1
|
Wilson IBH, Yan S, Jin C, Dutkiewicz Z, Rendić D, Palmberger D, Schnabel R, Paschinger K. Increasing Complexity of the N-Glycome During Caenorhabditis Development. Mol Cell Proteomics 2023; 22:100505. [PMID: 36717059 PMCID: PMC7614267 DOI: 10.1016/j.mcpro.2023.100505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Caenorhabditis elegans is a frequently employed genetic model organism and has been the object of a wide range of developmental, genetic, proteomic, and glycomic studies. Here, using an off-line MALDI-TOF-MS approach, we have analyzed the N-glycans of mixed embryos and liquid- or plate-grown L4 larvae. Of the over 200 different annotatable N-glycan structures, variations between the stages as well as the mode of cultivation were observed. While the embryonal N-glycome appears less complicated overall, the liquid- and plate-grown larvae differ especially in terms of methylation of bisecting fucose, α-galactosylation of mannose, and di-β-galactosylation of core α1,6-fucose. Furthermore, we analyzed the O-glycans by LC-electrospray ionization-MS following β-elimination; especially the embryonal O-glycomes included a set of phosphorylcholine-modified structures, previously not shown to exist in nematodes. However, the set of glycan structures cannot be clearly correlated with levels of glycosyltransferase transcripts in developmental RNA-Seq datasets, but there is an indication for coordinated expression of clusters of potential glycosylation-relevant genes. Thus, there are still questions to be answered in terms of how and why a simple nematode synthesizes such a diverse glycome.
Collapse
Affiliation(s)
- Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria.
| | - Shi Yan
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; Institut für Parasitologie, Veterinärmedizinische Universität Wien, Wien, Austria
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs universitet, Göteborg, Sweden
| | | | - Dubravko Rendić
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | | | - Ralf Schnabel
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
2
|
Abstract
Glycosphingolipids (GSLs) are a subclass of glycolipids made of a glycan and a ceramide that, in turn, is composed of a sphingoid base moiety and a fatty acyl group. GSLs represent the vast majority of glycolipids in eukaryotes, and as an essential component of the cell membrane, they play an important role in many biological and pathological processes. Therefore, they are useful targets for the development of novel diagnostic and therapeutic methods for human diseases. Since sphingosine was first described by J. L. Thudichum in 1884, several hundred GSL species, not including their diverse lipid forms that can further amplify the number of individual GSLs by many folds, have been isolated from natural sources and structurally characterized. This review tries to provide a comprehensive survey of the major GSL species, especially those with distinct glycan structures and modification patterns, and the ceramides with unique modifications of the lipid chains, that have been discovered to date. In particular, this review is focused on GSLs from eukaryotic species. This review has listed 251 GSL glycans with different linkages, 127 glycans with unique modifications, 46 sphingoids, and 43 fatty acyl groups. It should be helpful for scientists who are interested in GSLs, from isolation and structural analyses to chemical and enzymatic syntheses, as well as their biological studies and applications.
Collapse
|
3
|
Buitrago G, Duncombe-Moore J, Harnett MM, Harnett W. Mini Review: Structure and Function of Nematode Phosphorylcholine-Containing Glycoconjugates. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.769000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An unusual aspect of the biology of nematodes is the covalent attachment of phosphorylcholine (PC) to carbohydrate in glycoconjugates. Investigation of the structure of these molecules by ever-increasingly sophisticated analytical procedures has revealed that PC is generally in phosphodiester linkage with C6 of N-acetylglucosamine (GlcNAc) in both N-type glycans and glycosphingolipids. Up to five PC groups have been detected in the former, being located on both antenna and core GlcNAc. The PC donor for transfer to carbohydrate appears to be phosphatidylcholine but the enzyme responsible for transfer remains to be identified. Work primarily involving the PC-containing Acanthocheilonema viteae secreted product ES-62, has shown that the PC attached to nematode N-glycans possesses a range of immunomodulatory properties, subverting for example, pro-inflammatory signalling in various immune system cell-types including lymphocytes, mast cells, dendritic cells and macrophages. This has led to the generation of PC-based ES-62 small molecule analogues (SMAs), which mirror the parent molecule in preventing the initiation or progression of disease in mouse models of a number of human conditions associated with aberrant inflammatory responses. These include rheumatoid arthritis, systemic lupus erythematosus and lung and skin allergy such that the SMAs are considered to have widespread therapeutic potential.
Collapse
|
4
|
Salzer L, Witting M. Quo Vadis Caenorhabditis elegans Metabolomics-A Review of Current Methods and Applications to Explore Metabolism in the Nematode. Metabolites 2021; 11:metabo11050284. [PMID: 33947148 PMCID: PMC8146106 DOI: 10.3390/metabo11050284] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolomics and lipidomics recently gained interest in the model organism Caenorhabditis elegans (C. elegans). The fast development, easy cultivation and existing forward and reverse genetic tools make the small nematode an ideal organism for metabolic investigations in development, aging, different disease models, infection, or toxicology research. The conducted type of analysis is strongly depending on the biological question and requires different analytical approaches. Metabolomic analyses in C. elegans have been performed using nuclear magnetic resonance (NMR) spectroscopy, direct infusion mass spectrometry (DI-MS), gas-chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) or combinations of them. In this review we provide general information on the employed techniques and their advantages and disadvantages in regard to C. elegans metabolomics. Additionally, we reviewed different fields of application, e.g., longevity, starvation, aging, development or metabolism of secondary metabolites such as ascarosides or maradolipids. We also summarised applied bioinformatic tools that recently have been used for the evaluation of metabolomics or lipidomics data from C. elegans. Lastly, we curated metabolites and lipids from the reviewed literature, enabling a prototypic collection which serves as basis for a future C. elegans specific metabolome database.
Collapse
Affiliation(s)
- Liesa Salzer
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
5
|
Abstract
Glycosylation refers to the covalent attachment of sugar residues to a protein or lipid, and the biological importance of this modification has been widely recognized. While glycosylation in mammals is being extensively investigated, lower level animals such as invertebrates have not been adequately interrogated for their glycosylation. The rich diversity of invertebrate species, the increased database of sequenced invertebrate genomes and the time and cost efficiency of raising and experimenting on these species have enabled a handful of the species to become excellent model organisms, which have been successfully used as tools for probing various biologically interesting problems. Investigation on invertebrate glycosylation, especially on model organisms, not only expands the structural and functional knowledgebase, but also can facilitate deeper understanding on the biological functions of glycosylation in higher organisms. Here, we reviewed the research advances in invertebrate glycosylation, including N- and O-glycosylation, glycosphingolipids and glycosaminoglycans. The aspects of glycan biosynthesis, structures and functions are discussed, with a focus on the model organisms Drosophila and Caenorhabditis. Analytical strategies for the glycans and glycoconjugates are also summarized.
Collapse
Affiliation(s)
- Feifei Zhu
- 1 Institute of Life Sciences, Jiangsu University , Zhenjiang 212013 , People's Republic of China.,2 School of Food and Biological Engineering, Jiangsu University , Zhenjiang 212013 , People's Republic of China
| | - Dong Li
- 1 Institute of Life Sciences, Jiangsu University , Zhenjiang 212013 , People's Republic of China
| | - Keping Chen
- 1 Institute of Life Sciences, Jiangsu University , Zhenjiang 212013 , People's Republic of China
| |
Collapse
|
6
|
Paschinger K, Wilson IBH. Anionic and zwitterionic moieties as widespread glycan modifications in non-vertebrates. Glycoconj J 2020; 37:27-40. [PMID: 31278613 PMCID: PMC6994554 DOI: 10.1007/s10719-019-09874-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Glycan structures in non-vertebrates are highly variable; it can be assumed that this is a product of evolution and speciation, not that it is just a random event. However, in animals and protists, there is a relatively limited repertoire of around ten monosaccharide building blocks, most of which are neutral in terms of charge. While two monosaccharide types in eukaryotes (hexuronic and sialic acids) are anionic, there are a number of organic or inorganic modifications of glycans such as sulphate, pyruvate, phosphate, phosphorylcholine, phosphoethanolamine and aminoethylphosphonate that also confer a 'charged' nature (either anionic or zwitterionic) to glycoconjugate structures. These alter the physicochemical properties of the glycans to which they are attached, change their ionisation when analysing them by mass spectrometry and result in different interactions with protein receptors. Here, we focus on N-glycans carrying anionic and zwitterionic modifications in protists and invertebrates, but make some reference to O-glycans, glycolipids and glycosaminoglycans which also contain such moieties. The conclusion is that 'charged' glycoconjugates are a widespread, but easily overlooked, feature of 'lower' organisms.
Collapse
Affiliation(s)
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, 1190, Wien, Austria.
| |
Collapse
|
7
|
North SJ, Botchway K, Doonan J, Lumb FE, Dell A, Harnett W, Haslam SM. Site-specific glycoproteomic characterization of ES-62: The major secreted product of the parasitic worm Acanthocheilonema viteae. Glycobiology 2020; 29:562-571. [PMID: 31094418 PMCID: PMC6639541 DOI: 10.1093/glycob/cwz035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/29/2022] Open
Abstract
ES-62 is the major secreted product of the parasitic filarial nematode Acanthocheilonema viteae and has potent anti-inflammatory activities as a consequence of posttranslational decoration by phosphorylcholine (PC). Previously, we showed that ES-62’s PC was attached to N-linked glycans, and using fast atom bombardment mass spectrometry, we characterized the structure of the glycans. However, it was unknown at this time which of ES-62’s four potential N-glycosylation sites carries the PC-modified glycans. In the present study, we now employ more advanced analytical tools—nano-flow liquid chromatography with high-definition electrospray mass spectrometry—to show that PC-modified glycans are found at all four potential N-glycosylation sites. Also, our earlier studies showed that up to two PC groups were detected per glycan, and we are now able to characterize N-glycans with up to five PC groups. The number per glycan varies in three of the four glycosylation sites, and in addition, for the first time, we have detected PC on the N-glycan chitobiose core in addition to terminal GlcNAc. Nevertheless, the majority of PC is detected on terminal GlcNAc, enabling it to interact with the cells and molecules of the immune system. Such expression may explain the potent immunomodulatory effects of a molecule that is considered to have significant therapeutic potential in the treatment of certain human allergic and autoimmune conditions.
