- Gdańsk University of Technology, Chemical Faculty, Department of Molecular Biotechnology and Microbiology, 80–233, Gdańsk, Poland
| | - Marta Nowak
- Gdańsk University of Technology, Chemical Faculty, Department of Molecular Biotechnology and Microbiology, 80–233, Gdańsk, Poland
| | - Natalia Maciejewska
- Gdańsk University of Technology, Chemical Faculty, Department of Molecular Biotechnology and Microbiology, 80–233, Gdańsk, Poland
| | - Anna Cyranka-Czaja
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, 50–138, Wrocław, Poland
| | - Beata Zalewska-Piątek
- Gdańsk University of Technology, Chemical Faculty, Department of Molecular Biotechnology and Microbiology, 80–233, Gdańsk, Poland
| | - Rafał Piątek
- Gdańsk University of Technology, Chemical Faculty, Department of Molecular Biotechnology and Microbiology, 80–233, Gdańsk, Poland
| | - Józef Kur
- Gdańsk University of Technology, Chemical Faculty, Department of Molecular Biotechnology and Microbiology, 80–233, Gdańsk, Poland
| |
Collapse
|
7
|
Rex K, Bharti SK, Sah S, Varshney U. A genetic analysis of the functional interactions within Mycobacterium tuberculosis single-stranded DNA binding protein. PLoS One 2014; 9:e94669. [PMID: 24722671 PMCID: PMC3983218 DOI: 10.1371/journal.pone.0094669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/18/2014] [Indexed: 11/19/2022] Open
Abstract
Single-stranded DNA binding proteins (SSBs) are vital in all organisms. SSBs of Escherichia coli (EcoSSB) and Mycobacterium tuberculosis (MtuSSB) are homotetrameric. The N-terminal domains (NTD) of these SSBs (responsible for their tetramerization and DNA binding) are structurally well defined. However, their C-terminal domains (CTD) possess undefined structures. EcoSSB NTD consists of β1-β1′-β2-β3-α-β4-β451-β452-β5 secondary structure elements. MtuSSB NTD includes an additional β-strand (β6) forming a novel hook-like structure. Recently, we observed that MtuSSB complemented an E. coli Δssb strain. However, a chimeric SSB (mβ4-β5), wherein only the terminal part of NTD (β4-β5 region possessing L45 loop) of EcoSSB was substituted with that from MtuSSB, failed to function in E. coli in spite of its normal DNA binding and oligomerization properties. Here, we designed new chimeras by transplanting selected regions of MtuSSB into EcoSSB to understand the functional significance of the various secondary structure elements within SSB. All chimeric SSBs formed homotetramers and showed normal DNA binding. The mβ4-β6 construct obtained by substitution of the region downstream of β5 in mβ4-β5 SSB with the corresponding region (β6) of MtuSSB complemented the E. coli strain indicating a functional interaction between the L45 loop and the β6 strand of MtuSSB.
Collapse
Affiliation(s)
- Kervin Rex
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sanjay Kumar Bharti
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Shivjee Sah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- * E-mail:
| |
Collapse
|
8
|
Ramanagoudr-Bhojappa R, Blair LP, Tackett AJ, Raney KD. Physical and functional interaction between yeast Pif1 helicase and Rim1 single-stranded DNA binding protein. Nucleic Acids Res 2012; 41:1029-46. [PMID: 23175612 PMCID: PMC3553982 DOI: 10.1093/nar/gks1088] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pif1 helicase plays various roles in the maintenance of nuclear and mitochondrial genome integrity in most eukaryotes. Here, we used a proteomics approach called isotopic differentiation of interactions as random or targeted to identify specific protein complexes of Saccharomyces cerevisiae Pif1. We identified a stable association between Pif1 and a mitochondrial SSB, Rim1. In vitro co-precipitation experiments using recombinant proteins indicated a direct interaction between Pif1 and Rim1. Fluorescently labeled Rim1 was titrated with Pif1 resulting in an increase in anisotropy and a Kd value of 0.69 µM. Deletion mutagenesis revealed that the OB-fold domain and the C-terminal tail of Rim1 are both involved in interaction with Pif1. However, a Rim1 C-terminal truncation (Rim1ΔC18) exhibited a nearly 4-fold higher Kd value. Rim1 stimulated Pif1 DNA helicase activity by 4- to 5-fold, whereas Rim1ΔC18 stimulated Pif1 by 2-fold. Hence, two regions of Rim1, the OB-fold domain and the C-terminal domain, interact with Pif1. One of these interactions occurs through the N-terminal domain of Pif1 because a deletion mutant of Pif1 (Pif1ΔN) retained interaction with Rim1 but did not exhibit stimulation of helicase activity. In light of our in vivo and in vitro data, and previous work, it is likely that the Rim1–Pif1 interaction plays a role in coordination of their functions in mtDNA metabolism.
