1
|
Ouyang M, Wu F, Hu C. Efficacy of Short Novel Antimicrobial Peptides in a Mouse Model of Staphylococcus pseudintermedius Skin Infection. Antibiotics (Basel) 2024; 13:508. [PMID: 38927175 PMCID: PMC11200854 DOI: 10.3390/antibiotics13060508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
As the clinical application of antibiotics for bacterial skin infections in companion animals becomes increasingly prevalent, the issue of bacterial resistance has become more pronounced. Antimicrobial peptides, as a novel alternative to traditional antibiotics, have garnered widespread attention. In our study, synthetic peptides ADD-A and CBD3-ABU were tested against Staphylococcus pseudintermedius skin infections in KM mice. ADD-A was applied topically and through intraperitoneal injection, compared with control groups and treatments including CBD3-ABU, ampicillin sodium, and saline. Wound contraction, bacterial counts and histology were assessed on days 3 and 11 post-infection. ADD-A and ampicillin treatments significantly outperformed saline in wound healing (p < 0.0001 and p < 0.001, respectively). ADD-A also showed a markedly lower bacterial count than ampicillin (p < 0.0001). Histologically, ADD-A-applied wounds had better epidermal continuity and a thicker epidermis than normal, with restored follicles and sebaceous glands. ADD-A's effectiveness suggests it as a potential alternative to antibiotics for treating skin infections in animals.
Collapse
Affiliation(s)
| | | | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.O.); (F.W.)
| |
Collapse
|
2
|
Asano F, Miyahara T, Miyamoto H, Kodama H. A Thermophile-Fermented Compost Modulates Intestinal Cations and the Expression of a Juvenile Hormone-Binding Protein Gene in the Female Larvae of Hercules Beetle Dynastes hercules (Coleoptera: Scarabaeidae). INSECTS 2023; 14:910. [PMID: 38132584 PMCID: PMC10744137 DOI: 10.3390/insects14120910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
The Hercules beetle larvae grow by feeding on humus, and adding a thermophile-fermented compost to the humus can upregulate the growth of female larvae. In this study, the effects of compost on the intestinal environment, including pH, cation concentrations, and organic acid concentrations of intestinal fluids, were investigated, and the RNA profile of the fat body was determined. Although the total intestinal potassium ions were similar between the larvae grown without compost (control larvae) and those with compost (compost larvae), the proportion of potassium ions in the midgut of the compost larvae drastically increased. In the midgut, an unidentified organic acid was the most abundant, and its concentration increased in the compost larvae. Transcriptome analysis showed that a gene encoding hemolymph juvenile-binding protein (JHBP) was expressed in the compost female larvae and not in the control female larvae. Expression of many genes involved in the defensive system was decreased in the compost female larvae. These results suggest that the female-specific enhancement of larval growth by compost was associated with the increased JHBP expression under conditions in which the availability of nutrition from the humus was improved by an increase in potassium ions in the midgut.
Collapse
Affiliation(s)
| | | | | | - Hiroaki Kodama
- Graduate School of Horticulture, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; (F.A.); (T.M.); (H.M.)
| |
Collapse
|
3
|
Structural and functional characterizations and heterogenous expression of the antimicrobial peptides, Hidefensins, from black soldier fly, Hermetia illucens (L.). Protein Expr Purif 2021; 192:106032. [PMID: 34922007 DOI: 10.1016/j.pep.2021.106032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022]
Abstract
Insect defensins are effector components of the innate defense system. Defensins, which are widely distributed among insects, are a type of small cysteine-rich plant antimicrobial peptides with broad-spectrum antimicrobial activity. Here, the cDNAs of the black soldier fly, Hermetia illucens (L.), encoding six defensins, designated herein as Hidefensin1-1, 2, 3, 4, 5, 6. Moreover, Hidefensin1-1, 2, and 5 were identified for the first time by genome-targeted analysis. These Hidefensins were found to mainly adopt α-helix and β-sheet conformation homology as modeled by PRABI, Swiss-Model and ProFunc server. Six conserved cysteine residues that contribute to three disulfide bonds formed the spacing pattern "C-X12-C-X3-C-X9-C-X5-C-X-C", which play a vital role in the molecular stability of Hidefensins. Phylogenetic analysis revealed that the homology of five Hidefensins (except Hidefensin4) was about 59%-92% compared with other insect defensins, indicating that they are novel antimicrobial peptides genes in black soldier fly. Furthermore, the Hidefensin1-1 was expressed in the Escherichia coli strain BL21(DE3) as a fusion protein with thioredoxin. Results showed that the purified TRX-Hidefensin1-1 exerted strong inhibitory effects against the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli. The inhibitory efficacy of TRX-Hidefensin1-1 against Gram-positive bacteria was better than that against Gram-negative bacteria. These results indicated that Hidefensin1-1 has potent antimicrobial activities against test pathogens.
Collapse
|
4
|
Manniello MD, Moretta A, Salvia R, Scieuzo C, Lucchetti D, Vogel H, Sgambato A, Falabella P. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell Mol Life Sci 2021; 78:4259-4282. [PMID: 33595669 PMCID: PMC8164593 DOI: 10.1007/s00018-021-03784-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Misuse and overuse of antibiotics have contributed in the last decades to a phenomenon known as antibiotic resistance which is currently considered one of the principal threats to global public health by the World Health Organization. The aim to find alternative drugs has been demonstrated as a real challenge. Thanks to their biodiversity, insects represent the largest class of organisms in the animal kingdom. The humoral immune response includes the production of antimicrobial peptides (AMPs) that are released into the insect hemolymph after microbial infection. In this review, we have focused on insect immune responses, particularly on AMP characteristics, their mechanism of action and applications, especially in the biomedical field. Furthermore, we discuss the Toll, Imd, and JAK-STAT pathways that activate genes encoding for the expression of AMPs. Moreover, we focused on strategies to improve insect peptides stability against proteolytic susceptibility such as D-amino acid substitutions, N-terminus modification, cyclization and dimerization.
Collapse
Affiliation(s)
- M D Manniello
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - A Moretta
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - R Salvia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - C Scieuzo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - D Lucchetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - H Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - A Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture (PZ), Italy
| | - P Falabella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
5
|
Study of the Interaction of a Novel Semi-Synthetic Peptide with Model Lipid Membranes. MEMBRANES 2020; 10:membranes10100294. [PMID: 33086635 PMCID: PMC7603383 DOI: 10.3390/membranes10100294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022]
Abstract
Most linear peptides directly interact with membranes, but the mechanisms of interaction are far from being completely understood. Here, we present an investigation of the membrane interactions of a designed peptide containing a non-natural, synthetic amino acid. We selected a nonapeptide that is reported to interact with phospholipid membranes, ALYLAIRKR, abbreviated as ALY. We designed a modified peptide (azoALY) by substituting the tyrosine residue of ALY with an antimicrobial azobenzene-bearing amino acid. Both of the peptides were examined for their ability to interact with model membranes, assessing the penetration of phospholipid monolayers, and leakage across the bilayer of large unilamellar vesicles (LUVs) and giant unilamellar vesicles (GUVs). The latter was performed in a microfluidic device in order to study the kinetics of leakage of entrapped calcein from the vesicles at the single vesicle level. Both types of vesicles were prepared from a 9:1 (mol/mol) mixture of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(1′-rac-glycerol). Calcein leakage from the vesicles was more pronounced at a low concentration in the case of azoALY than for ALY. Increased vesicle membrane disturbance in the presence of azoALY was also evident from an enzymatic assay with LUVs and entrapped horseradish peroxidase. Molecular dynamics simulations of ALY and azoALY in an anionic POPC/POPG model bilayer showed that ALY peptide only interacts with the lipid head groups. In contrast, azoALY penetrates the hydrophobic core of the bilayers causing a stronger membrane perturbation as compared to ALY, in qualitative agreement with the experimental results from the leakage assays.