Collapse
Affiliation(s)
- Simon J North
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kwamina Botchway
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Felicity E Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Anne Dell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Sheikh MO, Tayyari F, Zhang S, Judge MT, Weatherly DB, Ponce FV, Wells L, Edison AS. Correlations Between LC-MS/MS-Detected Glycomics and NMR-Detected Metabolomics in Caenorhabditis elegans Development. Front Mol Biosci 2019; 6:49. [PMID: 31316996 PMCID: PMC6611444 DOI: 10.3389/fmolb.2019.00049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/11/2019] [Indexed: 01/19/2023] Open
Abstract
This study examined the relationship between glycans, metabolites, and development in C. elegans. Samples of N2 animals were synchronized and grown to five different time points ranging from L1 to a mixed population of adults, gravid adults, and offspring. Each time point was replicated seven times. The samples were each assayed by a large particle flow cytometer (Biosorter) for size distribution data, LC-MS/MS for targeted N- and O-linked glycans, and NMR for metabolites. The same samples were utilized for all measurements, which allowed for statistical correlations between the data. A new protocol was developed to correlate Biosorter developmental data with LC-MS/MS data to obtain stage-specific information of glycans. From the five time points, four distinct sizes of worms were observed from the Biosorter distributions, ranging from the smallest corresponding to L1 to adult animals. A network model was constructed using the four binned sizes of worms as starting nodes and adding glycans and metabolites that had correlations with r ≥ 0.5 to those nodes. The emerging structure of the network showed distinct patterns of N- and O-linked glycans that were consistent with previous studies. Furthermore, some metabolites that were correlated to these glycans and worm sizes showed interesting interactions. Of note, UDP-GlcNAc had strong positive correlations with many O-glycans that were expressed in the largest animals. Similarly, phosphorylcholine correlated with many N-glycans that were expressed in L1 animals.
Collapse
Affiliation(s)
- M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Fariba Tayyari
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Sicong Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Michael T Judge
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States.,Department of Genetics, University of Georgia, Athens, GA, United States
| | - D Brent Weatherly
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Francesca V Ponce
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Arthur S Edison
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.,Department of Genetics, University of Georgia, Athens, GA, United States.,Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
Feucherolles M, Poppert S, Utzinger J, Becker SL. MALDI-TOF mass spectrometry as a diagnostic tool in human and veterinary helminthology: a systematic review. Parasit Vectors 2019; 12:245. [PMID: 31101120 PMCID: PMC6525464 DOI: 10.1186/s13071-019-3493-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a widely used technique for the rapid and accurate identification of bacteria, mycobacteria and certain fungal pathogens in the clinical microbiology laboratory. Thus far, only few attempts have been made to apply the technique in clinical parasitology, particularly regarding helminth identification. METHODS We systematically reviewed the scientific literature on studies pertaining to MALDI-TOF MS as a diagnostic technique for helminths (cestodes, nematodes and trematodes) of medical and veterinary importance. Readily available electronic databases (i.e. PubMed/MEDLINE, ScienceDirect, Cochrane Library, Web of Science and Google Scholar) were searched from inception to 10 October 2018, without restriction on year of publication or language. The titles and abstracts of studies were screened for eligibility by two independent reviewers. Relevant articles were read in full and included in the systematic review. RESULTS A total of 84 peer-reviewed articles were considered for the final analysis. Most papers reported on the application of MALDI-TOF for the study of Caenorhabditis elegans, and the technique was primarily used for identification of specific proteins rather than entire pathogens. Since 2015, a small number of studies documented the successful use of MALDI-TOF MS for species-specific identification of nematodes of human and veterinary importance, such as Trichinella spp. and Dirofilaria spp. However, the quality of available data and the number of examined helminth samples was low. CONCLUSIONS Data on the use of MALDI-TOF MS for the diagnosis of helminths are scarce, but recent evidence suggests a potential role for a reliable identification of nematodes. Future research should explore the diagnostic accuracy of MALDI-TOF MS for identification of (i) adult helminths, larvae and eggs shed in faecal samples; and (ii) helminth-related proteins that are detectable in serum or body fluids of infected individuals.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation, Belvaux, Luxembourg
| | - Sven Poppert
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany.
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Paschinger K, Yan S, Wilson IBH. N-glycomic Complexity in Anatomical Simplicity: Caenorhabditis elegans as a Non-model Nematode? Front Mol Biosci 2019; 6:9. [PMID: 30915340 PMCID: PMC6422873 DOI: 10.3389/fmolb.2019.00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans is a genetically well-studied model nematode or "worm"; however, its N-glycomic complexity is actually baffling and still not completely unraveled. Some features of its N-glycans are, to date, unique and include bisecting galactose and up to five fucose residues associated with the asparagine-linked Man2-3GlcNAc2 core; the substitutions include galactosylation of fucose, fucosylation of galactose and methylation of mannose or fucose residues as well as phosphorylcholine on antennal (non-reducing) N-acetylglucosamine. Only some of these modifications are shared with various other nematodes, while others have yet to be detected in any other species. Thus, C. elegans can be used as a model for some aspects of N-glycan function, but its glycome is far from identical to those of other organisms and is actually far from simple. Possibly the challenges of its native environment, which differ from those of parasitic or necromenic species, led to an anatomically simple worm possessing a complex glycome.
Collapse
Affiliation(s)
| | - Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | | |
Collapse
|
11
|
Itonori S, Hashimoto K, Nakagawa M, Harada M, Suzuki T, Kojima H, Ito M, Sugita M. Structural analysis of neutral glycosphingolipids from the silkworm Bombyx mori and the difference in ceramide composition between larvae and pupae. J Biochem 2018; 163:201-214. [PMID: 29069405 DOI: 10.1093/jb/mvx072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/08/2017] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) from the silkworm Bombyx mori were identified and GSL expression patterns between larvae and pupae were compared. The structural analysis of neutral GSLs from dried pupae revealed the following predominant species: Glcβ1Cer, Manβ4Glcβ1Cer, GlcNAcβ3Manβ4Glcβ1Cer, Galβ3Manβ4Glcβ1Cer, GalNAcα4Galβ3Manβ4Glcβ1Cer, GlcNAcβ3Galβ3Manβ4Glcβ1Cer, Galα4Galβ3Manβ4Glcβ1Cer and (GalNAcα4)1-4 GalNAcα4Galβ3Manβ4Glcβ1Cer. Lin-ear elongation of α4-GalNAc was observed at the non-reducing end of Galβ3Manβ4Glcβ1Cer with up to five GalNAc repeats. The arthro-series GSL GlcNAcβ3Manβ4Glcβ1Cer, a characteristic GSL-glycan sequence of other Arthropoda, was detected in silkworms. The main ceramide species in each purified GSL fraction were h20:0-d14:1 and h22:0-d14:1. GSL expression patterns in larvae and pupae were compared using thin-layer chromatography, which demonstrated differences among acidic, polar and neutral GSL fractions, while the zwitterionic fraction showed no difference. Neutral GSLs such as ceramides di-, tri- and tetrasaccharides in larvae showed less abundant than those in pupae. MALDI-TOF MS analysis revealed that larval GSLs contained four types of ceramide species, whereas pupal GSLs contained only two types. The structural analysis of neutral GSLs from silkworms revealed a novel series of GSLs. The comparison of GSL expression patterns between larvae and pupae demonstrated differences in several fractions. Alterations in GSL ceramide composition between larvae and pupae were observed by MALDI-TOF MS analysis.
Collapse
Affiliation(s)
- Saki Itonori
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Kyouhei Hashimoto
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Mika Nakagawa
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Masashi Harada
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Takae Suzuki
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Hisao Kojima
- Department of Bioinformatics, Institute of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Masahiro Ito
- Department of Bioinformatics, Institute of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Mutsumi Sugita
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| |
Collapse
|
12
|
The Eukaryotic Elongation Factor 1 Alpha (eEF1α) from the Parasite Leishmania infantum Is Modified with the Immunomodulatory Substituent Phosphorylcholine (PC). Molecules 2017; 22:molecules22122094. [PMID: 29186074 PMCID: PMC6149742 DOI: 10.3390/molecules22122094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/24/2017] [Indexed: 01/11/2023] Open
Abstract
Proteins and glycolipids have been found to be decorated with phosphorylcholine (PC) both in protozoa and nematodes that parasitize humans and animals. PC epitopes can provoke various effects on immune cells leading to an immunomodulation of the host’s immune system that allows long-term persistence of the parasites. So far, only a limited number of PC-modified proteins, mainly from nematodes, have been identified. Infections caused by Leishmania spp. (e.g., L. infantum in southern Europe) affect about 12 million people worldwide and are characterized by a wide spectrum of clinical forms in humans, ranging from cutaneous to fatal visceral leishmaniasis. To establish and maintain the infection, these protozoa are dependent on the secretion of effector molecules into the host for modulating their immune system. In this project, we analyzed the PC modification of L. infantum promastigotes by 2D-gel based proteomics. Western blot analysis with the PC-specific antibody TEPC-15 revealed one PC-substituted protein in this organism, identified as eEF1α. We could demonstrate that the binding of eEF1α to one of its downstream effectors is dependent on its PC-modification. In this study we provide evidence that in this parasite the modification of eEF1α with PC may be essential for its function as an important virulence factor.