Collapse
|
9
|
Jain S, Zweig M, Peeters E, Siewering K, Hackett KT, Dillard JP, van der Does C. Characterization of the single stranded DNA binding protein SsbB encoded in the Gonoccocal Genetic Island. PLoS One 2012; 7:e35285. [PMID: 22536367 PMCID: PMC3334931 DOI: 10.1371/journal.pone.0035285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/14/2012] [Indexed: 11/18/2022] Open
Abstract
Background Most strains of Neisseria gonorrhoeae carry a Gonococcal Genetic Island which encodes a type IV secretion system involved in the secretion of ssDNA. We characterize the GGI-encoded ssDNA binding protein, SsbB. Close homologs of SsbB are located within a conserved genetic cluster found in genetic islands of different proteobacteria. This cluster encodes DNA-processing enzymes such as the ParA and ParB partitioning proteins, the TopB topoisomerase, and four conserved hypothetical proteins. The SsbB homologs found in these clusters form a family separated from other ssDNA binding proteins. Methodology/Principal Findings In contrast to most other SSBs, SsbB did not complement the Escherichia coli ssb deletion mutant. Purified SsbB forms a stable tetramer. Electrophoretic mobility shift assays and fluorescence titration assays, as well as atomic force microscopy demonstrate that SsbB binds ssDNA specifically with high affinity. SsbB binds single-stranded DNA with minimal binding frames for one or two SsbB tetramers of 15 and 70 nucleotides. The binding mode was independent of increasing Mg2+ or NaCl concentrations. No role of SsbB in ssDNA secretion or DNA uptake could be identified, but SsbB strongly stimulated Topoisomerase I activity. Conclusions/Significance We propose that these novel SsbBs play an unknown role in the maintenance of genetic islands.
Collapse
Affiliation(s)
- Samta Jain
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Maria Zweig
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katja Siewering
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kathleen T. Hackett
- Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Joseph P. Dillard
- Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Chris van der Does
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
- * E-mail:
| |
Collapse
|
10
|
Bharti SK, Rex K, Sreedhar P, Krishnan N, Varshney U. Chimeras of Escherichia coli and Mycobacterium tuberculosis single-stranded DNA binding proteins: characterization and function in Escherichia coli. PLoS One 2011; 6:e27216. [PMID: 22174737 PMCID: PMC3236198 DOI: 10.1371/journal.pone.0027216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022] Open
Abstract
Single stranded DNA binding proteins (SSBs) are vital for the survival of organisms. Studies on SSBs from the prototype, Escherichia coli (EcoSSB) and, an important human pathogen, Mycobacterium tuberculosis (MtuSSB) had shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. Here, we used the X-ray crystal structure data of the two SSBs to design a series of chimeric proteins (mβ1, mβ1′β2, mβ1–β5, mβ1–β6 and mβ4–β5) by transplanting β1, β1′β2, β1–β5, β1–β6 and β4–β5 regions, respectively of the N-terminal (DNA binding) domain of MtuSSB for the corresponding sequences in EcoSSB. In addition, mβ1′β2ESWR SSB was generated by mutating the MtuSSB specific ‘PRIY’ sequence in the β2 strand of mβ1′β2 SSB to EcoSSB specific ‘ESWR’ sequence. Biochemical characterization revealed that except for mβ1 SSB, all chimeras and a control construct lacking the C-terminal domain (ΔC SSB) bound DNA in modes corresponding to limited and unlimited modes of binding. However, the DNA on MtuSSB may follow a different path than the EcoSSB. Structural probing by protease digestion revealed that unlike other SSBs used, mβ1 SSB was also hypersensitive to chymotrypsin treatment. Further, to check for their biological activities, we developed a sensitive assay, and observed that mβ1–β6, MtuSSB, mβ1′β2 and mβ1–β5 SSBs complemented E. coli Δssb in a dose dependent manner. Complementation by the mβ1–β5 SSB was poor. In contrast, mβ1′β2ESWR SSB complemented E. coli as well as EcoSSB. The inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of E. coli. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function.