Collapse
|
6
|
Shelomi M, Lin SS, Liu LY. Transcriptome and microbiome of coconut rhinoceros beetle (Oryctes rhinoceros) larvae. BMC Genomics 2019; 20:957. [PMID: 31818246 PMCID: PMC6902462 DOI: 10.1186/s12864-019-6352-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The coconut rhinoceros beetle, Oryctes rhinoceros, is a major pest of palm crops in tropical Asia and the Pacific Islands. Little molecular data exists for this pest, impeding our ability to develop effective countermeasures and deal with the species' growing resistance to viral biocontrols. We present the first molecular biology analyses of this species, including a metagenomic assay to understand the microbiome of different sections of its digestive tract, and a transcriptomics assay to complement the microbiome data and to shed light on genes of interest like plant cell wall degrading enzymes and immunity and xenobiotic resistance genes. RESULTS The gut microbiota of Oryctes rhinoceros larvae is quite similar to that of the termite gut, as both species feed on decaying wood. We found the first evidence for endogenous beta-1,4-endoglucanase in the beetle, plus evidence for microbial cellobiase, suggesting the beetle can degrade cellulose together with its gut microfauna. A number of antimicrobial peptides are expressed, particularly by the fat body but also by the midgut and hindgut. CONCLUSIONS This transcriptome provides a wealth of data about the species' defense against chemical and biological threats, has uncovered several potentially new species of microbial symbionts, and significantly expands our knowledge about this pest.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University, No 27 Lane 113 Sec 4 Roosevelt Rd, Taipei, 10617 Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Li-Yu Liu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Song J, Wang J, Zhan N, Sun T, Yu W, Zhang L, Shan A, Zhang A. Therapeutic Potential of Trp-Rich Engineered Amphiphiles by Single Hydrophobic Amino Acid End-Tagging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43820-43834. [PMID: 31687796 DOI: 10.1021/acsami.9b12706] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
End-tagging with a single hydrophobic residue contributes to improve the cell selectivity of antimicrobial peptides (AMPs), but systematic studies have been lacking. Thus, this study aimed to systematically investigate how end-tagging with hydrophobic residues at the C-terminus and Gly capped at the N-terminus of W4 (RWRWWWRWR) affects the bioactivity of W4 variants. Among all the hydrophobic residues, only Ala end-tagging improved the antibacterial activity of W4. Meanwhile, Gly capped at the N-terminus could promote the helical propensity of the end-tagged peptides in dodecylphosphocholine micelles, increasing their antimicrobial activities. Of these peptides, GW4A (GRWRWWWRWRA) showed the best antibacterial activity against the 19 species of bacteria tested (GMMIC = 1.86 μM) with low toxicity, thus possessing the highest cell selectivity (TIall = 137.63). It also had rapid sterilization, good salt and serum resistance, and LPS-neutralizing activity. Antibacterial mechanism studies showed that the short peptide GW4A killed bacteria by destroying cell membrane integrity and causing cytoplasmic leakage. Overall, these findings suggested that systematic studies on terminal modifications promoted the development of peptide design theory and provided a potential method for optimization of effective AMPs.
Collapse
Affiliation(s)
- Jing Song
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Jiajun Wang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Na Zhan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Taotao Sun
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Weikang Yu
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Licong Zhang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Aizhong Zhang
- College of Animal Science and Veterinary Medicine , Bayi Agricultural University , Daqing 163000 , Heilongjiang , P. R. China
| |
Collapse
|
8
|
Arpornsuwan T, Paveenkittiporn W, Jaresitthikunchai J, Roytrakul S. BAMP-28 Antimicrobial Peptide Against Different MALDI Biotype of Carbapenam Resistant Enterobacteriaceae. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9743-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Hong W, Liu L, Zhang Z, Zhao Y, Zhang D, Liu M. Insights into the antibacterial mechanism of PEGylated nano-bacitracin A against Streptococcus pneumonia: both penicillin-sensitive and penicillin-resistant strains. Int J Nanomedicine 2018; 13:6297-6309. [PMID: 30349251 PMCID: PMC6186892 DOI: 10.2147/ijn.s178596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Multidrug-resistant (MDR) Streptococcus pneumonia constitute a major worldwide public health concern. Materials and methods In our preliminary study, PEGylated nano-self-assemblies of bacitracin A (PEGylated Nano-BA12K) showed strong antibacterial potency against reference S. pneumonia strain (ATCC 49619). In this study, the possibility of applying PEGylated Nano-BA12K against penicillin-resistant S. pneumonia was further investigated. In addition, the underlying antibacterial mechanism of PEGylated Nano-BA12K against both sensitive and resistant S. pneumonia was also clarified systematically, since S. pneumonia was naturally resistant to its unassembled counterpart bacitracin A (BA). Results PEGylated Nano-BA12K showed strong antibacterial potency against 13 clinical isolates of S. pneumonia, including five penicillin-resistant strains. Structural changes, partial collapse, and even lysis of both penicillin-sensitive and penicillin-resistant bacteria were observed after incubation with PEGylated Nano-BA12K via transmission electron microscopy and atomic force microscopy. Thus, the cell wall or/and cell membrane might be the main target of PEGylated Nano-BA12K against S. pneumonia. PEGylated Nano-BA12K exhibited limited effect on the permeabilization and peptidoglycan content of cell wall. Surface pressure measurement suggested that PEGylated Nano-BA12K was much more tensioactive than BA, which was usually translated into a good membranolytic effect, and is helpful to permeabilize the cell membrane and damage membrane integrity, as evidenced by depolarization of the membrane potential, permeabilization of membrane and leakage of calcein from liposomes. Conclusion Collectively, great cell membrane permeability and formidable membrane disruption may work together for the strong antibacterial activity of PEGylated Nano-BA12K against S. pneumonia. Taken together, PEGylated Nano-BA12K has excellent potential against both penicillin-sensitive and penicillin-resistant S. pneumonia and might be suitable for the treatment of S. pneumonia infectious diseases.