Collapse
|
13
|
Beshr G, Sikandar A, Jemiller EM, Klymiuk N, Hauck D, Wagner S, Wolf E, Koehnke J, Titz A. Photorhabdus luminescens lectin A (PllA): A new probe for detecting α-galactoside-terminating glycoconjugates. J Biol Chem 2017; 292:19935-19951. [PMID: 28972138 DOI: 10.1074/jbc.m117.812792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/25/2017] [Indexed: 11/06/2022] Open
Abstract
Lectins play important roles in infections by pathogenic bacteria, for example, in host colonization, persistence, and biofilm formation. The Gram-negative entomopathogenic bacterium Photorhabdus luminescens symbiotically lives in insect-infecting Heterorhabditis nematodes and kills the insect host upon invasion by the nematode. The P. luminescens genome harbors the gene plu2096, coding for a novel lectin that we named PllA. We analyzed the binding properties of purified PllA with a glycan array and a binding assay in solution. Both assays revealed a strict specificity of PllA for α-galactoside-terminating glycoconjugates. The crystal structures of apo PllA and complexes with three different ligands revealed the molecular basis for the strict specificity of this lectin. Furthermore, we found that a 90° twist in subunit orientation leads to a peculiar quaternary structure compared with that of its ortholog LecA from Pseudomonas aeruginosa We also investigated the utility of PllA as a probe for detecting α-galactosides. The α-Gal epitope is present on wild-type pig cells and is the main reason for hyperacute organ rejection in pig to primate xenotransplantation. We noted that PllA specifically recognizes this epitope on the glycan array and demonstrated that PllA can be used as a fluorescent probe to detect this epitope on primary porcine cells in vitro In summary, our biochemical and structural analyses of the P. luminescens lectin PllA have disclosed the structural basis for PllA's high specificity for α-galactoside-containing ligands, and we show that PllA can be used to visualize the α-Gal epitope on porcine tissues.
Collapse
Affiliation(s)
- Ghamdan Beshr
- From the Divisions of Chemical Biology of Carbohydrates and.,the Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig.,the Department of Pharmacy, Saarland University, 66123 Saarbrücken, and
| | - Asfandyar Sikandar
- the Department of Pharmacy, Saarland University, 66123 Saarbrücken, and.,Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken
| | - Eva-Maria Jemiller
- the Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Nikolai Klymiuk
- the Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Dirk Hauck
- From the Divisions of Chemical Biology of Carbohydrates and.,the Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig
| | - Stefanie Wagner
- From the Divisions of Chemical Biology of Carbohydrates and.,the Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig
| | - Eckhard Wolf
- the Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Jesko Koehnke
- the Department of Pharmacy, Saarland University, 66123 Saarbrücken, and .,Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken
| | - Alexander Titz
- From the Divisions of Chemical Biology of Carbohydrates and .,the Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig.,the Department of Pharmacy, Saarland University, 66123 Saarbrücken, and
| |
Collapse
|
14
|
Timm T, Grabitzki J, Severcan C, Muratoglu S, Ewald L, Yilmaz Y, Lochnit G. The PCome of Ascaris suum as a model system for intestinal nematodes: identification of phosphorylcholine-substituted proteins and first characterization of the PC-epitope structures. Parasitol Res 2016; 115:1263-74. [PMID: 26728072 DOI: 10.1007/s00436-015-4863-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022]
Abstract
In multicellular parasites (e.g., nematodes and protozoa), proteins and glycolipids have been found to be decorated with phosphorylcholine (PC). PC can provoke various effects on immune cells leading to an immunomodulation of the host's immune system. This immunomodulation allows long-term persistence but also prevents severe pathology due to downregulation of cellular immune responses. PC-containing antigens have been found to interfere with key proliferative signaling pathways in B and T cells, development of dendritic cells and macrophages, and mast cell degranulation. These effects contribute to the observed modulated cytokine levels and impairment of lymphocyte proliferation. In contrast to glycosphingolipids, little is known about the PC-epitopes of proteins. So far, only a limited number of PC-modified proteins from nematodes have been identified. In this project, PC-substituted proteins and glycolipids in Ascaris suum have been localized by immunohistochemistry in specific tissues of the body wall, intestine, and reproductive tract. Subsequently, we investigated the PCome of A. suum by 2D gel-based proteomics and detection by Western blotting using the PC-specific antibody TEPC-15. By peptide-mass-fingerprint matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), we could identify 59 PC-substituted proteins, which are in involved multiple cellular processes. In addition to membrane proteins like vitellogenin-6, we found proteins with structural (e.g., tubulins) and metabolic (e.g., pyruvate dehydrogenase) functions or which can act in the defense against the host's immune response (e.g., serpins). Initial characterization of the PC-epitopes revealed a predominant linkage of PC to the proteins via N-glycans. Our data form the basis for more detailed investigations of the PC-epitope structures as a prerequisite for comprehensive understanding of the molecular mechanisms of immunomodulation.
Collapse
Affiliation(s)
- Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Julia Grabitzki
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Cinar Severcan
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Suzan Muratoglu
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Lisa Ewald
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Yavuz Yilmaz
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Guenter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
15
|
Timm T, Lenz C, Merkel D, Sadiffo C, Grabitzki J, Klein J, Lochnit G. Detection and site localization of phosphorylcholine-modified peptides by NanoLC-ESI-MS/MS using precursor ion scanning and multiple reaction monitoring experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:460-471. [PMID: 25487775 DOI: 10.1007/s13361-014-1036-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 06/04/2023]
Abstract
Phosphorylcholine (PC)-modified biomolecules like lipopolysaccharides, glycosphingolipids, and (glyco)proteins are widespread, highly relevant antigens of parasites, since this small hapten shows potent immunomodulatory capacity, which allows the establishment of long-lasting infections of the host. Especially for PC-modified proteins, structural data is rare because of the zwitterionic nature of the PC substituent, resulting in low sensitivities and unusual but characteristic fragmentation patterns. We have developed a targeted mass spectrometric approach using hybrid triple quadrupole/linear ion trap (QTRAP) mass spectrometry coupled to nanoflow chromatography for the sensitive detection of PC-modified peptides from complex proteolytic digests, and the localization of the PC-modification within the peptide backbone. In a first step, proteolytic digests are screened using precursor ion scanning for the marker ions of choline (m/z 104.1) and phosphorylcholine (m/z 184.1) to establish the presence of PC-modified peptides. Potential PC-modified precursors are then subjected to a second analysis using multiple reaction monitoring (MRM)-triggered product ion spectra for the identification and site localization of the modified peptides. The approach was first established using synthetic PC-modified synthetic peptides and PC-modified model digests. Following the optimization of key parameters, we then successfully applied the method to the detection of PC-peptides in the background of a proteolytic digest of a whole proteome. This methodological invention will greatly facilitate the detection of PC-substituted biomolecules and their structural analysis.
Collapse
Affiliation(s)
- Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Snodgrass CJ, Burnham-Marusich AR, Meteer JC, Berninsone PM. Conserved ion and amino acid transporters identified as phosphorylcholine-modified N-glycoproteins by metabolic labeling with propargylcholine in Caenorhabditis elegans cells. Glycobiology 2014; 25:403-11. [PMID: 25387872 DOI: 10.1093/glycob/cwu122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phosphorylcholine (PC) modification of proteins by pathogens has been implicated in mediating host-pathogen interactions. Parasitic nematodes synthesize PC-modified biomolecules that can modulate the host's antibody and cytokine production to favor nematode survival, contributing to long-term infections. Only two nematode PC-modified proteins (PC-proteins) have been unequivocally identified, yet discovering the protein targets of PC modification will be paramount to understanding the role(s) that this epitope plays in nematode biology. A major hurdle in the field has been the lack of techniques for selective purification of PC-proteins. The nonparasitic nematode Caenorhabditis elegans expresses PC-modified N-linked glycans, offering an attractive model to study the biology of PC-modification. We developed a robust method to identify PC-proteins by metabolic labeling of primary embryonic C. elegans cells with propargylcholine, an alkyne-modified choline analog. Cu(I)-catalyzed cycloaddition with biotin-azide enables streptavidin purification and subsequent high-throughput LC-MS identification of propargyl-labeled proteins. All proteins identified using stringent criteria are known or predicted to be membrane or secreted proteins, consistent with the model of a Golgi-resident, putative PC-transferase. Of the 55 PC-N-glycosylation sites reported, 33 have been previously observed as N-glycosylation sites in high-throughput screens of C. elegans. Several identified PC-proteins are nematode-specific proteins, but 10 of the PC-proteins are widely conserved ion transporters and amino acid transporters, while eight are conserved proteins involved in synaptic function. This finding suggests a functional role for PC-modification beyond immunomodulation. The approach presented in this study provides a method to identify PC-proteins in C. elegans and related nematodes.