Collapse
Affiliation(s)
- Sanjay Kumar Bharti
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kervin Rex
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Pujari Sreedhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Neeraja Krishnan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- * E-mail:
| |
Collapse
|
11
|
Tan YN, Lee KH, Su X. Study of Single-Stranded DNA Binding Protein–Nucleic Acids Interactions using Unmodified Gold Nanoparticles and Its Application for Detection of Single Nucleotide Polymorphisms. Anal Chem 2011; 83:4251-7. [DOI: 10.1021/ac200525a] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yen Nee Tan
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602
| | - Kwai Han Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Xiaodi Su
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602
| |
Collapse
|
12
|
Pestryakov PE, Lavrik OI. Mechanisms of single-stranded DNA-binding protein functioning in cellular DNA metabolism. BIOCHEMISTRY (MOSCOW) 2009; 73:1388-404. [PMID: 19216707 DOI: 10.1134/s0006297908130026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review deals with analysis of mechanisms involved in coordination of DNA replication and repair by SSB proteins; characteristics of eukaryotic, prokaryotic, and archaeal SSB proteins are considered, which made it possible to distinguish general mechanisms specific for functioning of proteins from organisms of different life domains. Mechanisms of SSB protein interactions with DNA during metabolism of the latter are studied; structural organization of the SSB protein complexes with DNA, as well as structural and functional peculiarities of different SSB proteins are analyzed.
Collapse
Affiliation(s)
- P E Pestryakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | |
Collapse
|
13
|
Filipkowski P, Duraj-Thatte A, Kur J. Identification, cloning, expression, and characterization of a highly thermostable single-stranded-DNA-binding protein (SSB) from Deinococcus murrayi. Protein Expr Purif 2006; 53:201-8. [PMID: 17175167 DOI: 10.1016/j.pep.2006.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 11/09/2006] [Accepted: 11/09/2006] [Indexed: 11/30/2022]
Abstract
We report identification and characterization of SSB-like protein from Deinococcus murrayi (DmuSSB). PCR-derived DNA fragment containing the complete structural gene for DmuSSB was cloned and expressed in Escherichia coli. The gene consisted of an open reading frame of 826 nucleotides encoding a protein of 276 amino acid residues with a calculated molecular weight of 30.14 kDa. DmuSSB includes two OB folds per monomer and functions as a homodimer. In fluorescence titrations with poly(dT) DmuSSB bound 27-32 nt depending on the salt concentration, and fluorescence was quenched by about 62%. In a complementation assay in E. coli, DmuSSB took over the in vivo function of EcoSSB. DmuSSB maintained 100% activity after 120 min incubation at 80 degrees C, with half-lives of 50 min at 95 degrees C, 40 min at 100 degrees C and 35 min at 105 degrees C. DmuSSB is the most thermostable SSB-like protein identified to date, offering an attractive alternative for TaqSSB and TthSSB in their applications for molecular biology methods and for analytical purposes.
