1
|
Mulvihill E, Pfreundschuh M, Thoma J, Ritzmann N, Müller DJ. High-Resolution Imaging of Maltoporin LamB while Quantifying the Free-Energy Landscape and Asymmetry of Sugar Binding. NANO LETTERS 2019; 19:6442-6453. [PMID: 31385710 DOI: 10.1021/acs.nanolett.9b02674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Maltoporins are a family of membrane proteins that facilitate the diffusion of hydrophilic molecules and maltosaccharides across the outer membrane of Gram-negative bacteria. Two contradicting models propose the sugar binding, uptake, and transport by maltoporins to be either symmetric or asymmetric. Here, we address this contradiction and introduce force-distance-based atomic force microscopy to image single maltoporin LamB trimers in the membrane at sub-nanometer resolution and simultaneously quantify the binding of different malto-oligosaccharides. We assay subtle differences of the binding free-energy landscape of maltotriose, maltotetraose, and maltopentaose, which quantifies how binding strength and affinity increase with the malto-oligosaccharide chain length. The ligand-binding parameters change considerably by mutating the extracellular loop 3, which folds into and constricts the transmembrane pore of LamB. By recording LamB topographs and structurally mapping binding events at sub-nanometer resolution, we observe LamB to preferentially bind maltodextrin from the periplasmic side, which shows sugar binding and uptake to be asymmetric. The study introduces atomic force microscopy as an analytical nanoscopic tool that can differentiate among the factors modulating and models describing the binding and uptake of substrates by membrane proteins.
Collapse
Affiliation(s)
- Estefania Mulvihill
- Department of Biosystems Science and Engineering , Eidgenössische Technische Hochschule (ETH) Zurich , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Moritz Pfreundschuh
- Department of Biosystems Science and Engineering , Eidgenössische Technische Hochschule (ETH) Zurich , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Johannes Thoma
- Department of Biosystems Science and Engineering , Eidgenössische Technische Hochschule (ETH) Zurich , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Noah Ritzmann
- Department of Biosystems Science and Engineering , Eidgenössische Technische Hochschule (ETH) Zurich , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering , Eidgenössische Technische Hochschule (ETH) Zurich , Mattenstrasse 26 , 4058 Basel , Switzerland
| |
Collapse
|
2
|
Ionescu SA, Lee S, Housden NG, Kaminska R, Kleanthous C, Bayley H. Orientation of the OmpF Porin in Planar Lipid Bilayers. Chembiochem 2017; 18:554-562. [PMID: 28094462 DOI: 10.1002/cbic.201600644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/27/2022]
Abstract
The outer-membrane protein OmpF is an abundant trimeric general diffusion porin that plays a central role in the transport of antibiotics and colicins across the outer membrane of E. coli. Individual OmpF trimers in planar lipid bilayers (PLBs) show one of two current-voltage asymmetries, thus implying that insertion occurs with either the periplasmic or the extracellular end first. A method for establishing the orientation of OmpF in PLB was developed, based on targeted covalent modification with membrane-impermeant reagents of peripheral cysteine residues introduced near the periplasmic or the extracellular entrance. By correlating the results of the modification experiments with measurements of current asymmetry or the sidedness of binding of the antibiotic enrofloxacin, OmpF orientation could be quickly determined in subsequent experiments under a variety of conditions. Our work will allow the precise interpretation of past and future studies of antibiotic permeation and protein translocation through OmpF and related porins.
Collapse
Affiliation(s)
- Sandra A Ionescu
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Sejeong Lee
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Nicholas G Housden
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Hagan Bayley
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
3
|
Soysa HSM, Suginta W. Identification and Functional Characterization of a Novel OprD-like Chitin Uptake Channel in Non-chitinolytic Bacteria. J Biol Chem 2016; 291:13622-33. [PMID: 27226611 DOI: 10.1074/jbc.m116.728881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
Chitoporin from the chitinolytic marine Vibrio has been characterized as a trimeric OmpC-like channel responsible for effective chitin uptake. In this study we describe the identification and characterization of a novel OprD-like chitoporin (so-called EcChiP) from Escherichia coli The gene was identified, cloned, and functionally expressed in the Omp-deficient E. coli BL21 (Omp8) Rosetta strain. On size exclusion chromatography, EcChiP had an apparent native molecular mass of 50 kDa, as predicted by amino acid sequencing and mass analysis, confirming that the protein is a monomer. Black lipid membrane reconstitution demonstrated that EcChiP could readily form stable, monomeric channels in artificial phospholipid membranes, with an average single channel conductance of 0.55 ± 0.01 nanosiemens and a slight preference for cations. Single EcChiP channels showed strong specificity, interacting with long chain chitooligosaccharides but not with maltooligosaccharides. Liposome swelling assays indicated the bulk permeation of neutral monosaccharides and showed the size exclusion limit of EcChiP to be ∼200-300 Da for small permeants that pass through by general diffusion while allowing long chain chitooligosaccharides to pass through by a facilitated diffusion process. Taking E. coli as a model, we offer the first evidence that non-chitinolytic bacteria can activate a quiescent ChiP gene to express a functional chitoporin, enabling them to take up chitooligosaccharides for metabolism as an immediate source of energy.