Collapse
Affiliation(s)
| | | | - John C Meteer
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
17
|
Microbial modulation of host immunity with the small molecule phosphorylcholine. Infect Immun 2012; 81:392-401. [PMID: 23230294 DOI: 10.1128/iai.01168-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All microorganisms dependent on persistence in a host for survival rely on either hiding from or modulating host responses to infection. The small molecule phosphorylcholine, or choline phosphate (ChoP), is used for both of these purposes by a wide array of bacterial and parasitic microbes. While the mechanisms underlying ChoP acquisition and expression are diverse, a unifying theme is the use of ChoP to reduce the immune response to infection, creating an advantage for ChoP-expressing microorganisms. In this minireview, we discuss several benefits of ChoP expression during infection as well as how the immune system fights back against ChoP-expressing pathogens.
Collapse
|
18
|
Geyer H, Schmidt M, Müller M, Schnabel R, Geyer R. Mass spectrometric comparison of N-glycan profiles from Caenorhabditis elegans mutant embryos. Glycoconj J 2012; 29:135-45. [PMID: 22407488 DOI: 10.1007/s10719-012-9371-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/17/2012] [Accepted: 02/21/2012] [Indexed: 11/29/2022]
Abstract
The free-living nematode Caenorhabditis elegans is a well-characterized eukaryotic model organism. Recent glycomic analyses of the glycosylation potential of this worm revealed an extremely high structural variability of its N-glycans. Moreover, the glycan patterns of each developmental stage appeared to be unique. In this study we have determined the N-glycan profiles of wild-type embryos in comparison to mutant embryos arresting embryogenesis early before differentiation and causing extensive transformations of cell identities, which allows to follow the diversification of N-glycans during development using mass spectrometry. As a striking feature, wild-type embryos obtained from liquid culture expressed a less heterogeneous oligosaccharide pattern than embryos recovered from agar plates. N-glycan profiles of mutant embryos displayed, in part, distinct differences in comparison to wild-type embryos suggesting alterations in oligosaccharide trimming and processing, which may be linked to specific cell fate alterations in the embryos.
Collapse
Affiliation(s)
- Hildegard Geyer
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | | | | | | | | |
Collapse
|
19
|
Wohlschlager T, Butschi A, Zurfluh K, Vonesch SC, Auf dem Keller U, Gehrig P, Bleuler-Martinez S, Hengartner MO, Aebi M, Künzler M. Nematotoxicity of Marasmius oreades agglutinin (MOA) depends on glycolipid binding and cysteine protease activity. J Biol Chem 2011; 286:30337-30343. [PMID: 21757752 DOI: 10.1074/jbc.m111.258202] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a Galα1,3Gal/GalNAc-specific lectin from the fairy ring mushroom that consists of an N-terminal ricin B-type lectin domain and a C-terminal dimerization domain. The latter domain shows structural similarity to catalytically active proteins, suggesting that, in addition to its carbohydrate-binding activity, MOA has an enzymatic function. Here, we demonstrate toxicity of MOA toward the model nematode Caenorhabditis elegans. This toxicity depends on binding of MOA to glycosphingolipids of the worm via its lectin domain. We show further that MOA has cysteine protease activity and demonstrate a critical role of this catalytic function in MOA-mediated nematotoxicity. The proteolytic activity of MOA was dependent on high Ca(2+) concentrations and favored by slightly alkaline pH, suggesting that these conditions trigger activation of the toxin at the target location. Our results suggest that MOA is a fungal toxin with intriguing similarities to bacterial binary toxins and has a protective function against fungivorous soil nematodes.
Collapse
Affiliation(s)
| | - Alex Butschi
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, CH-8057 Zürich, Switzerland
| | | | - Sibylle C Vonesch
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, CH-8057 Zürich, Switzerland
| | | | - Peter Gehrig
- Functional Genomics Center, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | | | - Michael O Hengartner
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
20
|
Harnett W, Rzepecka J, Houston KM. How do nematodes transfer phosphorylcholine to carbohydrates? Trends Parasitol 2010; 26:114-8. [DOI: 10.1016/j.pt.2009.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/25/2009] [Accepted: 12/14/2009] [Indexed: 10/19/2022]
|
21
|
Grabitzki J, Lochnit G. Immunomodulation by phosphocholine--biosynthesis, structures and immunological implications of parasitic PC-epitopes. Mol Immunol 2009; 47:149-63. [PMID: 19864025 DOI: 10.1016/j.molimm.2009.09.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/24/2009] [Indexed: 11/28/2022]
Abstract
Phosphocholine (PC) as a small haptenic molecule present on antigens of parasites can provoke various effects on immune cells leading to immunomodulation of the host's immune system. This immunomodulation not only allows long-term persistence but also prevents severe pathology due to down-regulation of cellular immune responses. Additionally, PC plays an important role for development and fertility of the parasites. To fully understand the mechanisms of immunomodulation the detailed knowledge of the biosynthesis of the PC-epitopes, their molecular structure and biological function has to be elucidated. The implication of parasite-specific transferases in the biosynthesis of the PC-epitopes and the sensitivity of parasites towards disruption of the choline metabolism offers new perspectives for the development of anti-parasitic drugs and therapies. Furthermore, the immunomodulation provoked by PC-epitopes preventing inflammatory reactions may be useful in the treatment of inflammatory diseases. This review summarizes the current knowledge on the biosynthesis of PC-epitopes, their structures and immunological implications.
Collapse
Affiliation(s)
- Julia Grabitzki
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Germany
| | | |
Collapse
|
22
|
van Stijn CMW, van den Broek M, Vervelde L, Alvarez RA, Cummings RD, Tefsen B, van Die I. Vaccination-induced IgG response to Galalpha1-3GalNAc glycan epitopes in lambs protected against Haemonchus contortus challenge infection. Int J Parasitol 2009; 40:215-22. [PMID: 19695255 DOI: 10.1016/j.ijpara.2009.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 11/27/2022]
Abstract
Lambs vaccinated with Haemonchus contortus excretory/secretory (ES) glycoproteins in combination with the adjuvant Alhydrogel are protected against H. contortus challenge infection. Using glycan micro-array analysis we showed that serum from such vaccinated lambs contains IgG antibodies that recognise the glycan antigen Galalpha1-3GalNAc-R and GalNAcbeta1-4(Fucalpha1-3)GlcNAc-R. Our studies revealed that H. contortus glycoproteins contain Galalpha1-3Gal-R as well as significant levels of Galalpha1-3GalNAc-R, which has not been previously reported. Extracts from H. contortus adult worms contain a galactosyltransferase acting on glycan substrates with a terminal GalNAc, indicating that the worms possess the enzymatic potential to synthesise terminal Gal-GalNAc moieties. These data illustrate that glycan micro-arrays constitute a promising technology for fast and specific analysis of serum anti-glycan antibodies in vaccination studies. In addition, this approach facilitates the discovery of novel, antigenic parasite glycan antigens that may have potential for developing glycoconjugate vaccines or utilization in diagnostics.
Collapse
Affiliation(s)
- Caroline M W van Stijn
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Schachter H. The functions of paucimannose N-glycans in Caenorhabditis elegans. TRENDS GLYCOSCI GLYC 2009. [DOI: 10.4052/tigg.21.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Takeuchi T, Sennari R, Sugiura KI, Tateno H, Hirabayashi J, Kasai KI. A C-type lectin of Caenorhabditis elegans: Its sugar-binding property revealed by glycoconjugate microarray analysis. Biochem Biophys Res Commun 2008; 377:303-6. [DOI: 10.1016/j.bbrc.2008.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 10/01/2008] [Indexed: 12/30/2022]
|
25
|
Grabitzki J, Ahrend M, Schachter H, Geyer R, Lochnit G. The PCome of Caenorhabditis elegans as a prototypic model system for parasitic nematodes: Identification of phosphorylcholine-substituted proteins. Mol Biochem Parasitol 2008; 161:101-11. [DOI: 10.1016/j.molbiopara.2008.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 11/16/2022]
|
26
|
Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, Liotta DC, Merrill AH. Biodiversity of sphingoid bases ("sphingosines") and related amino alcohols. J Lipid Res 2008; 49:1621-39. [PMID: 18499644 PMCID: PMC2444003 DOI: 10.1194/jlr.r800012-jlr200] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
"Sphingosin" was first described by J. L. W. Thudichum in 1884 and structurally characterized as 2S,3R,4E-2-aminooctadec-4-ene-1,3-diol in 1947 by Herb Carter, who also proposed the designation of "lipides derived from sphingosine as sphingolipides." This category of amino alcohols is now known to encompass hundreds of compounds that are referred to as sphingoid bases and sphingoid base-like compounds, which vary in chain length, number, position, and stereochemistry of double bonds, hydroxyl groups, and other functionalities. Some have especially intriguing features, such as the tail-to-tail combination of two sphingoid bases in the alpha,omega-sphingoids produced by sponges. Most of these compounds participate in cell structure and regulation, and some (such as the fumonisins) disrupt normal sphingolipid metabolism and cause plant and animal disease. Many of the naturally occurring and synthetic sphingoid bases are cytotoxic for cancer cells and pathogenic microorganisms or have other potentially useful bioactivities; hence, they offer promise as pharmaceutical leads. This thematic review gives an overview of the biodiversity of the backbones of sphingolipids and the broader field of naturally occurring and synthetic sphingoid base-like compounds.