Collapse
Affiliation(s)
- Paweł Filipkowski
- Gdańsk University of Technology, Chemical Faculty, Department of Microbiology, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland
| | | | | |
Collapse
|
14
|
Ji XM, Xie CH, Fang MH, Zhou FX, Zhang WJ, Zhang MS, Zhou YF. Efficient inhibition of human telomerase activity by antisense oligonucleotides sensitizes cancer cells to radiotherapy. Acta Pharmacol Sin 2006; 27:1185-91. [PMID: 16923339 DOI: 10.1111/j.1745-7254.2006.00417.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM To investigate the effect of the antisense oligonucleotides (ASODN) specific for human telomerase RNA (hTR) on radio sensitization and proliferation inhibition in human neurogliocytoma cells (U251). METHODS U251 cells were transfected with hTR ASODN or nonspecific oligonucleotides (NSODN). Before and after irradiation of (60)Co- gamma ray, telomerase activity was assayed by telomeric repeat amplification protocol ( TRAP-PCR-ELISA), and DNA damage and repair were examined by the comet assay. The classical colony assay was used to plot the cell-survival curve, to detect the D(0 )value. RESULTS hTR antisense oligonucleotides could downregulate the telomerase activity, increase radiation induced DNA damage and reduce the subsequent repair. Furthermore, it could inhibit the proliferation and decrease the D(0 ) value which demonstrates rising radiosensitivity. However, telomere length was unchanged over a short period of time. CONCLUSION These findings suggest that an ASODN-based strategy may be used to develop telomerase inhibitors, which can efficiently sensitize radiotherapy.
Collapse
Affiliation(s)
- Xue-mei Ji
- Department of Chemotherapy and Radiation Oncology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Filipkowski P, Duraj-Thatte A, Kur J. Novel thermostable single-stranded DNA-binding protein (SSB) from Deinococcus geothermalis. Arch Microbiol 2006; 186:129-37. [PMID: 16802171 DOI: 10.1007/s00203-006-0128-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/17/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
To study the biochemical properties of single-stranded DNA-binding (SSB) protein from Deinococcus geothermalis (DgeSSB), we have cloned the ssb gene obtained by PCR and developed an overexpression system. The gene consists of an open reading frame of 900 nucleotides encoding a protein of 300 amino acids with a calculated molecular weight of 32.45 kDa. The amino acid sequence exhibits 43, 44 and 75% identity with Thermus aquaticus, Thermus thermophilus and Deinococcus radiodurans SSBs, respectively. We show that DgeSSB is similar to Thermus/Deinococcus SSB in its biochemical properties. DgeSSB includes two oligonucleotide/oligosaccharide-binding folds per monomer and functions as a homodimer. In fluorescence titrations with poly(dT), DgeSSB bound about 30 nt independent of the salt concentration, and the fluorescence was quenched by about 65%. In a complementation assay in Escherichia coli, DgeSSB took over the in vivo function of EcoSSB. DgeSSB is thermostable with half-lives of 50 min at 70 degrees C and 5 min at 90 degrees C. Hence, DgeSSB offers an attractive alternative for TaqSSB and TthSSB in their applications for molecular biology methods and for analytical purposes.
Collapse
Affiliation(s)
- Paweł Filipkowski
- Department of Microbiology, Gdańsk University of Technology, ul. Narutowicza 11/12, 80952 Gdańsk, Poland
| | | | | |
Collapse
|
16
|
Abstract
As part of an international effort and a national programme, structural analysis of mycobacterial proteins involved in recombination and repair, stringent response and protein synthesis has been undertaken, and work on proteins in a couple of metabolic pathways has been initiated. Already X-ray analysed are Mycobacterium tuberculosis and Mycobacterium smegmatis RecA and their nucleotide complexes, and different crystal forms of M. tuberculosis single-stranded DNA binding protein, M. smegmatis DNA binding protein from stationary phase cells and M. tuberculosis ribosome recycling factor. A comparative study involving these structures and those of similar proteins from other sources brings out the special features of the mycobacterial proteins, which are likely to be useful in selective inhibitor design. The structures provide insights into the plasticity of the molecules and its biological implications, and yield valuable information on their assembly and quaternary structure. They also provide leads for further structural investigations.