Collapse
Affiliation(s)
- Wei Hong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, People's Republic of China,
| | - Lipeng Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, People's Republic of China,
| | - Zehui Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, People's Republic of China,
| | - Yining Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, People's Republic of China,
| | - Dexian Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, People's Republic of China,
| | - Mingchun Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, People's Republic of China,
| |
Collapse
|
10
|
Hong W, Liu L, Zhao Y, Liu Y, Zhang D, Liu M. Pluronic-based nano-self-assemblies of bacitracin A with a new mechanism of action for an efficient in vivo therapeutic effect against bacterial peritonitis. J Nanobiotechnology 2018; 16:66. [PMID: 30205822 PMCID: PMC6131780 DOI: 10.1186/s12951-018-0397-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/05/2018] [Indexed: 11/29/2022] Open
Abstract
Background Although assemblies of hydrophobic-modified bacitracin A with PLGA (Nano-BAPLGA) have demonstrated promising antibacterial activities against both Gram-positive and Gram-negative bacteria, the desirable antibacterial potency has remained challenging due to the low solubility of Nano-BAPLGA. To address this tissue, a series of Pluronic copolymers (Pluronic® F127, Pluronic® P123 and Pluronic® P85) were selected to link the N-terminus of bacitracin A to construct Pluronic-based nano-self assemblies (Nano-BAF127, Nano-BAP123 and Nano-BAP85). Results Impressively, all the newly designed Pluronic-based Nano-BAs possessed higher solubility and stronger effectiveness against both Gram-positive and Gram-negative bacteria compared with Nano-BAPLGA, especially the modification with Pluronic® P85. Surface tension measurements indicated that Nano-BAP85 was much more tensioactive than Nano-BAPLGA, which usually translated into a good membranolytic effect. Fluorescence spectroscopy and electron microscopy analyses confirmed the speculation that the cell wall/membrane might be the main action target of Nano-BAP85 by permeabilizing the cell membrane and damaging the membrane integrity. In vivo results further demonstrated that Nano-BAP85 significantly suppressed bacterial growth and prolonged survival time in the bacterial peritonitis mouse model with negligible toxicity. Conclusions Collectively, the membrane targeting mechanism of action is entirely distinct from those of clinically used antibacterial agents. Furthermore, the new approach of construction nanoantibiotics based on the modification of commercially available antibiotics with Pluronic copolymers is demonstrated to have an efficient therapeutic effect against bacterial infection. Electronic supplementary material The online version of this article (10.1186/s12951-018-0397-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Hong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Lipeng Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, Liaoning, People's Republic of China
| | - Yining Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, Liaoning, People's Republic of China
| | - Yinghui Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, Liaoning, People's Republic of China
| | - Dexian Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, Liaoning, People's Republic of China
| | - Mingchun Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, Liaoning, People's Republic of China
| |
Collapse
|
11
|
Shen M, Dong W, Qian J, Zou L. Antimicrobial activity and membrane interaction mechanism of the antimicrobial peptides derived from Rana chensinensis with short sequences. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Koehbach J. Structure-Activity Relationships of Insect Defensins. Front Chem 2017; 5:45. [PMID: 28748179 PMCID: PMC5506212 DOI: 10.3389/fchem.2017.00045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Insects make up the largest and most diverse group of organisms on earth with several million species to exist in total. Considering the sheer number of insect species and the vast variety of ways they interact with their environment through chemistry, it is clear that they have significant potential as a source of new lead molecules. They have adapted to a range of ecological habitats and exhibit a symbiotic lifestyle with various microbes such as bacteria and fungi. Accordingly, numerous antimicrobial compounds have been identified including for example defensin peptides. Insect defensins were found to have broad-spectrum activity against various gram-positive/negative bacteria as well as fungi. They exhibit a unique structural topology involving the complex arrangement of three disulfide bonds as well as an alpha helix and beta sheets, which is known as cysteine-stabilized αβ motif. Their stability and amenability to peptide engineering make them promising candidates for the development of novel antibiotics lead molecules. This review highlights the current knowledge regarding the structure-activity relationships of insect defensin peptides and provides basis for future studies focusing on the rational design of novel cysteine-rich antimicrobial peptides.
Collapse
Affiliation(s)
- Johannes Koehbach
- School of Biomedical Sciences, University of QueenslandSt. Lucia, QLD, Australia
| |
Collapse
|
13
|
Purification, characterization, and analysis of antibacterial activity of a serum lectin from the grub of rhinoceros beetle, Oryctes rhinoceros. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Antimicrobial and anti-inflammatory activities of three chensinin-1 peptides containing mutation of glycine and histidine residues. Sci Rep 2017; 7:40228. [PMID: 28054660 PMCID: PMC5215317 DOI: 10.1038/srep40228] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/01/2016] [Indexed: 11/16/2022] Open
Abstract
The natural peptide chensinin-1 doesnot exhibit its desired biological properties. In this study, the mutant MC1-1 was designed by replacing Gly in the chensinin-1 sequence with Trp. Mutants MC1-2 and MC1-3 were designed based on the MC1-1 sequence to investigate the specific role of His residues. The mutated peptides presented α-helicity in a membrane-mimetic environment and exhibited broad-spectrum antimicrobial activities; in contrast to Trp residues, His residues were dispensable for interacting with the cell membrane. The interactions between the mutant peptides and lipopolysaccharide (LPS) facilitated the ingestion of peptides by Gram-negative bacteria. The binding affinities of the peptides were similar, at approximately 10 μM, but ΔH for MC1-2 was −7.3 kcal.mol−1, which was 6-9 folds higher than those of MC1-1 and MC1-3, probably due to the conformational changes. All mutant peptides demonstrated the ability to inhibit LPS-induced tumour-necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release from murine RAW264.7 cells. In addition, the representative peptide MC1-1showed better inhibition of serum TNF-α and IL-6 levels compared to polymyxin B (PMB), a potent binder and neutralizer of LPS as positive control in LPS-challenged mice model. These data suggest that the mutant peptides could be promising molecules for development as chensinin-based therapeutic agents against sepsis.
Collapse
|
15
|
Tarr DEK. Establishing a reference array for the CS-αβ superfamily of defensive peptides. BMC Res Notes 2016; 9:490. [PMID: 27863510 PMCID: PMC5116183 DOI: 10.1186/s13104-016-2291-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND "Invertebrate defensins" belong to the cysteine-stabilized alpha-beta (CS-αβ), also known as the scorpion toxin-like, superfamily. Some other peptides belonging to this superfamily of defensive peptides are indistinguishable from "defensins," but have been assigned other names, making it unclear what, if any, criteria must be met to qualify as an "invertebrate defensin." In addition, there are other groups of defensins in invertebrates and vertebrates that are considered to be evolutionarily unrelated to those in the CS-αβ superfamily. This complicates analyses and discussions of this peptide group. This paper investigates the criteria for classifying a peptide as an invertebrate defensin, suggests a reference cysteine array that may be helpful in discussing peptides in this superfamily, and proposes that the superfamily (rather than the name "defensin") is the appropriate context for studying the evolution of invertebrate defensins with the CS-αβ fold. METHODS CS-αβ superfamily sequences were identified from previous literature and BLAST searches of public databases. Sequences were retrieved from databases, and the relevant motifs were identified and used to create a conceptual alignment to a ten-cysteine reference array. Amino acid sequences were aligned in MEGA6 with manual adjustments to ensure accurate alignment of cysteines. Phylogenetic analyses were performed in MEGA6 (maximum likelihood) and MrBayes (Bayesian). RESULTS Across invertebrate taxa, the term "defensin" is not consistently applied based on number of cysteines, cysteine spacing pattern, spectrum of antimicrobial activity, or phylogenetic relationship. The analyses failed to reveal any criteria that unify "invertebrate defensins" and differentiate them from other defensive peptides in the CS-αβ superfamily. Sequences from various groups within the CS-αβ superfamily of defensive peptides can be described by a ten-cysteine reference array that aligns their defining structural motifs. CONCLUSIONS The proposed ten-cysteine reference array can be used in addition to current nomenclature to compare sequences in the CS-αβ superfamily and clarify their features relative to one another. This will facilitate analysis and discussion of "invertebrate defensins" in an appropriate evolutionary context, rather than relying on nomenclature.
Collapse
Affiliation(s)
- D Ellen K Tarr
- Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
16
|
Rodríguez-García MJ, García-Reina A, Machado V, Galián J. Identification, structural characterisation and expression analysis of a defensin gene from the tiger beetle Calomera littoralis (Coleoptera: Cicindelidae). Gene 2016; 589:56-62. [PMID: 27210512 DOI: 10.1016/j.gene.2016.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/22/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022]
Abstract
In this study, a defensin gene (Clit-Def) has been characterised in the tiger beetle Calomera littoralis for the first time. Bioinformatic analysis showed that the gene has an open reading frame of 246bp that contains a 46 amino acid mature peptide. The phylogenetic analysis showed a high variability in the coleopteran defensins analysed. The Clit-Def mature peptide has the features to be involved in the antimicrobial function: a predicted cationic isoelectric point of 8.94, six cysteine residues that form three disulfide bonds, and the typical cysteine-stabilized α-helix β-sheet (CSαβ) structural fold. Real time quantitative PCR analysis showed that Clit-Def was upregulated in the different body parts analysed after infection with lipopolysaccharides of Escherichia coli, and also indicated that has an expression peak at 12h post infection. The expression patterns of Clit-Def suggest that this gene plays important roles in the humoral system in the adephagan beetle Calomera littoralis.