Collapse
Affiliation(s)
- Sarah T Pruett
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gene inactivation confirms the identity of enzymes involved in nematode phosphorylcholine-N-glycan synthesis. Mol Biochem Parasitol 2008; 157:88-91. [DOI: 10.1016/j.molbiopara.2007.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/27/2007] [Accepted: 08/28/2007] [Indexed: 11/30/2022]
|
28
|
Paschinger K, Gutternigg M, Rendić D, Wilson IBH. The N-glycosylation pattern of Caenorhabditis elegans. Carbohydr Res 2007; 343:2041-9. [PMID: 18226806 DOI: 10.1016/j.carres.2007.12.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/07/2007] [Accepted: 12/17/2007] [Indexed: 01/21/2023]
Abstract
Determining the exact nature of N-glycosylation in Caenorhabditis elegans, a nematode worm and genetic model organism, has proved to have been an unexpected challenge in recent years; a wide range of modifications of its N-linked oligosaccharides have been proposed on the basis of structural and genomic analysis. Particularly mass spectrometric studies by a number of groups, as well as the characterisation of recombinant enzymes, have highlighted those aspects of N-glycosylation that are conserved in animals, those which are seemingly unique to this species and those which are shared with parasitic nematodes. These data, of importance for therapeutic developments, are reviewed.
Collapse
Affiliation(s)
- Katharina Paschinger
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria.
| | | | | | | |
Collapse
|
29
|
Brendza K, Haakenson W, Cahoon R, Hicks L, Palavalli L, Chiapelli B, McLaird M, McCarter J, Williams D, Hresko M, Jez J. Phosphoethanolamine N-methyltransferase (PMT-1) catalyses the first reaction of a new pathway for phosphocholine biosynthesis in Caenorhabditis elegans. Biochem J 2007; 404:439-48. [PMID: 17313371 PMCID: PMC1896273 DOI: 10.1042/bj20061815] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/06/2007] [Accepted: 02/22/2007] [Indexed: 11/17/2022]
Abstract
The development of nematicides targeting parasitic nematodes of animals and plants requires the identification of biochemical targets not found in host organisms. Recent studies suggest that Caenorhabditis elegans synthesizes phosphocholine through the action of PEAMT (S-adenosyl-L-methionine:phosphoethanolamine N-methyltransferases) that convert phosphoethanolamine into phosphocholine. Here, we examine the function of a PEAMT from C. elegans (gene: pmt-1; protein: PMT-1). Our analysis shows that PMT-1 only catalyses the conversion of phosphoethanolamine into phospho-monomethylethanolamine, which is the first step in the PEAMT pathway. This is in contrast with the multifunctional PEAMT from plants and Plasmodium that perform multiple methylations in the pathway using a single enzyme. Initial velocity and product inhibition studies indicate that PMT-1 uses a random sequential kinetic mechanism and is feedback inhibited by phosphocholine. To examine the effect of abrogating PMT-1 activity in C. elegans, RNAi (RNA interference) experiments demonstrate that pmt-1 is required for worm growth and development and validate PMT-1 as a potential target for inhibition. Moreover, providing pathway metabolites downstream of PMT-1 reverses the RNAi phenotype of pmt-1. Because PMT-1 is not found in mammals, is only distantly related to the plant PEAMT and is conserved in multiple parasitic nematodes of humans, animals and crop plants, inhibitors targeting it may prove valuable in human and veterinary medicine and agriculture.
Collapse
Key Words
- caenorhabditis elegans
- kinetic mechanism
- methyltransferase
- parasitic nematode
- phosphocholine biosynthesis
- product identification
- dsrna, double-stranded rna
- esi-q-tof, electrospray ionization–quadrupole–time-of-flight
- gfp, green fluorescent protein
- iptg, isopropyl β-d-thiogalactoside
- ngm, nematode growth media
- p-dme, phospho-dimethylethanolamine
- peamt, s-adenosyl-l-methionine:phosphoethanolamine n-methyltransferase(s) (ec 2.1.1.103)
- p-mme, phospho-monomethylethanolamine
- pmt-1, caenorhabditis elegans peamt
- rnai, rna interference
- sah, s-adenosylhomocysteine
- sam, s-adenosyl-l-methionine
Collapse
Affiliation(s)
| | | | - Rebecca E. Cahoon
- †Donald Danforth Plant Science Center, 975 North Warson Rd, St. Louis, MO 63132, U.S.A
| | - Leslie M. Hicks
- †Donald Danforth Plant Science Center, 975 North Warson Rd, St. Louis, MO 63132, U.S.A
| | - Lavanya H. Palavalli
- †Donald Danforth Plant Science Center, 975 North Warson Rd, St. Louis, MO 63132, U.S.A
| | | | - Merry McLaird
- *Divergence, Inc., 893 North Warson Rd, St. Louis, MO 63141, U.S.A
| | | | | | | | - Joseph M. Jez
- †Donald Danforth Plant Science Center, 975 North Warson Rd, St. Louis, MO 63132, U.S.A
| |
Collapse
|
30
|
Pöltl G, Kerner D, Paschinger K, Wilson IBH. N-glycans of the porcine nematode parasite Ascaris suum are modified with phosphorylcholine and core fucose residues. FEBS J 2006; 274:714-26. [PMID: 17181538 PMCID: PMC2850173 DOI: 10.1111/j.1742-4658.2006.05615.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In recent years, the glycoconjugates of many parasitic nematodes have attracted interest due to their immunogenic and immunomodulatory nature. Previous studies with the porcine roundworm parasite Ascaris suum have focused on its glycosphingolipids, which were found, in part, to be modified by phosphorylcholine. Using mass spectrometry and western blotting, we have now analyzed the peptide N-glycosidase A-released N-glycans of adults of this species. The presence of hybrid bi- and triantennary N-glycans, some modified by core alpha1,6-fucose and peripheral phosphorylcholine, was demonstrated by LC/electrospray ionization (ESI)-Q-TOF-MS/MS, as was the presence of paucimannosidic N-glycans, some of which carry core alpha1,3-fucose, and oligomannosidic oligosaccharides. Western blotting verified the presence of protein-bound phosphorylcholine and core alpha1,3-fucose, whereas glycosyltransferase assays showed the presence of core alpha1,6-fucosyltransferase and Lewis-type alpha1,3-fucosyltransferase activities. Although, the unusual tri- and tetrafucosylated glycans found in the model nematode Caenorhabditis elegans were not found, the vast majority of the N-glycans found in A. suum represent a subset of those found in C. elegans; thus, our data demonstrate that the latter is an interesting glycobiological model for parasitic nematodes.
Collapse
|
31
|
Lochnit G, Grabitzki J, Henkel B, Tavernarakis N, Geyer R. First identification of a phosphorylcholine-substituted protein from Caenorhabditis elegans: isolation and characterization of the aspartyl protease ASP-6. Biol Chem 2006; 387:1487-93. [PMID: 17081123 DOI: 10.1515/bc.2006.186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Caenorhabditis elegans is a widely accepted model system for parasitic nematodes, drug screening and developmental studies. Similar to parasitic worms, C. elegans expresses glycosphingolipids and glycoproteins carrying, in part, phosphorylcholine (PCho) substitutions, which might play important roles in nematode development, fertility and, at least in the case of parasites, survival within the host. With the exception of a major secretory/excretory product from Acanthocheilonema viteae (ES-62), no protein carrying this epitope has been studied in detail yet. Here we report on the identification, characterization and localization of the aspartyl protease ASP-6 of C. elegans, which is excreted by the nematode in a PCho-substituted form. Within the worm, most prominent expression of the protein is observed in the intestine, while muscle and epithelial cells express asp-6 to a lesser extent. In animals harboring an ASP-6::GFP fusion protein, diffuse fluorescence throughout the body cavity of adult worms indicates that the chimeric protein is secreted.
Collapse
Affiliation(s)
- Günter Lochnit
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
32
|
van Riet E, Wuhrer M, Wahyuni S, Retra K, Deelder AM, Tielens AGM, van der Kleij D, Yazdanbakhsh M. Antibody responses to Ascaris-derived proteins and glycolipids: the role of phosphorylcholine. Parasite Immunol 2006; 28:363-71. [PMID: 16879308 DOI: 10.1111/j.1365-3024.2006.00844.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In addition to proteins, glycolipids can be targets of antibody responses and contribute to host-pathogen interaction. Following the structural analysis of Ascaris lumbricoides-derived glycolipids, the antibody responses of a group of children with no, light and heavy infections were analysed. The role of the phosphorylcholine moiety, present on Ascaris glycoproteins and glycolipids, in antibody reactivity of these infected individuals was determined. Children carrying heavy infections showed highest IgG reactivity to glycolipids compared to lightly or non-infected children. Substantial IgG antibody reactivity to both (glyco)proteins and glycolipids was found to be directed to the phosphorylcholine moiety as determined by either removal of this group or a competition assay. This was most pronounced for glycolipids, where removal of the phosphorylcholine moieties by hydrofluoric acid treatment abrogated IgG antibody reactivity. Measurement of IgG4 and IgE isotypes showed no IgG4 reactivity to Ascaris glycolipids, but raised IgE responses were detected in subjects with light or no Ascaris infections, suggesting that IgE responses to glycolipids may play a role in controlling parasite burden. Differences found in antibody profiles to glycolipids and (glyco)proteins, indicate that these different classes of compounds may have distinct roles in shaping of and interacting with humoral immune responses.