Collapse
Affiliation(s)
- M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
17
|
Robbins JB, McKinney MC, Guzman CE, Sriratana B, Fitz-Gibbon S, Ha T, Cann IKO. The euryarchaeota, nature's medium for engineering of single-stranded DNA-binding proteins. J Biol Chem 2005; 280:15325-39. [PMID: 15671019 DOI: 10.1074/jbc.m412870200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The architecture of single-stranded DNA-binding proteins, which play key roles in DNA metabolism, is based on different combinations of the oligonucleotide/oligosaccharide binding (OB) fold. Whereas the polypeptide serving this function in bacteria contains one OB fold, the eukaryotic functional homolog comprises a complex of three proteins, each harboring at least one OB fold. Here we show that unlike these groups of organisms, the Euryarchaeota has exploited the potential in the OB fold to re-invent single-stranded DNA-binding proteins many times. However, the most common form is a protein with two OB folds and one zinc finger domain. We created several deletion mutants of this protein based on its conserved motifs, and from these structures functional chimeras were synthesized, supporting the hypothesis that gene duplication and recombination could lead to novel functional forms of single-stranded DNA-binding proteins. Biophysical studies showed that the orthologs of the two OB fold/one zinc finger replication protein A in Methanosarcina acetivorans and Methanopyrus kandleri exhibit two binding modes, wrapping and stretching of DNA. However, the ortholog in Ferroplasma acidarmanus possessed only the stretching mode. Most interestingly, a second single-stranded DNA-binding protein, FacRPA2, in this archaeon exhibited the wrapping mode. Domain analysis of this protein, which contains a single OB fold, showed that its architecture is similar to the functional homologs thought to be unique to the Crenarchaeotes. Most unexpectedly, genes coding for similar proteins were found in the genomes of eukaryotes, including humans. Although the diversity shown by archaeal single-stranded DNA-binding proteins is unparalleled, the presence of their simplest form in many organisms across all domains of life is of greater evolutionary consequence.
Collapse
Affiliation(s)
- Justin B Robbins
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Shioi S, Ose T, Maenaka K, Shiroishi M, Abe Y, Kohda D, Katayama T, Ueda T. Crystal structure of a biologically functional form of PriB from Escherichia coli reveals a potential single-stranded DNA-binding site. Biochem Biophys Res Commun 2005; 326:766-76. [PMID: 15607735 DOI: 10.1016/j.bbrc.2004.11.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Indexed: 01/16/2023]
Abstract
PriB is not only an essential protein necessary for the replication restart on the collapsed and disintegrated replication fork, but also an important protein for assembling of primosome onto PhiX174 genomic DNA during replication initiation. Here we report a 2.0-A-resolution X-ray structure of a biologically functional form of PriB from Escherichia coli. The crystal structure revealed that despite a low level of primary sequence identity, the PriB monomer, as well as the dimeric form, are structurally identical to the N-terminal DNA-binding domain of the single-stranded DNA-binding protein (SSB) from Escherichia coli, which possesses an oligonucleotides-binding-fold. The oligonucleotide-PriB complex model based on the oligonucleotides-SSB complex structure suggested that PriB had a DNA-binding pocket conserved in SSB from Escherichia coli and might bind to single-stranded DNA in the manner of SSB. Furthermore, surface plasmon resonance analysis and fluorescence measurements demonstrated that PriB binds single-stranded DNA with high affinity, by involving tryptophan residue. The significance of these results with respect to the functional role of PriB in the assembly of primosome is discussed.
Collapse
Affiliation(s)
- Seijiro Shioi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tyagi AK, Dhar N. Recent advances in tuberculosis research in India. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 84:211-73. [PMID: 12934938 DOI: 10.1007/3-540-36488-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tuberculosis (TB) continues to be the leading killer of mankind among all infectious diseases, especially in the developing countries. Since the discovery of tubercle bacillus more than 100 years ago, TB has been the subject of research in an attempt to develop tools and strategies to combat this disease. Research in Indian laboratories has contributed significantly towards developing the DOTS strategy employed worldwide in tuberculosis control programmes and elucidating the biological properties of its etiologic agent, M. tuberculosis. In recent times, the development of tools for manipulation of mycobacteria has given a boost to researchers working in this field. New strategies are being employed towards understanding the mechanisms of protection and pathogenesis of this disease. Molecular methods are being applied to develop new tools and reagents for prevention, diagnosis and treatment of tuberculosis. With the sequencing of the genome of M. tuberculosis, molecules are being identified for the development of new drugs and vaccines. In this chapter, the advances made in these areas by Indian researchers mainly during the last five years are reviewed.