Collapse
Affiliation(s)
- María Juliana Rodríguez-García
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain.
| | - Andrés García-Reina
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| | - Vilmar Machado
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| | - José Galián
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| |
Collapse
|
17
|
Bahnsen JS, Franzyk H, Sayers EJ, Jones AT, Nielsen HM. Cell-Penetrating Antimicrobial Peptides – Prospectives for Targeting Intracellular Infections. Pharm Res 2015; 32:1546-56. [DOI: 10.1007/s11095-014-1550-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/09/2014] [Indexed: 11/30/2022]
|
18
|
Sun Y, Dong W, Sun L, Ma L, Shang D. Insights into the membrane interaction mechanism and antibacterial properties of chensinin-1b. Biomaterials 2014; 37:299-311. [PMID: 25453959 DOI: 10.1016/j.biomaterials.2014.10.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/02/2014] [Indexed: 11/29/2022]
Abstract
Antimicrobial peptides (AMPs) with non-specific membrane disrupting activities are thought to exert their antimicrobial activity as a result of their cationicity, hydrophobicity and α-helical or β-sheet structures. Chensinin-1, a native peptide from skin secretions of Rana chensinensis, fails to manifest its desired biological properties because its low hydrophobic nature and an adopted random coil structure in a membrane-mimetic environment. In this study, chensinin-1b was designed by rearranging the amino acid sequence of its hydrophilic/polar residues on one face and its hydrophobic/nonpolar residues on the opposite face according to its helical diagram, and by replacing three Gly residues with three Trp residues. Introduction of Trp residues significantly promoted the binding of the peptide to the bacterial outer membrane and exerted bactericidal activity through cytoplasmic membrane damage. Chensinin-1b demonstrates higher antimicrobial activity and greater cell selectivity than its parent peptide, chensinin-1. The electrostatic interactions between chensinin-1b and lipopolysaccharide (LPS) may have facilitated the uptake of the peptide into Gram-negative cells and be also helpful to disrupt the bacterial cytoplasmic membrane, as evidenced by depolarisation of the membrane potential and leakage of calceins from the liposomes of Escherichia coli and Staphylococcus aureus. Chensinin-1b was also found to penetrate mouse skin and was also effective in vivo, as measured by hydroxyproline levels in a wound infection mouse model, and could therefore act as an anti-infective agent for wound healing.
Collapse
Affiliation(s)
- Yue Sun
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Weibing Dong
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Li Sun
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Lijie Ma
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
19
|
Gene Expression of a Novel Defensin Antimicrobial Peptide in the Silkworm,Bombyx mori. Biosci Biotechnol Biochem 2014; 72:2353-61. [DOI: 10.1271/bbb.80263] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Multiple Functions of Short Synthetic Enantiomeric Peptides Based on Beetle Defensins. Biosci Biotechnol Biochem 2014; 73:683-7. [DOI: 10.1271/bbb.80735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Bi X, Wang C, Dong W, Zhu W, Shang D. Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer. J Antibiot (Tokyo) 2014; 67:361-8. [DOI: 10.1038/ja.2014.4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/14/2013] [Accepted: 01/07/2014] [Indexed: 01/06/2023]
|
22
|
Bi X, Wang C, Ma L, Sun Y, Shang D. Investigation of the role of tryptophan residues in cationic antimicrobial peptides to determine the mechanism of antimicrobial action. J Appl Microbiol 2013; 115:663-72. [PMID: 23710779 DOI: 10.1111/jam.12262] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/04/2013] [Accepted: 05/18/2013] [Indexed: 11/27/2022]
Abstract
AIMS To understand the effects of Trp residues in linear antimicrobial peptides with α-helical conformations on cell permeation ability and membrane transduction efficacy. METHODS AND RESULTS A series of L-K6 analogues were designed and synthesized by replacing Ile or Leu with Trp at different positions on the hydrophobic face of L-K6. The antimicrobial and haemolytic activity and secondary structure of the designed Trp-containing peptides were assessed. In addition, the role of Trp in membrane disruption for these designed peptides was investigated. I1W, I4W and L5W demonstrated stronger activity than the other peptides against both Gram-positive and Gram-negative bacteria. All of the tested peptides preferentially interacted with negatively charged vesicles composed of phosphatidylglycerol (PG)/cardiolipin (CL) or PG/CL/phosphatidylethanolamine, and, to a lesser extent, with zwitterionic vesicles. I1W, I4W and L5W caused calcein release at 2·5 μmol l(-1) . CONCLUSIONS The position of Trp, rather than the number of Trp residues, in these peptides was an important factor in the antimicrobial activity. Trp residues were deeply inserted into negatively charged membranes but were largely exposed in aqueous buffer solution. SIGNIFICANCE AND IMPACT OF THE STUDY These Trp-containing peptides may represent good candidates for new antibiotic agents and for use in new therapeutic approaches.
Collapse
Affiliation(s)
- X Bi
- Faculty of Life Science, Liaoning Normal University, Dalian, China
| | | | | | | | | |
Collapse
|
23
|
Anti-angiogenesis activities of novel peptide complexes: mitochondria-disruptive 9mer peptides conjugated with the integrin alpha V beta 3-homing cyclic RGD motif. Biosci Biotechnol Biochem 2012; 76:2044-8. [PMID: 23132564 DOI: 10.1271/bbb.120397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RGD peptides are popular drug delivery tools in treating integrin αVβ3-expressing malignant tumors and tumor vasculature cells. We investigated the specific delivery and pharmacological potential of enantiomeric mitochondria-disruptive peptides (RLYLRIGRR-NH(2), RLRLRIGRR-NH(2), ALYLAIRRR-NH(2), and RLLLRIGRR-NH(2)) after conjugation with an integrin αVβ3-homing peptide, cyclic pentameric RGD peptide. The cyclic RGD-conjugated mitochondria-disruptive peptides exhibited specific internalization, apoptosis induction, and cytotoxicity against integrin αVβ3-high-expressing human umbilical vein endothelial cells. Our findings indicate that these novel peptide complexes might prove good anti-angiogenesis reagents.
Collapse
|
24
|
Shang D, Sun Y, Wang C, Ma L, Li J, Wang X. Rational design of anti-microbial peptides with enhanced activity and low cytotoxicity based on the structure of the arginine/histidine-rich peptide, chensinin-1. J Appl Microbiol 2012; 113:677-85. [PMID: 22686707 DOI: 10.1111/j.1365-2672.2012.05355.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/12/2012] [Accepted: 05/18/2012] [Indexed: 11/29/2022]
Abstract
AIMS To understand the structure-activity relationship of chensinin-1, a anti-microbial peptide (AMP) with an unusual structure, and to develop novel AMPs as therapeutic agents. METHODS AND RESULTS A series of chensinin-1 analogues were designed and synthesized by one to three replacement of glycines with leucines at the hydrophilic face of chensinin-1 or rearrangement of some of the residues in its sequence. Circular dichroism spectroscopy showed that the analogues adopted α-helical-type conformations in 50% trifluoroethanol/water but adopted β-strand-type conformations in 30 mmol l(-1) sodium dodecyl sulphate. The anti-microbial activities of the peptides against Gram-positive bacteria increased 5- to 30-fold, and these increases paralleled the increases in the peptides' hydrophobicities. Their haemolytic activities also increased. Amphipathicities had little influence on the bactericidal activity of chensinin-1. All peptides caused leakage of calcein entrapped in negatively charged liposomes although with different efficiencies. The peptides did not induce leakage of calcein from uncharged liposomes. CONCLUSIONS Peptide adopted an aperiodic structure can improve the anti-microbial potency by increasing peptide hydrophobicity. Its target is bacteria plasma membrane. SIGNIFICANCE AND IMPACT OF THE STUDY Chensinin-1 can act as a new lead molecule for the study of AMPs with atypical structures.