Collapse
Affiliation(s)
- E van Riet
- Department of Parasitology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Paschinger K, Hackl M, Gutternigg M, Kretschmer-Lubich D, Stemmer U, Jantsch V, Lochnit G, Wilson IBH. A deletion in the golgi alpha-mannosidase II gene of Caenorhabditis elegans results in unexpected non-wild-type N-glycan structures. J Biol Chem 2006; 281:28265-77. [PMID: 16864579 PMCID: PMC2848328 DOI: 10.1074/jbc.m602878200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The processing of N-linked oligosaccharides by alpha-mannosidases in the endoplasmic reticulum and Golgi is a process conserved in plants and animals. After the transfer of a GlcNAc residue to Asn-bound Man(5)GlcNAc(2) by N-acetylglucosaminyltransferase I, an alpha-mannosidase (EC 3.2.1.114) removes one alpha1,3-linked and one alpha1,6-linked mannose residue. In this study, we have identified the relevant alpha-mannosidase II gene (aman-2; F58H1.1) from Caenorhabditis elegans and have detected its activity in both native and recombinant forms. For comparative studies, the two other cDNAs encoding class II mannosidases aman-1 (F55D10.1) and aman-3 (F48C1.1) were cloned; the corresponding enzymes are, respectively, a putative lysosomal alpha-mannosidase and a Co(II)-activated alpha-mannosidase. The analysis of the N-glycan structures of an aman-2 mutant strain demonstrates that the absence of alpha-mannosidase II activity results in a shift to structures not seen in wild-type worms (e.g. N-glycans with the composition Hex(5-7)HexNAc(2-3)Fuc(2)Me) and an accumulation of hybrid oligosaccharides. Paucimannosidic glycans are almost absent from aman-2 worms, indicative also of a general lack of alpha-mannosidase III activity. We hypothesize that there is a tremendous flexibility in the glycosylation pathway of C. elegans that does not impinge, under standard laboratory conditions, on the viability of worms with glycotypes very unlike the wild-type pattern.
Collapse
Affiliation(s)
| | - Matthias Hackl
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | - Martin Gutternigg
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | | | - Ute Stemmer
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | - Verena Jantsch
- Abteilung für Chromosomenbiologie, Vienna Biocenter II, A-1030 Wien
| | - Günter Lochnit
- Institut für Biochemie, Justus-Liebig Universität, D-35292 Giessen, Germany
| | - Iain B. H. Wilson
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| |
Collapse
|
34
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update covering the period 1999-2000. MASS SPECTROMETRY REVIEWS 2006; 25:595-662. [PMID: 16642463 DOI: 10.1002/mas.20080] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review describes the use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates and continues coverage of the field from the previous review published in 1999 (D. J. Harvey, Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates, 1999, Mass Spectrom Rev, 18:349-451) for the period 1999-2000. As MALDI mass spectrometry is acquiring the status of a mature technique in this field, there has been a greater emphasis on applications rather than to method development as opposed to the previous review. The present review covers applications to plant-derived carbohydrates, N- and O-linked glycans from glycoproteins, glycated proteins, mucins, glycosaminoglycans, bacterial glycolipids, glycosphingolipids, glycoglycerolipids and related compounds, and glycosides. Applications of MALDI mass spectrometry to the study of enzymes acting on carbohydrates (glycosyltransferases and glycosidases) and to the synthesis of carbohydrates, are also covered.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
35
|
Shi H, Tan J, Schachter H. N-glycans are involved in the response of Caenorhabditis elegans to bacterial pathogens. Methods Enzymol 2006; 417:359-89. [PMID: 17132514 DOI: 10.1016/s0076-6879(06)17022-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Caenorhabditis elegans is becoming a popular tool for the study of glycan function particularly as it applies to development. More than 150 C. elegans genes have been identified as homologs of vertebrate genes involved in glycan metabolism. However, only a relatively small number of these genes have been expressed and studied in any detail. Oligomannose N-glycans (Man5-9GlcNAc2Asn), major components of the N-glycans of all eukaryotes including C. elegans, are essential, at least in part, for eukaryote survival, because they play an important role in protein quality control. In addition, vertebrates make hybrid (GlcNAcMan3-5GlcNAc2Asn) and complex (XGlcNAc2-6Man3GlcNAc2Asn) but little or no paucimannose (Man3-4GlcNAc2Asn)N-glycans, whereas plants, insects, and C. elegans make paucimannose but little or no hybrid nor complex N-glycans. UDP-GlcNAc:alpha3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I (encoded by the gene Mgat1) controls the synthesis of hybrid, complex, and paucimannose N-glycans in all eukaryotes. C. elegans has three genes encoding beta1,2-N-acetylglucosaminyltransferase I (gly-12, gly-13, gly-14). To determine the functional requirement for this enzyme in worms, we generated seven worm strains with mutations in these three genes (gly-12, dpy-6 gly-13, gly-14, gly-12 gly-13, gly-14;gly-12, gly-14;dpy-6 gly-13 and gly-14;gly-12 gly-13). Whereas mice and Drosophila melanogaster with null mutations in Mgat1 suffer severe developmental abnormalities, all seven C. elegans strains with null mutations in the genes encoding beta1,2-N-acetylglucosaminyltransferase I develop normally and seem to have a wild-type phenotype. We now present evidence that beta1,2-N-acetylglucosaminyltransferase I-dependent N-glycans (consisting mainly of paucimannose N-glycans) play a role in the interaction of C. elegans with pathogenic bacteria, suggesting that these N-glycans are components of the worm's innate immune system.
Collapse
Affiliation(s)
- Hui Shi
- Program in Structural Biology and Biochemistry, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
36
|
Fuller MD, Schwientek T, Wandall HH, Pedersen JW, Clausen H, Levery SB. Structure elucidation of neutral, di-, tri-, and tetraglycosylceramides from High Five cells: identification of a novel (non-arthro-series) glycosphingolipid pathway. Glycobiology 2005; 15:1286-301. [PMID: 16014747 DOI: 10.1093/glycob/cwj011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The major neutral glycosphingolipids (GSLs) of High Five insect cells have been extracted, purified, and characterized. It was anticipated that GSLs from High Five cells would follow the arthro-series pathway, known to be expressed by both insects and nematodes at least through the common tetraglycosylceramide (Glcbeta1Cer --> Manbeta4Glcbeta1Cer [MacCer] --> GlcNAcbeta3Manbeta4Glcbeta1Cer [At(3)Cer] --> GalNAcbeta4- GlcNAcbeta3Manbeta4Glcbeta1Cer [At(4)Cer]). Surprisingly, the structures of the major neutral High Five GSLs already diverge from the arthro-series pathway at the level of the triglycosylceramide. Studies by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and electrospray ionization mass spectrometry (ESI-MS) showed the structure of the predominant High Five triglycosylceramide to be Galbeta3Manbeta4Glcbeta1Cer, whereas the predominant tetraglycosylceramide was characterized as GalNAcalpha4Galbeta3Manbeta4- Glcbeta1Cer. Both of these structures are novel products for any cell or organism so far studied. The GalNAcalpha4 and Galbeta3 units are found in insect GSLs, but always as the fifth and sixth residues linked to GalNAcbeta4 in the arthro-series penta- and hexaglycosylceramide structures (At(5)Cer and At(6)Cer, respectively). The structure of the High Five tetraglycosylceramide thus requires a reversal of the usual order of action of the glycosyltransferases adding the GalNAcalpha4 and Galbeta3 residues in dipteran GSL biosynthesis and implies the existence of an insect Galbeta3-T capable of using Manbeta4Glcbeta1Cer as a substrate with high efficiency. The results demonstrate the potential appearance of unexpected glycoconjugate biosynthetic products even in widely used but unexamined systems, as well as a potential for core switching based on MacCer, as observed in mammalian cells based on the common LacCer intermediate.
Collapse
Affiliation(s)
- Matthew D Fuller
- Department of Biology, Georgia Institute of Technology, 309 Cherry Emerson Building, Atlanta, GA 30332-0230, USA
| | | | | | | | | | | |
Collapse
|
37
|
Lochnit G, Bongaarts R, Geyer R. Searching new targets for anthelminthic strategies: Interference with glycosphingolipid biosynthesis and phosphorylcholine metabolism affects development of Caenorhabditis elegans. Int J Parasitol 2005; 35:911-23. [PMID: 15885697 DOI: 10.1016/j.ijpara.2005.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/07/2005] [Accepted: 02/22/2005] [Indexed: 11/17/2022]
Abstract
Nematode infections are amongst the most abundant diseases of man and animals. They are characterised by a low mortality but high morbidity, thus reflecting the adaptation of these parasites to their hosts. Resistance as well as severe side-effects and efficacies restricted to distinct larval stages or parasites of the anthelmithics used at present require the urgent development of new and more nematode-specific drugs, targeting enzymes of parasite restricted biosynthetic routes. Caenorhabditis elegans has been found to be a good model system for parasitic nematodes, drug screening and developmental studies. Structural analyses have revealed nematode-specific glycosphingolipid structures of the arthro-series, carrying in part, phosphorylcholine substituents. These biomolecules appear to play important roles in nematode development, fertility and survival within the host and are, therefore, good target-candidates for the development of new anthelminthic strategies. Here we show that RNAi experiments targeting enzymes of glycosphingolipid biosynthesis or choline metabolism result, in part, in a drastic reduction of fertility. We further tested various chemical inhibitors of these pathways and found significant effects on the development of the worms, resulting in developmental arrest, sterility and, in part, lethality. Such inhibitors can, therefore, help to define new classes of anthelminthics.
Collapse
Affiliation(s)
- Günter Lochnit
- Faculty of Medicine, Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | | | | |
Collapse
|
38
|
Abstract
From observations on human diseases and mutant mice, it has become clear that glycosylation plays a major role in metazoan development. Caenorhabditis elegans provides powerful tools to study this problem that are not available in men or mice. The worm has many genes homologous to mammalian genes involved in glycosylation. Glycobiologists have, in recent years, cloned and expressed some of these genes and studied the effects of mutations on worm development. Recent studies have focused on N-glycosylation, lumenal nucleoside diphosphatases, the resistance of C. elegans to a bacterial toxin and infections, fucosylation and proteoglycans.