Collapse
Affiliation(s)
- Anil K Tyagi
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India.
| | | |
Collapse
|
20
|
Dąbrowski S, Olszewski M, Piątek R, Brillowska-Dąbrowska A, Konopa G, Kur J. Identification and characterization of single-stranded-DNA-binding proteins from Thermus thermophilus and Thermus aquaticus - new arrangement of binding domains. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3307-3315. [PMID: 12368464 DOI: 10.1099/00221287-148-10-3307] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Single-stranded-DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination and repair in bacteria, archaea and eukarya. This paper reports the identification and characterization of the SSB-like proteins of the thermophilic bacteria Thermus thermophilus and Thermus aquaticus. These proteins (TthSSB and TaqSSB), in contrast to their known counterparts from mesophilic bacteria, archaea and eukarya, are homodimers, and each monomer contains two ssDNA-binding domains with a conserved OB (oligonucleotide/oligosaccharide-binding) fold, as deduced from the sequence analysis. The N-terminal domain is located in the region from amino acid 1 to 123 and the C-terminal domain is located between amino acids 124 and 264 or 266 in TthSSB and TaqSSB, respectively. Purified TthSSB or TaqSSB binds only to ssDNA and with high affinity. The binding site size for TaqSSB and TthSSB protein corresponds to 30-35 nucleotides. It is concluded that the SSBs of thermophilic and mesophilic bacteria, archaea and eukarya share a common core ssDNA-binding domain. This ssDNA-binding domain was presumably present in the common ancestor to all three major branches of life.
Collapse
Affiliation(s)
- Sławomir Dąbrowski
- Technical University of Gdansk, Department of Microbiology, ul. G. Narutowicza 11/12, 80-952 Gdansk, Poland1
| | - Marcin Olszewski
- Technical University of Gdansk, Department of Microbiology, ul. G. Narutowicza 11/12, 80-952 Gdansk, Poland1
| | - Rafał Piątek
- Technical University of Gdansk, Department of Microbiology, ul. G. Narutowicza 11/12, 80-952 Gdansk, Poland1
| | - Anna Brillowska-Dąbrowska
- Technical University of Gdansk, Department of Microbiology, ul. G. Narutowicza 11/12, 80-952 Gdansk, Poland1
| | - Grażyna Konopa
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland2
| | - Jozef Kur
- Technical University of Gdansk, Department of Microbiology, ul. G. Narutowicza 11/12, 80-952 Gdansk, Poland1
| |
Collapse
|
21
|
Dabrowski S, Olszewski M, Piatek R, Kur J. Novel thermostable ssDNA-binding proteins from Thermus thermophilus and T. aquaticus-expression and purification. Protein Expr Purif 2002; 26:131-8. [PMID: 12356480 DOI: 10.1016/s1046-5928(02)00504-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination, and repair in bacteria, archaea, and eukarya. We report here the identification, expression, and purification of the SSB-like proteins of the thermophilic bacteria Thermus thermophilus and T. aquaticus. The nucleotide (nt) sequence revealed that T. thermophilus SSB (TthSSB) and T. aquaticus (TaqSSB) consist of 264 and 266 amino acids, respectively, and have a molecular weight of 29.87 and 30.03kDa, respectively. The homology between these protein, is very high-82% identity and 90% similarity. They are the largest known prokaryotic SSB proteins. TthSSB and TaqSSB monomers have two putative ssDNA-binding sequences: N-terminal (located in the region from amino acids 1 to 123) and C-terminal (located between amino acids 124 and 264 or 266 in TthSSB and TaqSSB, respectively). PCR-derived DNA fragment containing the complete structural gene for TthSSB or TaqSSB protein was cloned into an expression vector. The clones expressing SSB-like proteins were selected and cloned DNA fragments were verified to be authentic by sequencing several clones. The purification was carried out using reduction of contamination by the host protein with heat treatment, followed by QAE-cellulose and ssDNA-cellulose column chromatography. We found our expression and purification system to be quite convenient and efficient, and will use it for production of thermostable SSB-proteins for crystallography study. We have applied the use of TthSSB and TaqSSB protein to increase the amplification efficiency with a number of diverse templates. The use of SSB protein may prove to be generally applicable in improving the PCR efficiency.