Collapse
Affiliation(s)
- D Shang
- Faculty of Life Science, Liaoning Normal University, Dalian, China.
| | | | | | | | | | | |
Collapse
|
25
|
Shang D, Sun Y, Wang C, Wei S, Ma L, Sun L. Membrane interaction and antibacterial properties of chensinin-1, an antimicrobial peptide with atypical structural features from the skin of Rana chensinensis. Appl Microbiol Biotechnol 2012; 96:1551-60. [DOI: 10.1007/s00253-012-4148-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 04/26/2012] [Accepted: 04/28/2012] [Indexed: 10/28/2022]
|
26
|
Horita S, Ishibashi J, Nagata K, Miyakawa T, Yamakawa M, Tanokura M. Isolation, cDNA cloning, and structure-based functional characterization of oryctin, a hemolymph protein from the coconut rhinoceros beetle, Oryctes rhinoceros, as a novel serine protease inhibitor. J Biol Chem 2010; 285:30150-8. [PMID: 20630859 DOI: 10.1074/jbc.m110.124735] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We isolated oryctin, a 66-residue peptide, from the hemolymph of the coconut rhinoceros beetle Oryctes rhinoceros and cloned its cDNA. Oryctin is dissimilar to any other known peptides in amino acid sequence, and its function has been unknown. To reveal that function, we determined the solution structure of recombinant (13)C,(15)N-labeled oryctin by heteronuclear NMR spectroscopy. Oryctin exhibits a fold similar to that of Kazal-type serine protease inhibitors but has a unique additional C-terminal α-helix. We performed protease inhibition assays of oryctin against several bacterial and eukaryotic proteases. Oryctin does inhibit the following serine proteases: α-chymotrypsin, endopeptidase K, subtilisin Carlsberg, and leukocyte elastase, with K(i) values of 3.9 × 10(-10) m, 6.2 × 10(-10) m, 1.4 × 10(-9) m, and 1.2 × 10(-8) m, respectively. Although the target molecule of oryctin in the beetle hemolymph remains obscure, our results showed that oryctin is a novel single domain Kazal-type inhibitor and could play a key role in protecting against bacterial infections.
Collapse
Affiliation(s)
- Shoichiro Horita
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Gao B, Zhu S. Identification and characterization of the parasitic wasp Nasonia defensins: positive selection targeting the functional region? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:659-668. [PMID: 20097222 DOI: 10.1016/j.dci.2010.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/17/2010] [Accepted: 01/18/2010] [Indexed: 05/28/2023]
Abstract
Defensin is a crucial component of innate immunity highly conserved across different insect orders. Here, we report identification and characterization of defensins in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). In comparison with those in the non-parasitic insect Apis mellifera, two different subtypes of defensins (defensin1 and defensin2) have undergone independent gene duplication to create a mutigene family of five members (named 1-1, 1-2, 2-1, 2-2 and 2-3) in the Nasonia lineage. Such duplication occurred before the divergence of three sibling species (N. vitripennis, N. giraulti and N. longicornis) and the duplicated genes was subsequently subjected to positive selection at the amino-terminal loop and the gamma-core region. RT-PCR identified that only the subtype 1 of defensins were constitutively expressed in the N. vitripennis adult stage and none of the five defensins was expressed in other developmental stages (i.e. the infected Musca domestica pupae). A functional form of 2-2 in N. vitripennis (named navidefensin2-2) was produced in Escherichia coli by an on-column refolding approach. The recombinant peptide presented a typical defensin structure, as identified by CD analysis, and selectively inhibited the growth of two Gram(+) bacteria at low micromolar concentrations. The bioactive surface responsible for antibacterial activity of navidefensin2-2 was identified in the gamma-core region of this molecule. Positive selection targeting the antibacterial region of defensins could be a consequence of evolutionary arms race between Nasonia and its pathogens.
Collapse
Affiliation(s)
- Bin Gao
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
28
|
Imamura M, Wada S, Ueda K, Saito A, Koizumi N, Iwahana H, Sato R. Multipeptide precursor structure of acaloleptin A isoforms, antibacterial peptides from the Udo longicorn beetle, Acalolepta luxuriosa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:1120-1127. [PMID: 19527748 DOI: 10.1016/j.dci.2009.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/05/2009] [Accepted: 06/06/2009] [Indexed: 05/27/2023]
Abstract
We previously purified acaloleptin A1, A2, and A3, antibacterial peptides that are produced in the larval hemolymph of Acalolepta luxuriosa (Udo longicorn beetle). In this study, we performed cDNA cloning. The cDNA sequence showed a predicted acaloleptin A precursor that consisted of five acaloleptin A isoforms. Four (isoforms 1, 2, 3 and 4) of the five isoforms of the acaloleptin A precursor had high-level sequence identities with each other, but the N-terminal region of isoform 5 differed from those of the other acaloleptin A isoforms. Northern and Western blot analyses showed that acaloleptin A isoforms were mass-produced soon after bacterial inoculation. Finally, we purified isoform 5 from hemolymph of the immunized larvae. Isoform 5, unlike acaloleptin A1, A2 and A3, showed antimicrobial activities against a Gram-positive bacterium, Micrococcus luteus and a fungus, Magnaporthe grisea. These results suggest that the multipeptide structure of the acaloleptin A precursor allows A. luxuriosa high-level production of antibacterial peptides and resistance to a wide range of microorganisms.
Collapse
Affiliation(s)
- Morikazu Imamura
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Waniek PJ, Castro HC, Sathler PC, Miceli L, Jansen AM, Araújo CAC. Two novel defensin-encoding genes of the Chagas disease vector Triatoma brasiliensis (Reduviidae, Triatominae): gene expression and peptide-structure modeling. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:840-8. [PMID: 19505471 DOI: 10.1016/j.jinsphys.2009.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/25/2009] [Accepted: 05/26/2009] [Indexed: 05/24/2023]
Abstract
Defensins are cysteine-rich peptides involved in the innate immunity of insects and many other organisms. In the present study, two novel defensin-encoding cDNAs and the respective genomic DNAs (def3 and def4) of Triatoma brasiliensis were identified and their tissue-specific and temporal expression was characterized. Both of the deduced mature peptides consisted of 43 amino acid residues and were highly similar to previously identified triatomine defensins (81.4-100%). Semi-quantitative RT-PCR data showed that def3 was constitutively expressed in the fat body and was induced in salivary glands and the small intestine at 5 and 3 days after feeding (daf), respectively. The def4 mRNA level was highly up-regulated in the stomach and fat-body tissues at 5 and 3 daf, respectively. The three-dimensional structures of these defensins were predicted using a homology modeling approach with Def-AAA, the defensin from Anopheles gambiae, as template (62-74% identity). A map of the electrostatic potential of these models revealed that, despite their similar folding patterns, mature Def2 and Def4 have a more cationic structure than is the case for Def1 and Def3. Such differences may orient the antimicrobial profile of these defensins against distinct targets in different organs of the insect.