Collapse
Affiliation(s)
- H Sasimali M Soysa
- From the Biochemistry-Electrochemistry Research Unit and School of Chemistry, Institute of Science and
| | - Wipa Suginta
- From the Biochemistry-Electrochemistry Research Unit and School of Chemistry, Institute of Science and Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
4
|
Abstract
Bacteria secrete and harbor in their membranes a number of pore-forming proteins. Some of these are bona fide ion channels that may respond to changes in membrane tension, voltage, or pH. Others may be large translocons used for the secretion of folded or unfolded polypeptide substrates. Additionally, many secreted toxins insert into target cell membranes and form pores that either collapse membrane electrochemical gradients or provide conduits for the delivery of virulence factors. In all cases, electrophysiological approaches have yielded much progress in past decades in understanding the functional mechanisms of these pores. By monitoring the changes in current due to ion flow through the pores, these techniques are used as high-resolution tools to gather detailed information on the kinetic and permeation properties of these proteins, including those whose physiological role is not ion flux. This review highlights some of the electrophysiological studies that have advanced the field of transport by pore-forming proteins of bacterial origin.
Collapse
Affiliation(s)
- Anne H Delcour
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001;
| |
Collapse
|
5
|
Roussel-Jazédé V, Gelder PV, Sijbrandi R, Rutten L, Otto BR, Luirink J, Gros P, Tommassen J, Ulsen PV. Channel properties of the translocator domain of the autotransporter Hbp ofEscherichia coli. Mol Membr Biol 2011; 28:158-70. [DOI: 10.3109/09687688.2010.550328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Gurnev PA, Harries D, Parsegian VA, Bezrukov SM. Osmotic stress regulates the strength and kinetics of sugar binding to the maltoporin channel. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454110. [PMID: 21339598 PMCID: PMC3128435 DOI: 10.1088/0953-8984/22/45/454110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We study the effect of osmotic stress, exerted by salts, on carbohydrate binding to the sugar-specific bacterial channel maltoporin. When the channel is reconstituted into planar lipid bilayers, single events of its occlusion by sugar are seen as transient interruptions in the flow of small ions. We find that, for most salts, changes in the free energy of maltoporin-sugar binding vary linearly with solution osmotic pressure. Such a change in binding with solution osmolarity indicates that for each salt a constant number of salt-excluding water molecules is released upon sugar-maltoporin association at all salt concentrations. We find that larger numbers of water molecules are released upon binding of the cyclic carbohydrate β-cyclodextrin (CD) than upon binding of the corresponding linear homologue maltoheptaose (m7). Remarkably, the extent to which salts affect the binding constants and rates depends sensitively on the type of salt; dehydration in solutions of different anions corresponds to the Hofmeister series. In sodium sulfate solutions, CD and m7 respectively release about 120 and 35 salt-excluding water molecules; in sodium chloride solutions, 35 and 15 waters. No water release is observed with sodium bromide. Finally, by adding adamantane, known to form an inclusion complex with CD, we can infer that CD not only dehydrates but also undergoes a conformational change upon binding to the channel. As a practical outcome, our results also demonstrate how osmotic stress can improve single-molecule detection of different solutes using protein-based nanopores.
Collapse
Affiliation(s)
- Philip A Gurnev
- Laboratory of Physical and Structural Biology, Program in Physical Biology, NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Harries
- Institute of Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel
| | | | - Sergey M Bezrukov
- Laboratory of Physical and Structural Biology, Program in Physical Biology, NICHD, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Theunissen S, Vergauwen B, De Smet L, Van Beeumen J, Van Gelder P, Savvides SN. The agglutination protein AggA from Shewanella oneidensis MR-1 is a TolC-like protein and forms active channels in vitro. Biochem Biophys Res Commun 2009; 386:380-5. [DOI: 10.1016/j.bbrc.2009.06.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 11/25/2022]
|
8
|
Nielsen CH. Biomimetic membranes for sensor and separation applications. Anal Bioanal Chem 2009; 395:697-718. [DOI: 10.1007/s00216-009-2960-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 01/04/2023]
|
9
|
Robert V, Volokhina EB, Senf F, Bos MP, Van Gelder P, Tommassen J. Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol 2007; 4:e377. [PMID: 17090219 PMCID: PMC1634882 DOI: 10.1371/journal.pbio.0040377] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Accepted: 09/12/2006] [Indexed: 11/24/2022] Open
Abstract
Integral β-barrel proteins are found in the outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts. The assembly of these proteins requires a proteinaceous apparatus of which Omp85 is an evolutionary conserved central component. To study its molecular mechanism, we have produced Omp85 from Escherichia coli in inclusion bodies and refolded it in vitro. The interaction of Omp85 with its substrate proteins was studied in lipid-bilayer experiments, where it formed channels. The properties of these channels were affected upon addition of unfolded outer-membrane proteins (OMPs) or synthetic peptides corresponding to their C-terminal signature sequences. The interaction exhibited species specificity, explaining the inefficient assembly of OMPs from Neisseria in E. coli. Accordingly, the in vivo assembly of the neisserial porin PorA into the E. coli outer membrane was accomplished after adapting its signature sequence. These results demonstrate that the Omp85 assembly machinery recognizes OMPs by virtue of their C-terminal signature sequence. OMP85 is an evolutionarily conserved protein necessary for the assembly of integral beta-barrel proteins in bacteria. The authors show that OMP85 forms a channel and recognizes its unfolded subtrates through a C-terminal signature sequence.