Collapse
Affiliation(s)
- Slz Dabrowski
- Department of Microbiology, Technical University of Gdańsk, ul. G. Narutowicza 11/12, 80-952, Gdańsk, Poland
| | | | | | | |
Collapse
|
22
|
Landwehr M, Curth U, Urbanke C. A dimeric mutant of the homotetrameric single-stranded DNA binding protein from Escherichia coli. Biol Chem 2002; 383:1325-33. [PMID: 12437125 DOI: 10.1515/bc.2002.151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A single amino acid substitution (Y78R) at the dimer-dimer interface of homotetrameric single stranded DNA binding protein from E. coli (EcoSSB) renders the protein a stable dimer. This dimer can bind single-stranded DNA albeit with greatly reduced affinity. In vivo this dimeric SSB cannot replace homotetrameric EcoSSB. Amino acid changes at the rim of the dimer-dimer interface nearby (Q76K, Q76E) show an electrostatic interaction between a charged amino acid at position 76 and bound nucleic acid. In conclusion, nucleic acid binding to homotetrameric SSB must take place across both dimers to achieve functionally correct binding.
Collapse
|
23
|
Acharya N, Varshney U. Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J Mol Biol 2002; 318:1251-64. [PMID: 12083515 DOI: 10.1016/s0022-2836(02)00053-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The single-stranded DNA-binding proteins (SSBs) are vital to virtually all DNA functions. Here, we report on the biochemical properties of SSB from a fast-growing mycobacteria, Mycobacterium smegmatis, and the interaction of the homotetrameric SSBs with uracil DNA glycosylases (UDGs) from M. smegmatis (Msm), Mycobacterium tuberculosis (Mtu) and Escherichia coli (Eco). UDG is a crucial DNA repair enzyme, which removes the promutagenic uracil residues. MsmSSB stimulates activity of the homologous Msm UDG and of the heterologous Mtu-, and Eco-UDGs. On the contrary, while the MtuSSB stimulates the Mtu UDG, it inhibits the other two UDGs. Although the MsmSSB shares 84% identity with MtuSSB, the two are strikingly different, in that MsmSSB contains a glycine-rich segment (11 out of 13 residues) in the spacer connecting the N-terminal DNA-binding domain with the C-terminal acidic tail. While the DNA-binding properties of MsmSSB, such as its affinity to oligomeric DNA, requirement of minimum size DNA and the modes of interaction are indistinguishable from those of Eco-, and Mtu-SSBs, it is unclear if the glycine-rich segment confers structural advantage to MsmSSB, responsible for its stimulatory effect on all UDGs tested. More importantly, by using a small polypeptide inhibitor of UDGs, and the deletion mutants of SSBs, we suggest that the C-terminal acidic tail of the SSBs interacts within the DNA-binding groove of the UDGs, and propose a role for SSBs in the recruitment of UDGs to the damaged DNA.
Collapse
Affiliation(s)
- Narottam Acharya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
| | | |
Collapse
|
24
|
Reddy MS, Guhan N, Muniyappa K. Characterization of single-stranded DNA-binding proteins from Mycobacteria. The carboxyl-terminal of domain of SSB is essential for stable association with its cognate RecA protein. J Biol Chem 2001; 276:45959-68. [PMID: 11577073 DOI: 10.1074/jbc.m103523200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSB) play an important role in most aspects of DNA metabolism including DNA replication, repair, and recombination. We report here the identification and characterization of SSB proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis. Sequence comparison of M. smegmatis SSB revealed that it is homologous to M. tuberculosis SSB, except for a small spacer connecting the larger amino-terminal domain with the extreme carboxyl-terminal tail. The purified SSB proteins of mycobacteria bound single-stranded DNA with high affinity, and the association and dissociation constants were similar to that of the prototype SSB. The proteolytic signatures of free and bound forms of SSB proteins disclosed that DNA binding was associated with structural changes at the carboxyl-terminal domain. Significantly, SSB proteins from mycobacteria displayed high affinity for cognate RecA, whereas Escherichia coli SSB did not under comparable experimental conditions. Accordingly, SSB and RecA were coimmunoprecipitated from cell lysates, further supporting an interaction between these proteins in vivo. The carboxyl-terminal domain of M. smegmatis SSB, which is not essential for interaction with ssDNA, is the site of binding of its cognate RecA. These studies provide the first evidence for stable association of eubacterial SSB proteins with their cognate RecA, suggesting that these two proteins might function together during DNA repair and/or recombination.