Collapse
Affiliation(s)
- Peter J Waniek
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz-IOC/FIOCRUZ, Av. Brasil 4365, Zip Code: 21045-900, Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
30
|
Saito Y, Konnai S, Yamada S, Imamura S, Nishikado H, Ito T, Onuma M, Ohashi K. Identification and characterization of antimicrobial peptide, defensin, in the taiga tick, Ixodes persulcatus. INSECT MOLECULAR BIOLOGY 2009; 18:531-539. [PMID: 19604312 DOI: 10.1111/j.1365-2583.2009.00897.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ixodes persulcatus is the primary vector for human tick-borne diseases in Japan. A cDNA library was constructed from whole body homogenates of fed nymphs of I. persulcatus. From this library, one cDNA encoding defensin-like antimicrobial peptide was identified. The amino-acid sequence showed high similarity to those of the defensins of other ticks and arthropods. I. persulcatus defensin mRNA transcripts were detected at all life cycle stages of fed ticks and found to be predominantly expressed in the midguts of adult female ticks, but not in the salivary glands, a finding corroborated by Western blotting analysis. To investigate the function of I. persulcatus defensin, we examined its antibacterial activity by evaluation of growth of several bacterial strains in the presence of the synthetic peptide. The defensin from I. persulcatus markedly inhibited the growth of Gram-positive bacteria including Staphylococcus aureus, Bacillus subtilis and Corynebacterium renale, but not Gram-negative bacteria except Escherichia coli O157. In conclusion, these results suggest that I. persulcatus defensin may be playing a significant role in the defence against microbes from bloodmeals.
Collapse
Affiliation(s)
- Y Saito
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Characteristics of novel insect defensin-based membrane-disrupting trypanocidal peptides. Biosci Biotechnol Biochem 2009; 73:1520-6. [PMID: 19584534 DOI: 10.1271/bbb.90004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synthetic D- and L-amino acid type cationic 9-mer peptides (all sequences were synthesized as D- or L-amino acids) derived from the active sites of insect defensins were tested for their ability to modify the growth of blood-stream form African trypanosomes in vitro. One of them, the D-type peptide A (RLYLRIGRR-NH(2)), irreversibly suppressed proliferation of the Trypanosoma brucei brucei GUTat3.1 parasite. The presence of negatively charged phosphatidylserine on the surface of the parasites was demonstrated, suggesting electrostatic interaction between the peptide and the phospholipids. Furthermore, this peptide was found to alter trypanosome membrane-potentials significantly, an effect apparently due to the removal of the parasite's plasma membrane. The potential toxic effects of D-peptide A on mammalian cells was assessed using human brain microvascular endothelial cells. Only minor effects were found when the endothelial cells were exposed for 16 h to peptide concentrations of less than 200 microM. These findings suggest that insect defensin-based peptides represent a potentially new class of membrane-disrupting trypanocidal drugs.
Collapse
|
32
|
Iwasaki T, Ishibashi J, Tanaka H, Sato M, Asaoka A, Taylor D, Yamakawa M. Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides 2009; 30:660-8. [PMID: 19154767 DOI: 10.1016/j.peptides.2008.12.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 11/21/2022]
Abstract
Four enantiomeric 9-mer peptides named d-peptide A, B, C and D were designed and synthesized on the basis of 43-mer insect defensins from two beetles. The d-9-mer peptides maintained bacterial membrane disruptive activity similar to the original peptides and also showed various extents of growth inhibitory activity against different cancer cell lines. Of these peptides, d-peptide B exhibited the highest selective cancer cell cytotoxicity against the mouse myeloma cell line, P3-X63-Ag8.653. Flow cytometric and scanning electron microscopic analysis revealed d-peptide B disrupts mouse myeloma membrane construction, whereas no cytotoxic effect on normal leukocytes was observed. Moreover, a strong correlation between negatively charged phosphatidylserine (PS) density in cancer cell membrane surface and sensitivity to d-9-mer peptides were observed in various cancer cell lines. These results suggest that d-9-mer peptides have negative charge-dependent selective cancer cell cytotoxicity targeting PS in the cancer cell membrane. In addition, synergic growth inhibitory activity against mouse myeloma was observed in combinations of d-peptide B and dexamethasone. These results suggest d-9-mer peptides are promising candidates for novel anticancer drugs.
Collapse
|
33
|
Synthetic nonamer peptides derived from insect defensin mediate the killing of African trypanosomes in axenic culture. Parasitol Res 2009; 105:217-25. [PMID: 19308456 DOI: 10.1007/s00436-009-1389-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 02/27/2009] [Indexed: 10/21/2022]
Abstract
Synthetic antimicrobial 9-mer peptides (designated as peptides A and B) designed on the basis of insect defensins and their effects on the growth of African trypanosomes were examined using two isolates of Trypanosoma congolense, IL1180 and IL3338, and two isolates of Trypanosoma brucei brucei, ILTat1.1and GUTat 3.1, under axenic culture conditions. Both peptides inhibited the growth of all bloodstream form (BSF) trypanosomes at 200-400 microg/mL in the complete growth medium, with peptide A being more potent than peptide B. In addition, these peptides exhibited efficient killing at 5-20 microg/mL on BSF trypanosomes suspended in phosphate-buffered saline, whereas procyclic insect forms in the same medium were more refractory to the killing. Electron microscopy revealed that the peptides induced severe defects in the cell membrane integrity of the parasites. The insect defensin-based peptides up to either 200 or 400 microg/mL showed no cell killing or growth inhibition on NIH3T3 murine fibroblasts. The results suggest that the design of suitable synthetic insect defensin-based 9-mer peptides might provide potential novel trypanocidal drugs.
Collapse
|
34
|
Assumpção TCF, Francischetti IMB, Andersen JF, Schwarz A, Santana JM, Ribeiro JMC. An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:213-32. [PMID: 18207082 PMCID: PMC2262853 DOI: 10.1016/j.ibmb.2007.11.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/06/2007] [Accepted: 11/06/2007] [Indexed: 05/09/2023]
Abstract
Triatoma infestans is a hemiptera, vector of Chagas' disease that feeds exclusively on vertebrate blood in all life stages. Hematophagous insects' salivary glands (SG) produce potent pharmacological compounds that counteract host hemostasis, including anticlotting, antiplatelet, and vasodilatory molecules. To obtain a further insight into the salivary biochemical and pharmacological complexity of this insect, a cDNA library from its SG was randomly sequenced. Also, salivary proteins were submitted to two-dimensional gel (2D-gel) electrophoresis followed by MS analysis. We present the analysis of a set of 1534 (SG) cDNA sequences, 645 of which coded for proteins of a putative secretory nature. Most salivary proteins described as lipocalins matched peptide sequences obtained from proteomic results.