Collapse
Affiliation(s)
- Viviane Robert
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - Elena B Volokhina
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - Freya Senf
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - Martine P Bos
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - Patrick Van Gelder
- Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology (VIB), Free University Brussels, Brussels, Belgium
| | - Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Gurnev PA, Oppenheim AB, Winterhalter M, Bezrukov SM. Docking of a Single Phage Lambda to its Membrane Receptor Maltoporin as a Time-resolved Event. J Mol Biol 2006; 359:1447-55. [PMID: 16697410 DOI: 10.1016/j.jmb.2006.04.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/27/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
We have been able to observe the first step in bacteriophage infection, the docking of phage lambda to its membrane receptor maltoporin, at the single-particle level. High-resolution conductance recording from a single trimeric maltoporin channel reconstituted into a planar lipid bilayer has allowed detection of the simultaneous and irreversible interaction of the phage tail with all three monomers of the receptor. The formation of a phage-maltoporin complex affects the channel transport properties. Our analysis demonstrates that phage attaches symmetrically to all three receptor monomers. The statistics of sugar binding to the phage-receptor complex on the side opposite to phage docking show that the monomers of maltoporin still bind sugar independently, with the kinetic constants expected from those of the phage-free receptor. This finding suggests that phage docking does not distort the structure of the receptor, and that the phage-binding regions are close to, but do not overlap with, the sugar-binding domains of the maltoporin monomers. However, ion fluxes through the pores of maltoporin in the phage-receptor complex share a new common pathway. We expect that the present study contributes to the current needs for structural information on the functional complexes involved in intercellular recognition.
Collapse
Affiliation(s)
- Philip A Gurnev
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
11
|
Duckely M, Oomen C, Axthelm F, Van Gelder P, Waksman G, Engel A. The VirE1VirE2 complex ofAgrobacterium tumefaciensinteracts with single-stranded DNA and forms channels. Mol Microbiol 2005; 58:1130-42. [PMID: 16262795 DOI: 10.1111/j.1365-2958.2005.04894.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The VirE2 protein is crucial for the transfer of single-stranded DNA (ssDNA) from Agrobacterium tumefaciens to the nucleus of the plant host cell because of its ssDNA binding activity, assistance in nuclear import and putative ssDNA channel activity. The native form of VirE2 in Agrobacterium's cytoplasm is in complex with its specific chaperone, VirE1. Here, we describe the ability of the VirE1VirE2 complex to both bind ssDNA and form channels. The affinity of the VirE1VirE2 complex for ssDNA is slightly reduced compared with VirE2, but the kinetics of binding to ssDNA are unaffected by the presence of VirE1. Upon binding of VirE1VirE2 to ssDNA, similar helical structures to those reported for the VirE2-ssDNA complex were observed by electron microscopy. The VirE1VirE2 complex can release VirE1 once the VirE2-ssDNA complexes assembled. VirE2 exhibits a low affinity for small unilamellar vesicles composed of bacterial lipids and a high affinity for lipid vesicles containing sterols and sphingolipids, typical components of animal and plant membranes. In contrast, the VirE1VirE2 complex associated similarly with all kind of lipids. Finally, black lipid membrane experiments revealed the ability of the VirE1VirE2 complex to form channels. However, the majority of the channels displayed a conductance that was a third of the conductance of VirE2 channels. Our results demonstrate that the binding of VirE1 to VirE2 does not inhibit VirE2 functions and that the effector-chaperone complex is multifunctional.
Collapse
Affiliation(s)
- Myriam Duckely
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Denker K, Orlik F, Schiffler B, Benz R. Site-directed Mutagenesis of the Greasy Slide Aromatic Residues Within the LamB (Maltoporin) Channel of Escherichia coli: Effect on Ion and Maltopentaose Transport. J Mol Biol 2005; 352:534-50. [PMID: 16095613 DOI: 10.1016/j.jmb.2005.07.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 07/07/2005] [Accepted: 07/10/2005] [Indexed: 11/28/2022]
Abstract
The 3D-structure of the maltooligosaccharide-specific LamB-channel of Escherichia coli (also called maltoporin) is known from X-ray crystallography. The 3D structure suggests that a number of aromatic residues (Y6, Y41, W74, F229, W358 and W420) within the channel lumen are involved in carbohydrate and ion transport. All aromatic residues were replaced by alanine-scanning mutagenesis. Furthermore, LamB mutants were created in which two, three, four, five and all six aromatic residues were replaced to study their effects on ion and maltopentaose transport through LamB. The purified mutant proteins were reconstituted into lipid bilayer membranes and the single-channel conductance of the mutants was studied in conductance experiments. The results suggest that all aromatic residues provide some steric hindrance for ion transport through LamB. Highest impact is provided by Y6 and Y41 that are localized opposite Y118, which form the central constriction of the LamB channel. Stability constants for binding of maltopentaose to the mutant channels were measured using titration experiments with the carbohydrate. The mutation of one or several aromatic residue(s) led to a substantial decrease of the stability constant of binding. The highest effect was observed when all aromatic residues were replaced by alanine because no binding of maltopentaose could be detected in such a case. However, binding was again possible when Y118 was replaced by tryptophan. The carbohydrate-induced block of the channel function could be used also for the study of current noise through the different mutant LamB-channels. The analysis of the power density spectra of some of the mutants allowed the evaluation of the on-rate and off-rate constants (k1 and k(-1)) of carbohydrate binding to the binding site inside the channels. The results suggest that both on-rate and off-rate constants were affected by the mutations. For most mutants, k1 decreased and k(-1) increased. The possible influence of the aromatic residues of the greasy slide on carbohydrate and ion transport through LamB is discussed.