Collapse
Affiliation(s)
- Harry Schachter
- Program in Structural Biology and Biochemistry, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
39
|
Mucha J, Domlatil J, Lochnit G, Rendić D, Paschinger K, HINTERKöRNER G, Hofinger A, Kosma P, Wilson I. The Drosophila melanogaster homologue of the human histo-blood group Pk gene encodes a glycolipid-modifying alpha1,4-N-acetylgalactosaminyltransferase. Biochem J 2005; 382:67-74. [PMID: 15130086 PMCID: PMC1133916 DOI: 10.1042/bj20040535] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 04/29/2004] [Accepted: 05/07/2004] [Indexed: 11/17/2022]
Abstract
Insects express arthro-series glycosphingolipids, which contain an alpha1,4-linked GalNAc residue. To determine the genetic basis for this linkage, we cloned a cDNA (CG17223) from Drosophila melanogaster encoding a protein with homology to mammalian alpha1,4-glycosyltransferases and expressed it in the yeast Pichia pastoris. Culture supernatants from the transformed yeast were found to display a novel UDP-GalNAc:GalNAcbeta1,4GlcNAcbeta1-R alpha-N-acetylgalactosaminyltransferase activity when using either a glycolipid, p-nitrophenylglycoside or an N-glycan carrying one or two terminal beta-N-acetylgalactosamine residues. NMR and MS in combination with glycosidase digestion and methylation analysis indicate that the cloned cDNA encodes an alpha1,4-N-acetylgalactosaminyltransferase. We hypothesize that this enzyme and its orthologues in other insects are required for the biosynthesis of the N5a and subsequent members of the arthro-series of glycolipids as well as of N-glycan receptors for Bacillus thuringiensis crystal toxin Cry1Ac.
Collapse
Affiliation(s)
- Ján Mucha
- *Chemický ústav, Slovenská akadémia vied, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Jiří Domlatil
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Günter Lochnit
- ‡Institut für Biochemie, Justus-Liebig-Universität Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany
| | - Dubravko Rendić
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Katharina Paschinger
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Georg HINTERKöRNER
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Andreas Hofinger
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Paul Kosma
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Iain B. H. Wilson
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
- To whom correspondence should be addressed (email )
| |
Collapse
|
40
|
Griffitts JS, Haslam SM, Yang T, Garczynski SF, Mulloy B, Morris H, Cremer PS, Dell A, Adang MJ, Aroian RV. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 2005; 307:922-5. [PMID: 15705852 DOI: 10.1126/science.1104444] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The development of pest resistance threatens the effectiveness of Bacillus thuringiensis (Bt) toxins used in transgenic and organic farming. Here, we demonstrate that (i) the major mechanism for Bt toxin resistance in Caenorhabditis elegans entails a loss of glycolipid carbohydrates; (ii) Bt toxin directly and specifically binds glycolipids; and (iii) this binding is carbohydrate-dependent and relevant for toxin action in vivo. These carbohydrates contain the arthroseries core conserved in insects and nematodes but lacking in vertebrates. We present evidence that insect glycolipids are also receptors for Bt toxin.
Collapse
Affiliation(s)
- Joel S Griffitts
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Grabitzki J, Sauerland V, Geyer R, Lochnit G. Identification of phosphorylcholine substituted peptides by their characteristic mass spectrometric fragmentation. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2005; 11:335-44. [PMID: 16107748 DOI: 10.1255/ejms.728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phosphorylcholine (PC) substituted biomolecules are wide-spread, highly relevant antigens of parasites, since this small hapten has been found to be a potent immunomodulatory component which allows the establishment of long lasting infections of the host. Structural data, especially of protein bound PC-substituents, are still rare due to the observation that mass spectrometric analyses are mostly hampered by this zwitterionic substituent resulting in low sensitivities and unusual but characteristic fragmentation patterns. Here we investigated the fragmentation behaviour of synthetic PC-substituted peptides by matrix-assisted laser desorption/ionization mass spectrometry and electrospray ionization ion trap mass spectrometry. We could show that the predominant neutral loss of a trimethylamine unit (Hoffmann elimination) leads to cyclic phosphate derivatives which prevent further fragmentation of the peptide backbone by stabilizing the positive charge at this particular side chain. Knowledge of this PC-specific fragmentation might help to identify PC-substituted biomolecules and facilitate their structural analysis.
Collapse
Affiliation(s)
- Julia Grabitzki
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstrasse 24, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
42
|
Abstract
Sphingosines, or sphingoids, are a family of naturally occurring long-chain hydrocarbon derivatives sharing a common 1,3-dihydroxy-2-amino-backbone motif. The majority of sphingolipids, as their derivatives are collectively known, can be found in cell membranes in the form of amphiphilic conjugates, each composed of a polar head group attached to an N-acylated sphingoid, or ceramide. Glycosphingolipids (GSLs), which are the glycosides of either ceramide or myo-inositol-(1-O)-phosphoryl-(O-1)-ceramide, are a structurally and functionally diverse sphingolipid subclass; GSLs are ubiquitously distributed among all eukaryotic species and are found in some bacteria. Since GSLs are secondary metabolites, direct and comprehensive analysis (metabolomics) must be considered an essential complement to genomic and proteomic approaches for establishing the structural repertoire within an organism and deducing its possible functional roles. The glycosphingolipidome clearly comprises an important and extensive subset of both the glycome and the lipidome, but the complexities of GSL structure, biosynthesis, and function form the outlines of a considerable analytical problem, especially since their structural diversity confers by extension an enormous variability with respect to physicochemical properties. This chapter covers selected developments and applications of techniques in mass spectrometric (MS) that have contributed to GSL structural analysis and glycosphingolipidomics since 1990. Sections are included on basic characteristics of ionization and fragmentation of permethylated GSLs and of lithium-adducted nonderivatized GSLs under positive-ion electrospray ionization mass spectrometry (ESI-MS) and collision-induced mass spectrometry (CID-MS) conditions; on the analysis of sulfatides, mainly using negative-ion techniques; and on selected applications of ESI-MS and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to emerging GSL structural, functional, and analytical issues. The latter section includes a particular focus on evolving techniques for analysis of gangliosides, GSLs containing sialic acid, as well as on characterizations of GSLs from selected nonmammalian eukaryotes, such as dipterans, nematodes, cestodes, and fungi. Additional sections focus on the issue of whether it is better to leave GSLs intact or remove the ceramide; on development and uses of thin-layer chromatography (TLC) blotting and TLC-MS techniques; and on emerging issues of high-throughput analysis, including the use of flow injection, liquid chromatography mass spectrometry (LC-MS), and capillary electrophoresis mass spectrometry (CE-MS).
Collapse
Affiliation(s)
- Steven B Levery
- Department of Chemistry, University of New Hamphsire, Durham, USA
| |
Collapse
|
43
|
Houston KM, Harnett W. Structure and synthesis of nematode phosphorylcholine-containing glycoconjugates. Parasitology 2004; 129:655-61. [PMID: 15648688 DOI: 10.1017/s0031182004006171] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Infection with filarial nematodes produces a chronic, long-lasting illness with adult worms able to survive within human hosts for up to 15 years. A contributor to the longevity of these parasites is the presence of phosphorylcholine (PC) on components of the worms' molecular secretions (ES). PC on ES modulates host immune responses towards an anti-inflammatory phenotype thereby generating an environment favourable for parasite survival. PC is attached to nematode ES via a covalent association with carbohydrate, which, although well-documented in bacteria and fungi, is absent from humans, making it an ideal target for the development of novel drugs. In order to produce such drugs it is first necessary to understand the structure and synthesis of nematode PC-glycans. ES-62 is the major PC-ES-product ofAcanthocheilonema viteaeand is a homologue of PC-ES found in human filarial nematodes. We have studied the structure and biosynthesis of PC-glycans of ES-62 by a combination of pulse-chase experiments, experiments involving the use of inhibitors of each of intracellular trafficking, oligosaccharide processing and phospholipid biosynthesis and various forms of mass spectrometry. Our indications indicate that PC is transferred in the lumen of the medial Golgi to an N-type glycan consisting of a trimannosyl core with or without core fucosylation bearing between 1 and 4 N-acetyl glucosamine residues. The structure of the PC-N-glycans found in ES-62 appears to be conserved amongst filarial nematodes in that it has additionally been identified inOnchocerca volvulusandO. gibsoni. Also, similar structures have been found in non-filarial parasitic nematodes and in the free-living nematodeCaenorhabditis elegans. Finally, PC has also been recently found attached to the carbohydrate moieties of nematode glycosphingolipids and the structure of these will also be considered.
Collapse
Affiliation(s)
- K M Houston
- The University of Strathclyde, Department of Immunology, Strathclyde Institute for Biomedical Sciences, Glasgow G4 0NR
| | | |
Collapse
|
44
|
Paschinger K, Rendic D, Lochnit G, Jantsch V, Wilson IBH. Molecular Basis of Anti-horseradish Peroxidase Staining in Caenorhabditis elegans. J Biol Chem 2004; 279:49588-98. [PMID: 15364955 DOI: 10.1074/jbc.m408978200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cross-reactivity with anti-horseradish peroxidase antiserum is a feature of many glycoproteins from plants and invertebrates; indeed staining with this reagent has been used to track neurons in Drosophila melanogaster and Caenorhabditis elegans. Although in insects the evidence indicates that the cross-reaction results from the presence of core alpha1,3-fucosylated N-glycans, the molecular basis for anti-horseradish peroxidase staining in nematodes has been unresolved to date. By using Western blots of wild-type and mutant C. elegans extracts in conjunction with specific inhibitors, we show that the cross-reaction is due to core alpha1,3-fucosylation. Of the various mutants examined, one with a deletion of the fut-1 (K08F8.3) gene showed no reaction to anti-horseradish peroxidase; the molecular phenotype was rescued by injection of either the K08F8 cosmid or the fut-1 open reading frame under control of the let-858 promoter. Furthermore, expression of fut-1 cDNA in Pichia and insect cells in conjunction with antibody staining, high pressure liquid chromatography, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry analyses showed that FUT-1 is a core alpha1,3-fucosyltransferase with an unusual substrate specificity. It is the only core fucosyltransferase in plants and animals described to date that does not require the prior action of N-acetylglucosaminyltransferase I.