Collapse
Affiliation(s)
- Teresa C F Assumpção
- Laboratory of Host-Parasite Interface, University of Brasília, Brasília-DF 70.910-900, Brazil.
| | | | | | | | | | | |
Collapse
|
35
|
Todd SM, Sonenshine DE, Hynes WL. Tissue and life-stage distribution of a defensin gene in the Lone Star tick, Amblyomma americanum. MEDICAL AND VETERINARY ENTOMOLOGY 2007; 21:141-7. [PMID: 17550433 DOI: 10.1111/j.1365-2915.2007.00682.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The transcript sequence of the Amblyomma americanum Linnaeus (Acari: Ixodidae) defensin, termed amercin (amn), was ascertained and a 219-bp amn coding region identified. The gene encodes a 72-amino acid prepropeptide with a putative 37-amino acid mature peptide. This gene shows little similarity to either of the defensins from Amblyomma hebraeum Koch, the only other Amblyomma species for which a defensin has been described. Sequence comparisons with other tick defensins reveal amn to be shorter (6 bp or 2 amino acids) than the Ixodes scapularis Linnaeus (Acari: Ixodidae) and Dermacentor variabilis (Say) (Acari: Ixodidae) defensin sequences. The amercin prepropeptide has 60.8% and 59.5% similarity with the I. scapularis and D. variabilis prepropeptides, respectively, whereas the mature amercin peptide has 73.7% and 71.1% similarity with the mature peptides of these ticks. Similarity with other tick defensins ranges from 42% to 71%. In A. americanum, defensin transcript was found in the midgut, fat body and salivary gland tissues, as well as in the haemocytes. Defensin transcript was also present in early-stage eggs (less than 48 h old), late-stage eggs (approximately 2 weeks old), larvae and nymphs of A. americanum and I. scapularis, both of which are vector-competent for Borrelia spirochetes.
Collapse
Affiliation(s)
- S M Todd
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529, USA
| | | | | |
Collapse
|
36
|
Yamada M, Nakamura K, Saido-Sakanaka H, Asaoka A, Yamakawa M, Yamamoto Y, Koyama Y, Hikosaka K, Shimizu A, Hirota Y. Therapeutic effect of modified oligopeptides from the beetle Allomyrina dichotoma on methicillin-resistant Staphylococcus aureus (MRSA) infection in mice. J Vet Med Sci 2006; 67:1005-11. [PMID: 16276056 DOI: 10.1292/jvms.67.1005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anti-bacterial activity of two synthesized oligopeptides, RLYLRIGRR-NH2 (peptide A) and RLRLRIGRR-NH2 (peptide B), both which based on a putative active site of defensin, an anti-bacterial peptide from the beetle Allomyrina dichotoma, was examined by macroscopic and histopathologic assessment during the course of infection in mice inoculated with methicillin-resistant Staphylococcus aureus (MRSA) in vivo. Both peptides A and B decreased the mortality of mice inoculated with MRSA. Peptides A and B decreased the macroscopical and histopathological lesions by MRSA infection in mice even seven days after the challenge. The anti-bacterial activity of peptides A and B has a therapeutic effect on MRSA infection in mice even seven days after being challenged.
Collapse
Affiliation(s)
- Manabu Yamada
- National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yamada M, Nakamura K, Saido-Sakanaka H, Asaoka A, Yamakawa M, Sameshima T, Motobu M, Hirota Y. Effect of modified oligopeptides from the beetle Allomyrina dichotoma on Escherichia coli infection in mice. J Vet Med Sci 2004; 66:137-42. [PMID: 15031540 DOI: 10.1292/jvms.66.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The novel peptides based on a putative active site of defensin, an anti-bacterial peptide from the beetle Allomyrina dichotoma, were synthesized. These synthetic oligopeptides exhibited strong anti-bacterial activity in vitro, even against antibiotic-resistant pathogenic bacteria. Then, anti-bacterial activity of two newly synthesized peptides, RLYLRIGRR-NH(2) (peptide A) and RLRLRIGRR-NH(2) (peptide B) was also examined by macroscopic and histopathologic assessment during the course of infection in mice inoculated with antibiotic-resistant pathogenic Escherichia coli (E. coli) in vivo. Peptide B decreased the mortality of mice inoculated with antibiotic-resistant pathogenic E. coli. The results of macroscopic and histopathologic examinations revealed that peptide B could protect the mice from infection. In contrast, peptide A failed to protect mice from infection with antibiotic-resistant pathogenic E. coli. Also, modified peptides A and B produced no toxicity or side effects in mice. These results suggest that peptide B is useful for developing novel antibiotics against antibiotic-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Manabu Yamada
- National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lee YS, Yun EK, Jang WS, Kim I, Lee JH, Park SY, Ryu KS, Seo SJ, Kim CH, Lee IH. Purification, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. INSECT MOLECULAR BIOLOGY 2004; 13:65-72. [PMID: 14728668 DOI: 10.1111/j.1365-2583.2004.00462.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An insect defensin, named Galleria defensin, was purified from the larval haemolymph of Galleria mellonella immunized against E. coli. The peptide was composed of forty-three amino acid residues containing six cysteines that might be engaged in intramolecular disulphide bridges. The primary structure of Galleria defensin shared about 90.7% identity to that of heliomicin, which was an insect defensin isolated from Heliothis virescens. The full-length cDNA encoding Galleria defensin was cloned from the fat body of the immunized G. mellonella larvae. Northern blot analysis revealed that Galleria defensin was expressed not only in the fat body but also in the midgut against invading bacteria into haemocoel. This is the first report presenting cDNA and expression of an insect defensin in the lepidopteran species.
Collapse
Affiliation(s)
- Y S Lee
- Department of Life Science, Hoseo University, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Saito A, Ueda K, Imamura M, Miura N, Atsumi S, Tabunoki H, Sato R. Purification and cDNA cloning of a novel antibacterial peptide with a cysteine-stabilized alphabeta motif from the longicorn beetle, Acalolepta luxuriosa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2004; 28:1-7. [PMID: 12962978 DOI: 10.1016/s0145-305x(03)00088-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An antibacterial peptide from the hemolymph of a coleopteran insect, Acalolepta luxuriosa, in the superfamily Cerambyocidea was characterized. The mature antibacterial peptide had 27 amino acid residues with a theoretical molecular weight of 3099.29 and it showed antibacterial activity against Escherichia coli and Micrococcus luteus. The deduced amino acid sequence of the peptide showed that it had a cysteine-stabilized alphabeta motif with a C...CXXXC...C...CXC consensus sequence, like insect defensins. However, the results of a multiple sequence alignment and phylogenetic analysis with CLUSTAL X indicated that this peptide is a novel peptide with a cysteine-stabilized alphabeta motif that is distant from insect defensins.
Collapse
Affiliation(s)
- Ayaka Saito
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Koganei, 184-8588, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Saido-Sakanaka H, Ishibashi J, Momotani E, Amano F, Yamakawa M. In vitro and in vivo activity of antimicrobial peptides synthesized based on the insect defensin. Peptides 2004; 25:19-27. [PMID: 15003352 DOI: 10.1016/j.peptides.2003.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 12/02/2003] [Indexed: 11/17/2022]
Abstract
Synthetic antimicrobial 9-mer peptides were designed from the amino acid sequence of an active site of insect defensin to increase the number of positively charged amino acid residues. These peptides, RLRLRIGRR-NH2, RLLLRIGRR-NH2 and RLYLRIGRR-NH2, showed strong antimicrobial activity against bacteria and fungus. These peptides showed no growth inhibition activity against murine fibroblasts or macrophages and no hemolytic activity against rabbit erythrocytes in vitro. Furthermore, the administration of these peptides protected mice from a lethal methicillin-resistant Staphylococcus aureus (MRSA) challenge. In addition, these peptides suppressed tumor necrosis factor alpha (TNF-alpha) gene expression and production induced by lipopolysaccharide (LPS) or lipoteichoic acid (LTA) in murine macrophages.