Collapse
Affiliation(s)
- Katrin Denker
- Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
13
|
Zuber D, Krause R, Venturi M, Padan E, Bamberg E, Fendler K. Kinetics of charge translocation in the passive downhill uptake mode of the Na+/H+ antiporter NhaA of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:240-50. [PMID: 16139785 DOI: 10.1016/j.bbabio.2005.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/26/2005] [Accepted: 07/27/2005] [Indexed: 11/24/2022]
Abstract
The Na+/H+ antiporter NhaA is the main Na+ extrusion system in E. coli. Using direct current measurements combined with a solid supported membrane (SSM), we obtained electrical data of the function of NhaA purified and reconstituted in liposomes. These measurements demonstrate NhaA's electrogenicity, its specificity for Li+ and Na+ and its pronounced pH dependence in the range pH 6.5-8.5. The mutant G338S, in contrast, presents a pH independent profile, as reported previously. A complete right-side-out orientation of the NhaA antiporter within the proteoliposomal membrane was determined using a NhaA-specific antibody based ELISA assay. This allowed for the first time the investigation of NhaA in the passive downhill uptake mode corresponding to the transport of Na+ from the periplasmic to the cytoplasmic side of the membrane. In this mode, the transporter has kinetic properties differing significantly from those of the previously investigated efflux mode. The apparent Km values were 11 mM for Na+ and 7.3 mM for Li+ at basic pH and 180 mM for Na+ and 50 mM for Li+ at neutral pH. The data demonstrate that in the passive downhill uptake mode pH regulation of the carrier affects both apparent Km as well as turnover (Vmax).
Collapse
Affiliation(s)
- D Zuber
- Max Planck Institut für Biophysik, Max von Laue Strasse 3, D-60438 Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Berkane E, Orlik F, Charbit A, Danelon C, Fournier D, Benz R, Winterhalter M. Nanopores: maltoporin channel as a sensor for maltodextrin and lambda-phage. J Nanobiotechnology 2005; 3:3. [PMID: 15743521 PMCID: PMC555588 DOI: 10.1186/1477-3155-3-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Accepted: 03/02/2005] [Indexed: 11/12/2022] Open
Abstract
Background To harvest nutrition from the outside bacteria e.g. E. coli developed in the outer cell wall a number of sophisticated channels called porins. One of them, maltoporin, is a passive specific channel for the maltodextrin uptake. This channel was also named LamB as the bacterial virus phage Lambda mis-uses this channel to recognise the bacteria. The first step is a reversible binding followed after a lag phase by DNA injection. To date little is known about the binding capacity and less on the DNA injection mechanism. To elucidate the mechanism and to show the sensitivity of our method we reconstituted maltoporin in planar lipid membranes. Application of an external transmembrane electric field causes an ion current across the channel. Maltoporin channel diameter is around a few Angstroem. At this size the ion current is extremely sensitive to any modification of the channels surface. Protein conformational changes, substrate binding etc will cause fluctuations reflecting the molecular interactions with the channel wall. The recent improvement in ion current fluctuation analysis allows now studying the interaction of solutes with the channel on a single molecular level. Results We could demonstrate the asymmetry of the bacterial phage Lambda binding to its natural receptor maltoporin. Conclusion We suggest that this type of measurement can be used as a new type of biosensors.
Collapse
Affiliation(s)
- E Berkane
- Institut Pharmacologie & Biologie Structurale-CNRS UMR5089, 205, rte de Narbonne, F-31077 Toulouse, France
- Lehrstuhl für Biotechnologie, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
| | - F Orlik
- Lehrstuhl für Biotechnologie, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
| | - A Charbit
- Inserm U-570, CHU Necker-Enfants Malades, 156, rue de Vaugirard, F- 75730 Paris Cedex 15, France
| | - C Danelon
- Institut Pharmacologie & Biologie Structurale-CNRS UMR5089, 205, rte de Narbonne, F-31077 Toulouse, France
| | - D Fournier
- Institut Pharmacologie & Biologie Structurale-CNRS UMR5089, 205, rte de Narbonne, F-31077 Toulouse, France
| | - R Benz
- Lehrstuhl für Biotechnologie, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
| | - M Winterhalter
- Institut Pharmacologie & Biologie Structurale-CNRS UMR5089, 205, rte de Narbonne, F-31077 Toulouse, France
- International University Bremen, School of Engineering and Science, D-28727 Bremen, Germany
| |
Collapse
|
15
|
Ranquin A, Van Gelder P. Maltoporin: sugar for physics and biology. Res Microbiol 2005; 155:611-6. [PMID: 15380547 DOI: 10.1016/j.resmic.2004.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 05/11/2004] [Indexed: 11/25/2022]
Abstract
Maltoporin has been studied for over 50 years. This trimeric bacterial outer membrane channel allows permeation of sugars such as maltodextrins. Its structure is described and functional studies resulting in a mechanistic transport model are critically discussed.