Collapse
|
45
|
Abstract
Researchers have long predicted that complex carbohydrates on cell surfaces would play important roles in developmental processes because of the observation that specific carbohydrate structures appear in specific spatial and temporal patterns throughout development. The astounding number and complexity of carbohydrate structures on cell surfaces added support to the concept that glycoconjugates would function in cellular communication during development. Although the structural complexity inherent in glycoconjugates has slowed advances in our understanding of their functions, the complete sequencing of the genomes of organisms classically used in developmental studies (e.g., mice, Drosophila melanogaster, and Caenorhabditis elegans) has led to demonstration of essential functions for a number of glycoconjugates in developmental processes. Here we present a review of recent studies analyzing function of a variety of glycoconjugates (O-fucose, O-mannose, N-glycans, mucin-type O-glycans, proteoglycans, glycosphingolipids), focusing on lessons learned from human disease and genetic studies in mice, D. melanogaster, and C. elegans.
Collapse
Affiliation(s)
- Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, New York 11794-5215, USA.
| | | |
Collapse
|
46
|
Tawill S, Le Goff L, Ali F, Blaxter M, Allen JE. Both free-living and parasitic nematodes induce a characteristic Th2 response that is dependent on the presence of intact glycans. Infect Immun 2004; 72:398-407. [PMID: 14688121 PMCID: PMC343992 DOI: 10.1128/iai.72.1.398-407.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with parasitic nematodes is characterized by the induction of a profound type 2 immune response. We have studied the role of glycans in the induction of the skewed type 2 response by antigens of the parasitic nematode Brugia malayi as well as the free-living nematode Caenorhabditis elegans. Lymph node cells from BALB/c mice immunized with soluble extracts of the two nematodes showed distinct antigen-specific proliferation and cytokine production; however, both nematodes induced antigen-specific interleukin 4 (IL-4) production, demonstrating that the induction of a biased type 2 response is not unique to parasitic nematodes. Sodium periodate-treated soluble extracts of both nematodes consistently induced significantly less IL-4 production than the respective mock-treated extracts, indicating that glycans play a critical role in the induction of the Th2 immune response by these nematodes. The glycan-dependent induction of the Th2-potentiating cytokine IL-4 occurs by 72 h postinoculation. Our data suggest that glycan determinants common to nematodes act as ligands, displaying distinct molecular patterns that trigger the immune system to launch a biased Th2 immune response upon exposure to these organisms or their products. Further, the similarity of our findings to those for Schistosoma mansoni egg antigen is striking considering the enormous phylogenetic distance between nematodes and trematodes. These data thus have important implications for how the mammalian host responds to widely divergent metazoan invaders and suggest that the powerful C. elegans model system can be used to address these questions.
Collapse
Affiliation(s)
- Salah Tawill
- Institute of Cell, Animal, and Population Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
47
|
Gee P, Kent C. Multiple isoforms of choline kinase from Caenorhabditis elegans: cloning, expression, purification, and characterization. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1648:33-42. [PMID: 12758145 DOI: 10.1016/s1570-9639(03)00106-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Choline kinase is the first enzymatic step in the CDP-choline pathway for phosphatidylcholine biosynthesis. The genome of the nematode, Caenorhabditis elegans, contains seven genes that appear likely to encode choline and/or ethanolamine kinases. We cloned five and expressed four of these genes, and purified or partially purified three of the encoded enzymes. All expressed proteins had choline kinase activity; those that most closely resemble the mammalian choline kinases were the most active. CKA-2, a very active form, was purified to near homogeneity. The K(m) values for CKA-2 were 1.6 and 2.4 mM for choline and ATP, respectively, and k(cat) was 74 s(-1). CKA-2 was predominantly a homodimer as assessed by glycerol gradient sedimentation and dynamic light scattering. CKB-2, which was less similar to mammalian choline kinases, had K(m) values for choline and ATP of 13 and 0.7 mM, and k(cat) was 3.8 s(-1). Both of these highly purified enzymes required magnesium, had very alkaline pH optima, and were much more active with choline as substrate than with ethanolamine. These results provide a foundation for future studies on the structure and function of choline kinases, as well as studies on the genetic analysis of the function of the multiple isoforms in this organism.
Collapse
Affiliation(s)
- Patricia Gee
- Department of Biological Chemistry, 4417 Medical Science I, University of Michigan Medical Center, 1301 Catherine Road, Ann Arbor 48109-0606, USA
| | | |
Collapse
|
48
|
Friedl CH, Lochnit G, Zähringer U, Bahr U, Geyer R. Structural elucidation of zwitterionic carbohydrates derived from glycosphingolipids of the porcine parasitic nematode Ascaris suum. Biochem J 2003; 369:89-102. [PMID: 12234251 PMCID: PMC1223059 DOI: 10.1042/bj20021074] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Accepted: 09/16/2002] [Indexed: 11/17/2022]
Abstract
Carbohydrates substituted with phosphocholine (PC) and phosphoethanolamine (PE) were released from zwitterionic glycosphingolipids of the pig parasitic nematode Ascaris suum by treatment with endoglycoceramidase. Individual glycans were obtained by HPLC on porous graphitic carbon followed by high-pH anion-exchange chromatography. In addition to the known pentasaccharides Gal alpha 3GalNAc beta 4[PC6]GlcNAc beta 3Man beta 4Glc and Gal alpha 3GalNAc beta 4[PC6]GlcNAc beta 3[PE6]Man beta 4Glc, the corresponding tri- and tetra-saccharides, as well as components with elongated structures, could be identified by matrix-assisted laser-desorption ionization-time-of-flight MS, methylation analysis, 1H- and 13C-NMR spectroscopy, exoglycosidase cleavage and electrospray ionization ion-trap MS. The extended components comprised novel structural motifs such as di-substituted alpha-galactose carrying two beta-linked galactosyl residues, which were found to bear, in part, further fucose, galactose, N -acetylgalactosamine and/or N -acetylglucosamine moieties. Furthermore, additional fucosylation of the PC-substituted N -acetylglucosamine and a non-terminal fucosyl motif were detected. In conclusion, this study contributes significant new information on the glycome of nematodes.
Collapse
Affiliation(s)
- Claudia H Friedl
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
49
|
Abstract
This review focuses on biological and biomedical mass spectrometry, and covers a selection of publications in this area included in the MEDLINE database for the period 1987-2001. Over the last 15 years, biological and biomedical mass spectrometry has progressed out of all recognition. The development of soft ionization methods, such as electrospray ionization and matrix-assisted laser desorption ionization, has mainly contributed to the remarkable progress, because they can easily produce gas-phase ions of large, polar, and thermally labile biomolecules, such as proteins, peptides, nucleic acids and others. The innovations of ionization methods have led to remarkable progress in mass spectrometric technology and in biochemistry, biotechnology and molecular biology research. In addition, mass spectrometry is one of the powerful and effective technologies for drug discovery and development. It is applicable to studies on structural determination, drug metabolism, including pharmacokinetics and toxicokinetics, and de novo drug discovery by applying post-genomic approarches. In the present review, the innovative soft ionization methods are first discussed along with their features. Also, the characteristics of the mass spectrometers which are active in the biological and biomedical research fields are also described. In addition, examples of the applications of biological and biomedical mass spectrometry are provided.
Collapse
Affiliation(s)
- Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan.
| | | |
Collapse
|
50
|
Cipollo JF, Costello CE, Hirschberg CB. The fine structure of Caenorhabditis elegans N-glycans. J Biol Chem 2002; 277:49143-57. [PMID: 12361949 DOI: 10.1074/jbc.m208020200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the fine structure of a nearly contiguous series of N-glycans from the soil nematode Caenorhabditis elegans. Five major classes are revealed including high mannose, mammalian-type complex, hybrid, fuco-pausimannosidic (five mannose residues or fewer substituted with fucose), and phosphocholine oligosaccharides. The high mannose, complex, and hybrid N-glycan series show a high degree of conservation with the mammalian biosynthetic pathways. The fuco-pausimannosidic glycans contain a novel terminal fucose substitution of mannose. The phosphocholine oligosaccharides are high mannose type and are multiply substituted with phosphocholine. Although phosphocholine oligosaccharides are known immunomodulators in human nematode and trematode infections, C. elegans is unique as a non-parasitic nematode containing phosphocholine N-glycans. Therefore, studies in C. elegans should aid in the elucidation of the biosynthetic pathway(s) of this class of biomedically relevant compounds. Results presented here show that C. elegans has a functional orthologue for nearly every known enzyme found to be deficient in congenital disorders of glycosylation types I and II. This nematode is well characterized genetically and developmentally. Therefore, elucidation of its N-glycome, as shown in this report, may place it among the useful systems used to investigate human disorders of glycoconjugate synthesis such as the congenital disorders of glycosylation syndromes.
Collapse
Affiliation(s)
- John F Cipollo
- Department of Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University, 715 Albany Street, Boston, MA 02118-2526, USA
| | | | | |
Collapse
|