Collapse
Affiliation(s)
- M S Reddy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
25
|
Handa P, Acharya N, Varshney U. Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases. J Biol Chem 2001; 276:16992-7. [PMID: 11279060 DOI: 10.1074/jbc.m100393200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uracil, a promutagenic base in DNA can arise by spontaneous deamination of cytosine or incorporation of dUMP by DNA polymerase. Uracil is removed from DNA by uracil DNA glycosylase (UDG), the first enzyme in the uracil excision repair pathway. We recently reported that the Escherichia coli single-stranded DNA binding protein (SSB) facilitated uracil excision from certain structured substrates by E. coli UDG (EcoUDG) and suggested the existence of interaction between SSB and UDG. In this study, we have made use of the chimeric proteins obtained by fusion of N- and C-terminal domains of SSBs from E. coli and Mycobacterium tuberculosis to investigate interactions between SSBs and UDGs. The EcoSSB or a chimera containing its C-terminal domain interacts with EcoUDG in a binary (SSB-UDG) or a ternary (DNA-SSB-UDG) complex. However, the chimera containing the N-terminal domain from EcoSSB showed no interactions with EcoUDG. Thus, the C-terminal domain (48 amino acids) of EcoSSB is necessary and sufficient for interaction with EcoUDG. The data also suggest that the C-terminal domain (34 amino acids) of MtuSSB is a predominant determinant for mediating its interaction with MtuUDG. The mechanism of how the interactions between SSB and UDG could be important in uracil excision repair pathway has been discussed.
Collapse
Affiliation(s)
- P Handa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560 012, India
| | | | | |
Collapse
|
26
|
Handa P, Acharya N, Thanedar S, Purnapatre K, Varshney U. Distinct properties of Mycobacterium tuberculosis single-stranded DNA binding protein and its functional characterization in Escherichia coli. Nucleic Acids Res 2000; 28:3823-9. [PMID: 11000276 PMCID: PMC110771 DOI: 10.1093/nar/28.19.3823] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Single-stranded DNA binding proteins (SSBs) play an essential role in various DNA functions. Characterization of SSB from Mycobacterium tuberculosis, which infects nearly one-third of the world's population and kills about 2-3 million people every year, showed that its oligomeric state and various in vitro DNA binding properties were similar to those of the SSB from Escherichia coli. In this study, use of the yeast two-hybrid assay suggests that the ECO:SSB and the MTU:SSB are even capable of heterooligomerization. However, the MTU:SSB failed to complement a Deltassb strain of E. coli. The sequence comparison suggested that MTU:SSB contained a distinct C-terminal domain. The C-terminal domain of ECO:SSB interacts with various cellular proteins. The chimeric constructs between the N- and C-terminal domains of the MTU:SSB and ECO:SSB exist as homotetramers and demonstrate DNA binding properties similar to the wild-type counterparts. Despite similar biochemical properties, the chimeric SSBs also failed to complement the Deltassb strain of E.coli. These data allude to the occurrence of a 'cross talk' between the N- and the C-terminal domains of the SSBs for their in vivo function. Further, compared with those of the ECO:SSB, the secondary/tertiary interactions within MTU:SSB were found to be less susceptible to disruption by guanidinium hydrochloride. Such structural differences could be exploited for utilizing such essential proteins as crucial molecular targets for controlling the growth of the pathogen.
Collapse
Affiliation(s)
- P Handa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | |
Collapse
|