Collapse
Affiliation(s)
- An Ranquin
- Department of Molecular and Cellular Interactions, Free University of Brussels and Flanders Interuniversity Institute for Biotechnology (VIB), Pleinlaan 2, 1050 Brussels, Belgium
| | | |
Collapse
|
16
|
Huysmans G, Ranquin A, Wyns L, Steyaert J, Van Gelder P. Encapsulation of therapeutic nucleoside hydrolase in functionalised nanocapsules. J Control Release 2005; 102:171-9. [PMID: 15653143 DOI: 10.1016/j.jconrel.2004.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 10/01/2004] [Indexed: 11/26/2022]
Abstract
Liposomes are introduced as encapsulating carrier for prodrug activating enzymes. Inosineã-adenosineã-guanosine preferring nucleoside hydrolase of Trypanosoma vivax, a potential prodrug activating enzyme, was encapsulated in porin functionalized dioleyl-phosphatidylglycerol/egg-phosphatidylglycerol (DOPC/EPG) liposomes. Reactors had radiuses in the nanometer scale. First, transport of nucleosides through general diffusion porins OmpF and PhoE was measured in swelling assays, after which fully functional nanoreactors were developed. Enzyme catalysis of p-nitrophenylriboside, a substrate analogue for nucleoside hydrolases, was significantly higher in permeabilized vesicles than in control vesicles without porins. Residual activity of control vesicles possibly resides in an interaction between the enzyme and the liposomes. This interaction was not of electrostatic nature, since it remained unaffected after the addition of high salt or after perturbation of liposome surface charge and charge density. With these vesicles, we have introduced a new strategy for prodrug therapy, combining the benefits of ADEPT and liposome targeting strategies.
Collapse
Affiliation(s)
- Gerard Huysmans
- Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology (VIB) and Free University Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | |
Collapse
|
17
|
Burghout P, van Boxtel R, Van Gelder P, Ringler P, Müller SA, Tommassen J, Koster M. Structure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocolitica. J Bacteriol 2004; 186:4645-54. [PMID: 15231798 PMCID: PMC438636 DOI: 10.1128/jb.186.14.4645-4654.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YscC is the integral outer membrane component of the type III protein secretion machinery of Yersinia enterocolitica and belongs to the family of secretins. This group of proteins forms stable ring-like oligomers in the outer membrane, which are thought to function as transport channels for macromolecules. The YscC oligomer was purified after solubilization from the membrane with a nonionic detergent. Sodium dodecyl sulfate did not dissociate the oligomer, but it caused a change in electrophoretic mobility and an increase in protease susceptibility, indicating partial denaturation of the subunits within the oligomer. The mass of the homo-oligomer, as determined by scanning transmission electron microscopy, was approximately 1 MDa. Analysis of the angular power spectrum from averaged top views of negatively stained YscC oligomers revealed a 13-fold angular order, suggesting that the oligomer consists of 13 subunits. Reconstituted in planar lipid bilayers, the YscC oligomer displayed a constant voltage-independent conductance of approximately 3 nS, thus forming a stable pore. However, in vivo, the expression of YscC did not lead to an increased permeability of the outer membrane. Electron microscopy revealed that the YscC oligomer is composed of three domains, two stacked rings attached to a conical domain. This structure is consistent with the notion that the secretin forms the upper part of the basal body of the needle structure of the type III secreton.
Collapse
Affiliation(s)
- Peter Burghout
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Danelon C, Brando T, Winterhalter M. Probing the orientation of reconstituted maltoporin channels at the single-protein level. J Biol Chem 2003; 278:35542-51. [PMID: 12835320 DOI: 10.1074/jbc.m305434200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently we have shown that maltoporin channels reconstituted into black lipid membranes have pronounced asymmetric properties in both ion conduction and sugar binding. This asymmetry revealed also that maltoporin insertion is directional. However, the orientation in the lipid bilayer remained an open question. To elucidate the orientation, we performed point mutations at each side of the channel and analyzed the ion current fluctuation caused by an asymmetric maltohexaose addition. In a second series we used a chemically modified maltohexaose sugar molecule with inhibited entry possibility from the periplasmic side. In contrast to the natural outer cell wall of bacteria, we found that the maltoporin inserts in artificial lipid bilayer in such a way that the long extracellular loops are exposed to the same side of the membrane than protein addition. Based on this orientation, the directional properties of sugar binding were correlated to physiological conditions. We found that nature has optimized maltoporin channels by lowering the activation barriers at each extremity of the pore to trap sugar molecules from the external medium and eject them most efficiently to the periplasmic side.