Collapse
Affiliation(s)
- Hisako Saido-Sakanaka
- Innate Immunity Laboratory, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | |
Collapse
|
41
|
Nakajima Y, Ishibashi J, Yukuhiro F, Asaoka A, Taylor D, Yamakawa M. Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria. Biochim Biophys Acta Gen Subj 2003; 1624:125-30. [PMID: 14642822 DOI: 10.1016/j.bbagen.2003.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Defensins are a major group of antimicrobial peptides and are found widely in vertebrates, invertebrates and plants. Invertebrate defensins have been identified from insects, scorpions, mussels and ticks. In this study, chemically synthesized tick defensin was used to further investigate the activity spectrum and mode of action of natural tick defensin. Synthetic tick defensin showed antibacterial activity against many Gram-positive bacteria but not Gram-negative bacteria and low hemolytic activity, characteristic of invertebrate defensins. Furthermore, bactericidal activity against pathogenic Gram-positive bacteria including Bacillus cereus, Enterococcus faecalis and methicillin-resistant Staphylococcus aureus was observed. However, more than 30 min was necessary for tick defensin to completely kill bacteria. The interaction of tick defensin with the bacterial cytoplasmic membrane and its ability to disrupt the membrane potential was analyzed. Tick defensin was able to disrupt the membrane potential over a period of 30-60 min consistent with its relatively slow killing. Transmission electron microscopy of Micrococcus luteus treated with tick defensin showed lysis of the cytoplasmic membrane and leakage of cellular cytoplasmic contents. These findings suggest that the primary mechanism of action of tick defensin is bacterial cytoplasmic membrane lysis. In addition, incomplete cell division with multiple cross-wall formation was occasionally seen in tick defensin-treated bacteria showing pleiotropic secondary effects of tick defensin.
Collapse
Affiliation(s)
- Yoshiro Nakajima
- Institute of Agriculture and Forestry, University of Tsukuba, Ibaraki, Tsukuba 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Tomie T, Ishibashi J, Furukawa S, Kobayashi S, Sawahata R, Asaoka A, Tagawa M, Yamakawa M. Scarabaecin, a novel cysteine-containing antifungal peptide from the rhinoceros beetle, Oryctes rhinoceros. Biochem Biophys Res Commun 2003; 307:261-6. [PMID: 12859949 DOI: 10.1016/s0006-291x(03)01162-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel antifungal peptide, scarabaecin (4080Da), was isolated from the coconut rhinoceros beetle, Oryctes rhinoceros. Scarabaecin cDNA was cloned by reverse transcriptase-polymerase chain reactions (RT-PCR) using a primer based on the N-terminal amino acid sequence. The amino acid sequence deduced from scarabaecin cDNA showed no significant similarity to those of reported proteins. Chemically synthesized scarabaecin indicated antifungal activity against phytopathogenic fungi such as Pyricularia oryzae, Rhizoctonia solani, and Botrytis cinerea, but not against phytopathogenic bacteria. It showed weak activity against Bauberia bassiana, an insect pathogenic fungus, and Staphylococcus aureus, a pathogenic bacterium. Scarabaecin showed chitin binding property and its K(d) was 1.315 microM. A comparison of putative chitin-binding domains among scarabaecin, invertebrate, and plant chitin-binding proteins suggests that scarabaecin is a new member of chitin-binding antimicrobial proteins.
Collapse
Affiliation(s)
- Tetsuya Tomie
- Biological Research Laboratories, Nissan Chemical Industries, Ltd., Shiraoka, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nakajima Y, van der Goes van Naters-Yasui A, Taylor D, Yamakawa M. Antibacterial peptide defensin is involved in midgut immunity of the soft tick, Ornithodoros moubata. INSECT MOLECULAR BIOLOGY 2002; 11:611-618. [PMID: 12421419 DOI: 10.1046/j.1365-2583.2002.00372.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two defensin genes A and B were previously demonstrated to be up-regulated by blood feeding in the soft tick, Ornithodoros moubata [Nakajima et al. (2001) Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae). Insect Biochem Mol Biol 31: 747-751]. In this study, two defensin isoforms C and D similar to defensins A and B were newly cloned. A total of four defensins have been identified in O. moubata. All four Ornithodoros defensins are coded as prepro-defensins. Ornithodoros defensin genes consist of four exons and three introns, an organization reported in mussel defensins but not insect defensins. Ornithodoros defensin C and D genes are predominantly expressed in the midgut and up-regulated in response to blood feeding. The mature peptide of the previously cloned Ornithodoros defensin A was purified from the midgut lumen, indicating defensin is secreted into the midgut. These findings confirm the involvement of Ornithodoros defensin in midgut immunity.
Collapse
Affiliation(s)
- Y Nakajima
- Institute of Agriculture and Forestry, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
44
|
Yamauchi H. Two novel insect defensins from larvae of the cupreous chafer, Anomala cuprea: purification, amino acid sequences and antibacterial activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 32:75-84. [PMID: 11719071 DOI: 10.1016/s0965-1748(01)00082-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A humoral immune response in larvae of the coleopteran insect, Anomala cuprea has been examined for exploring the molecular basis of host-pathogen interactions. The antibacterial activity against the Gram-positive strain, Micrococcus luteus was detected at a low level in absence of injection. The activity increased strikingly in the hemolymph of the larvae challenged with Escherichia coli, showing the fluctuating profile through a time course, which consists of the static induction phase, the production phase rising to a maximum level, and the reduction phase extending over a long duration. Two peptides were purified and characterized by reverse-phase HPLC, Edman degradation and mass spectrometry. They were isoforms, composed of similar sequences with two amino acid substitutions in 43 residues, and novel members of the insect defensins, cysteine-rich antibacterial peptides. Anomala defensins A and B showed potent activity against Gram-positive bacteria, with slight differences in activity against a few strains of tested bacteria. Anomala defensin B was active at high concentration of 40 microM against the Gram-negative strain, Xenorhabdus japonicus, a pathogen toward the host, A. cuprea larvae.
Collapse
Affiliation(s)
- H Yamauchi
- Insect Management Laboratory, Department of Forest Entomology, Forestry and Forest Products Research Institute, P.O. Box 16, Tsukuba Norin Kenkyu Danchi-nai, 305-8687, Ibaraki, Japan.
| |
Collapse
|
45
|
O'Keefe BR. Biologically active proteins from natural product extracts. JOURNAL OF NATURAL PRODUCTS 2001; 64:1373-1381. [PMID: 11678673 DOI: 10.1021/np0103362] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The term "biologically active proteins" is almost redundant. All proteins produced by living creatures are, by their very nature, biologically active to some extent in their homologous species. In this review, a subset of these proteins will be discussed that are biologically active in heterologous systems. The isolation and characterization of novel proteins from natural product extracts including those derived from microorganisms, plants, insects, terrestrial vertebrates, and marine organisms will be reviewed and grouped into several distinct classes based on their biological activity and their structure.
Collapse
Affiliation(s)
- B R O'Keefe
- Molecular Targets Drug Discovery Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA.
| |
Collapse
|
46
|
Nakajima Y, van der Goes van Naters-Yasui A, Taylor D, Yamakawa M. Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:747-751. [PMID: 11378409 DOI: 10.1016/s0965-1748(01)00066-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We previously purified and determined the partial amino acid sequence of a 4 kDa peptide having high homology with scorpion defensin from the hemolymph of adult fed female soft ticks, Ornithodoros moubata. In this study, the full length sequences of two defensin isoforms were obtained. Deduced amino acid sequences reveal a precursor protein of 73 amino acid residues with a mature portion consisting of 37 amino acid residues. This mature peptide contains six cysteine residues conserved in the same location as other invertebrate defensins. Phylogenetic analysis reveals that Ornithodoros defensin is most closely related to scorpion defensin and other more ancient arthropods. Ornithodoros defensin mRNA is constitutively expressed and up-regulated by blood-feeding and bacterial injection. Ornithodoros defensin gene expression occurs mainly in the midgut. This is the first report of the cloning and gene expression of an antibacterial peptide from the Acari.
Collapse
Affiliation(s)
- Y Nakajima
- Institute of Agriculture and Forestry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|