Collapse
Affiliation(s)
- Christophe Danelon
- Institut de Pharmacologie et de Biologie Structurale, Université Paul Sabatier, 31077 Toulouse, France.
| | | | | |
Collapse
|
19
|
Investigation of substrate-specific porin channels in lipid bilayer membranes. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0927-5193(03)80035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Orlik F, Andersen C, Benz R. Site-directed mutagenesis of tyrosine 118 within the central constriction site of the LamB (maltoporin) channel of Escherichia coli. II. Effect on maltose and maltooligosaccharide binding kinetics. Biophys J 2002; 83:309-21. [PMID: 12080122 PMCID: PMC1302149 DOI: 10.1016/s0006-3495(02)75171-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The 3-D structure of the maltooligosaccharide-specific LamB channel of Escherichia coli (also called maltoporin) is known from x-ray crystallography. The central constriction of the channel formed by the external loop 3 is controlled by tyrosine 118. Y118 was replaced by site-directed mutagenesis by 10 other amino acids (alanine (A), isoleucine (I), asparagine (N), serine (S), cysteine (C), aspartic acid (D), arginine (R), histidine (H), phenylalanine (F), and tryptophan (W)) including neutral ones, negatively and positively charged amino acids to study the effect of their size, their hydrophobicity index, and their charge on maltose and maltooligosaccharide binding to LamB. The mutants were reconstituted into lipid bilayer membranes and the stability constants for binding of maltose, maltotriose, maltopentaose, and maltoheptaose to the channel were measured using titration experiments. The mutation of Y118 to any other non-aromatic amino acid led to a substantial decrease of the stability constant of binding by factors between about two and six. The highest effect was observed for the mutant Y118A. Replacement of Y118 by the two other aromatic amino acids, phenylalanine (F) and tryptophan (W), resulted in a substantial increase of the stability constant maximally by a factor of almost 400 for the Y118W mutant. The carbohydrate-induced block of the channel function was used for the study of current noise through the different mutant LamB channels. The analysis of the power density spectra allowed the evaluation of the on- and off-rate constants (k(1) and k(-1)) of sugar binding. The results suggest that both rate constants were affected by the mutations. For most mutants, with the exception of Y118F and Y118W, k(1) decreased and k(-1) increased, whereas the opposite was found for the aromatic amino acid mutants. The results suggest that tyrosine 118 has a crucial effect on carbohydrate transport through LamB.
Collapse
Affiliation(s)
- Frank Orlik
- Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | |
Collapse
|
21
|
Van Gelder P, Dumas F, Bartoldus I, Saint N, Prilipov A, Winterhalter M, Wang Y, Philippsen A, Rosenbusch JP, Schirmer T. Sugar transport through maltoporin of Escherichia coli: role of the greasy slide. J Bacteriol 2002; 184:2994-9. [PMID: 12003940 PMCID: PMC135051 DOI: 10.1128/jb.184.11.2994-2999.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lining of the maltodextrin-specific maltoporin (LamB) channel exhibits a string of aromatic residues, the greasy slide, part of which has been shown previously by crystallography to be involved in substrate binding. To probe the functional role of the greasy slide, alanine scanning mutagenesis has been performed on the six greasy slide residues and Y118 at the channel constriction. The mutants were characterized by an in vivo uptake assay and sugar-induced-current-noise analysis. Crystallographic analysis of the W74A mutant showed no perturbation of the structure. All mutants showed considerably decreased maltose uptake rates in vivo (<10% of the wild-type value), indicating the functional importance of the investigated residues. Substitutions at the channel center revealed appreciably increased (up to 100-fold) in vitro half-saturation concentrations for maltotriose and maltohexaose binding to the channel. Sugar association rates, however, were significantly affected also by the mutations at either end of the slide (W74A, W358A, and F227A), an effect which became most apparent upon nonsymmetrical sugar addition. The kinetic data are discussed on the basis of an asymmetric one-site two-barrier model, which suggests that, at low substrate concentrations, as are found under physiological conditions, only the heights of the extracellular and periplasmic barriers, which are reduced by the presence of the greasy slide, determine the efficiency of this facilitated diffusion channel.
Collapse
Affiliation(s)
- Patrick Van Gelder
- Division of Structural Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kullman L, Winterhalter M, Bezrukov SM. Transport of maltodextrins through maltoporin: a single-channel study. Biophys J 2002; 82:803-12. [PMID: 11806922 PMCID: PMC1301889 DOI: 10.1016/s0006-3495(02)75442-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transport of sugars through maltoporin channels reconstituted into planar lipid membranes has traditionally been addressed using multichannel preparations. Here we show that single-channel experiments offer new possibilities to reveal molecular details of the interaction between the sugar and the channel. We analyze time-resolved transient interruptions in the maltoporin ionic current in the presence of differently sized maltodextrins. We find for all studied sugars, from maltotriose to maltoheptaose, that only one sugar molecule is required to completely block one of the pores in the maltoporin trimer. The probability of simultaneous blockage of different pores increases with sugar concentration in a manner that demonstrates their mutual independence. The maltoporin channel is asymmetric and, added from one side only, predominantly inserts in an oriented manner. The asymmetry of the channel structure manifests itself in two ways. First, it is seen as an asymmetrical response to applied voltage at otherwise symmetrical conditions; second, as asymmetrical rates of sugar entry into the channel with asymmetrical (one-sided) sugar addition. Importantly, we find that the sugar residence time in the pore does not depend on which side the sugar is added. This voltage-dependent time is the same for symmetrical, cis, or trans sugar addition. This observation suggests that once a sugar molecule is captured by the "greasy slide" of the channel, it spends enough time there to "forget" from what entrance it was captured. This also means that the blockage events studied here represent sugar translocation events, and not just binding at and release from the same entrance of the channel.
Collapse
Affiliation(s)
- Lisen Kullman
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-0924 USA
| | | | | |
Collapse
|
23
|
Van Gelder P, Dutzler R, Dumas F, Koebnik R, Schirmer T. Sucrose transport through maltoporin mutants of Escherichia coli. PROTEIN ENGINEERING 2001; 14:943-8. [PMID: 11742115 DOI: 10.1093/protein/14.11.943] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Maltoporin (LamB) and sucrose porin (ScrY) reside in the bacterial outer membrane and facilitate the passive diffusion of maltodextrins and sucrose, respectively. To gain further insight into the determinants of solute specificity, LamB mutants were designed to allow translocation of sucrose, which hardly translocates through wild-type LamB. Three LamB mutants were studied. (a) Based on sequence and structure alignment of LamB with ScrY, two LamB triple mutants were generated (R109D, Y118D,D121F; R109N,Y118D,D121F) to mimic the ScrY constriction. The crystal structure of the first of these mutants was determined to be 3.2 A and showed an increased ScrY-like cross-section except for D109 that protrudes into the channel. (b) Based on this crystal structure a double mutant was generated by truncation of the two residues that obstruct the channel most in LamB (R109A,Y118A). Analysis of liposome swelling and in vivo sugar uptake demonstrated substantial sucrose permeation through all mutants with the double alanine mutant performing best. The triple mutants did not show a well-defined binding site as indicated by sugar-induced ion current noise analysis, which can be explained by remaining steric interference as deduced from the crystal structure. Binding, however, was observed for the double mutant that had the obstructing residues truncated to alanines.
Collapse
Affiliation(s)
- P Van Gelder
- Division of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
24
|
An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci U S A 2001. [PMID: 11149937 PMCID: PMC14613 DOI: 10.1073/pnas.011477898] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transferred DNA (T-DNA) transfer from Agrobacterium tumefaciens into eukaryotic cells is the only known example of interkingdom DNA transfer. T-DNA is a single-stranded segment of Agrobacterium's tumor-inducing plasmid that enters the plant cell as a complex with the bacterial virulence proteins VirD2 and VirE2. The VirE2 protein is highly induced on contact of A. tumefaciens with a plant host and has been reported to act in late steps of transfer. One of its previously demonstrated functions is binding to the single-stranded (ss) T-DNA and protecting it from degradation. Recent experiments suggest other functions of the protein. A combination of planar lipid bilayer experiments, vesicle swelling assays, and DNA transport experiments demonstrated that VirE2 can insert itself into artificial membranes and form channels. These channels are voltage gated, anion selective, and single-stranded DNA-specific and can facilitate the efficient transport of single-stranded DNA through membranes. These experiments demonstrate a VirE2 function as a transmembrane DNA transporter, which could have applications in gene delivery systems.
Collapse
|
25
|
Dumas F, Duckely M, Pelczar P, Van Gelder P, Hohn B. An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci U S A 2001; 98:485-90. [PMID: 11149937 PMCID: PMC14613 DOI: 10.1073/pnas.98.2.485] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transferred DNA (T-DNA) transfer from Agrobacterium tumefaciens into eukaryotic cells is the only known example of interkingdom DNA transfer. T-DNA is a single-stranded segment of Agrobacterium's tumor-inducing plasmid that enters the plant cell as a complex with the bacterial virulence proteins VirD2 and VirE2. The VirE2 protein is highly induced on contact of A. tumefaciens with a plant host and has been reported to act in late steps of transfer. One of its previously demonstrated functions is binding to the single-stranded (ss) T-DNA and protecting it from degradation. Recent experiments suggest other functions of the protein. A combination of planar lipid bilayer experiments, vesicle swelling assays, and DNA transport experiments demonstrated that VirE2 can insert itself into artificial membranes and form channels. These channels are voltage gated, anion selective, and single-stranded DNA-specific and can facilitate the efficient transport of single-stranded DNA through membranes. These experiments demonstrate a VirE2 function as a transmembrane DNA transporter, which could have applications in gene delivery systems.
Collapse
Affiliation(s)
- F Dumas
- Department of Structural Biology, Biozentrum, Klingelbergstrasse 50, CH-4056 Basel, Switzerland; and Friedrich Miescher Institut, P.O. Box 2543, CH-4002 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
26
|
Rosenbusch JP, Lustig A, Grabo M, Zulauf M, Regenass M. Approaches to determining membrane protein structures to high resolution: do selections of subpopulations occur? Micron 2001; 32:75-90. [PMID: 10900383 DOI: 10.1016/s0968-4328(00)00021-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three different methods are currently used for the study of high-resolution structures of membrane proteins: X-ray crystallography, electron crystallography, and nuclear magnetic resonance (NMR) spectroscopy. Thus far, all methods combined have yielded a rather modest number of crystal structures that have been solved at the atomic level. It is hypothesized here that different methods may select different populations of proteins on the basis of various properties. Thus, protein stability may be a significant factor in the formation of three-dimensional (3D) crystals from detergent solutions, since exposure of hydrophobic protein zones to water may cause structural perturbation or denaturation in conformationally labile proteins. This is different in the formation of two-dimensional (2D) crystals where a protein remains protected in its native membrane environment. A biological selection mechanism may therefore be operative in that highly ordered lattices may form only if strong protein-protein interactions are relevant in vivo, thereby limiting the number of proteins that are amenable to electron crystallography. Keeping a protein in a bilayer environment throughout 3D crystallization maintains the lateral pressure existing in native membranes. This can be accomplished by using lipidic cubic phases. Alternatively, the hydrophobic interface of a membrane protein may be spared from contact with water by crystallization from organic solvents where the polar caps are protected in reverse micelles by using appropriate detergents. Some of the criteria that are useful in optimizing the various approaches are given. While the usefulness of complementary methods seems obvious, the results presented may be particularly critical in recognizing key problems in other structural approaches.
Collapse
Affiliation(s)
- J P Rosenbusch
- Biozentrum, University of Basel, Klingelbergstr. 70, CH-4056, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
27
|
Dumas F, Frank S, Koebnik R, Maillet E, Lustig A, Van Gelder P. Extended sugar slide function for the periplasmic coiled coil domain of ScrY. J Mol Biol 2000; 300:687-95. [PMID: 10891263 DOI: 10.1006/jmbi.2000.3897] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several bacterial outer membrane proteins have a periplasmic extension whose structure and function remain elusive. Here, the structure/function relationship of the N-terminal periplasmic domain of the sucrose-specific outer membrane channel ScrY was investigated. Circular dichroism and analytical centrifugation demonstrated that the N-terminal domain formed a parallel, three-stranded coiled coil. When this domain was fused to the maltose-specific channel LamB, permeation of maltooligosaccharides in liposomes increased with increasing sugar chain length whereas wild-type LamB showed the opposite effect. Current fluctuation analysis demonstrated increased off-rates for sugar transport through the fusion protein. Moreover, equilibrium dialysis showed an affinity of sucrose for the isolated N-terminal peptide. Together these results demonstrate a novel function for coiled coil domains, operating as an extended sugar slide.
Collapse
Affiliation(s)
- F Dumas
- Department of Biophysical Chemistry, Biozentrum University of Basle, Klingelbergstrasse 70, Basel, CH-4056, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Dumas F, Winterhalter M. Understanding the function of bacterial outer membrane channels by reconstitution into black lipid membranes. Biophys Chem 2000; 85:153-67. [PMID: 10961503 DOI: 10.1016/s0301-4622(99)00153-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Structural and functional information is obtained by the reconstitution of membrane channel forming proteins into black lipid membranes. Due to this outstanding sensitivity only little material is needed and single molecule detection can be easily achieved. An overview on different types of detection will be given.
Collapse
|
29
|
Bezrukov SM, Kullman L, Winterhalter M. Probing sugar translocation through maltoporin at the single channel level. FEBS Lett 2000; 476:224-8. [PMID: 10913618 DOI: 10.1016/s0014-5793(00)01753-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sugar permeation through maltoporin of Escherichia coli, a trimer protein that facilitates maltodextrin translocation across outer bacterial membranes, was investigated at the single channel level. For large sugars, such as maltohexaose, elementary events of individual sugar molecule penetration into the channel were readily observed. At small sugar concentrations an elementary event consists of maltoporin channel closure by one third of its initial conductance in sugar-free solution. Statistical analysis of such closures at higher sugar concentrations shows that all three pores of the maltoporin channel transport sugars independently. Interestingly, while channel conductance is only slightly asymmetric showing about 10% higher values at -200 mV than at +200 mV (from the side of protein addition), asymmetry in dependence of the sugar binding constant on the voltage polarity is about 20 times higher. Combining our data with observations made with bacteriophage-lambda we conclude that the sugar residence time is much more sensitive to (and is decreased by) voltages that are negative from the intra-cell side of the bacterial membrane.
Collapse
Affiliation(s)
- S M Bezrukov
- Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, MD 20892-0924, USA.
| | | | | |
Collapse
|
30
|
Berrier C, Bonhivers M, Letellier L, Ghazi A. High-conductance channel induced by the interaction of phage lambda with its receptor maltoporin. FEBS Lett 2000; 476:129-33. [PMID: 10913599 DOI: 10.1016/s0014-5793(00)01705-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bacteriophage lambda that binds to liposomes bears its receptor maltoporin (LamB) and is able to inject its DNA into the internal space. During this process, the liposomes are permeabilized, suggesting that a transmembrane channel has formed (Roessner and Ihler (1986) J. Biol. Chem. 261, 386-390). This pore possibly constitutes the pathway used by lambda DNA to cross the membrane. We reconstituted purified LamB from Shigella in liposomes that were incubated with lambda phages. Addition of this mixture to a bilayer chamber resulted in the incorporation in planar bilayers of high-conductance channels whose conductance, kinetics and voltage dependence were totally different from those of maltoporin channels.
Collapse
Affiliation(s)
- C Berrier
- UMR CNRS 8619, Bât. 430, Université Paris-Sud, 91405 Cedex, Orsay, France
| | | | | | | |
Collapse
|