1
|
Bancel E, Bonnot T, Davanture M, Branlard G, Zivy M, Martre P. Proteomic Approach to Identify Nuclear Proteins in Wheat Grain. J Proteome Res 2015; 14:4432-9. [DOI: 10.1021/acs.jproteome.5b00446] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuelle Bancel
- INRA, UMR1095
Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, F-63 039 Clermont-Ferrand, France
- Blaise Pascal
University, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Avenue des Landais, F-63 170 Aubière, France
| | - Titouan Bonnot
- INRA, UMR1095
Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, F-63 039 Clermont-Ferrand, France
- Blaise Pascal
University, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Avenue des Landais, F-63 170 Aubière, France
| | - Marlène Davanture
- CNRS, PAPPSO, UMR 0320/8120 Génétique
Quantitative et Évolution - Le Moulon, F-91190 Gif-sur-Yvette, France
| | - Gérard Branlard
- INRA, UMR1095
Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, F-63 039 Clermont-Ferrand, France
- Blaise Pascal
University, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Avenue des Landais, F-63 170 Aubière, France
| | - Michel Zivy
- CNRS, PAPPSO, UMR 0320/8120 Génétique
Quantitative et Évolution - Le Moulon, F-91190 Gif-sur-Yvette, France
| | - Pierre Martre
- INRA, UMR1095
Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, F-63 039 Clermont-Ferrand, France
- Blaise Pascal
University, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Avenue des Landais, F-63 170 Aubière, France
| |
Collapse
|
2
|
Ialicicco M, Viscosi V, Arena S, Scaloni A, Trupiano D, Rocco M, Chiatante D, Scippa GS. Lens culinaris Medik. seed proteome: analysis to identify landrace markers. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 197:1-9. [PMID: 23116666 DOI: 10.1016/j.plantsci.2012.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/06/2012] [Accepted: 08/17/2012] [Indexed: 05/19/2023]
Abstract
Unlike modern cultivars selected for their growth performances in specific environmental conditions, local landraces have a high genetic variability that is an important resource for plant breeding. Consequent to their high adaptation to different environmental conditions, these landraces may have evolved adaptive gene complexes To promote the survival of endangered lentil landraces, we previously investigated the genetic relationship between two ancient landraces cultivated in the Molise region (Capracotta and Conca Casale, south-central Italy) and widely spread commercial varieties using an integrated approach consisting of morphological, DNA and protein characterization. In the present study, we used a proteomic approach to compare the mature seed proteomes of the Capracotta and Conca Casale lentil landraces. Multivariate analysis of 145 differentially expressed protein spots demonstrated that 52 proteins are required to discriminate among the two landraces. Therefore, these 52 proteins can be considered "landrace markers". The results of this study show that the combination of proteomics and multivariate analysis can be used to identify physiological and/or environmental markers, and is thus a powerful tool that complements the analysis of biodiversity in plant ecotypes.
Collapse
Affiliation(s)
- Manuela Ialicicco
- Dipartimento di Bioscienze e Territorio, Università del Molise, 86090 Pesche (Isernia), Italy
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Gagete AP, Franco L, Isabel Rodrigo M. The Pisum sativum psp54 gene requires ABI3 and a chromatin remodeller to switch from a poised to a transcriptionally active state. THE NEW PHYTOLOGIST 2011; 192:353-63. [PMID: 21790608 DOI: 10.1111/j.1469-8137.2011.03818.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Aspects of transcriptional regulation in plants, such as the order in which transcriptional factors and the preinitiation complex are assembled, are obscure because studies carried out under conditions in which native chromatin structure is preserved are still few in comparison with those carried out under other conditions. In vivo chromatin immunoprecipitation (ChIP) experiments were used here to study the regulation of Pisum sativum psp54, which codes for the precursor of a chromatin-associated protein in dry seeds. Antibodies against PsSNF5, a component of the SWI/SNF remodelling complex, and against the transcriptional factor Pisum sativum abscisic acid insensitive 3 (PsABI3) were raised and used for ChIP experiments, which showed that both factors are bound to the psp54 promoter only when the gene is actively expressed during seed maturation and germination. However, RNA polymerase II appeared to be bound to the inactive promoter, which was poised for transcription, before the assembly of factors. Micrococcal nuclease protection assays showed that chromatin conformation at the proximal psp54 promoter changes in shifting from the active to inactive state. The changes in the promoter chromatin of psp54 are discussed. Stalled polymerase is described for the first time at the promoter of a non-heat-shock plant gene.
Collapse
Affiliation(s)
- Andrés P Gagete
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | | | | |
Collapse
|
4
|
Scippa GS, Rocco M, Ialicicco M, Trupiano D, Viscosi V, Di Michele M, Arena S, Chiatante D, Scaloni A. The proteome of lentil (Lens culinaris Medik.) seeds: Discriminating between landraces. Electrophoresis 2010; 31:497-506. [DOI: 10.1002/elps.200900459] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Gagete AP, Riera M, Franco L, Rodrigo MI. Functional analysis of the isoforms of an ABI3-like factor of Pisum sativum generated by alternative splicing. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1703-14. [PMID: 19261920 PMCID: PMC2671620 DOI: 10.1093/jxb/erp038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/28/2009] [Accepted: 01/30/2009] [Indexed: 05/22/2023]
Abstract
At least seven isoforms (PsABI3-1 to PsABI3-7) of a putative, pea ABI3-like factor, originated by alternative splicing, have been identified after cDNA cloning. A similar variability had previously only been described for monocot genes. The full-length isoform, PsABI3-1, contains the typical N-terminal acidic domains and C-terminal basic subdomains, B1 to B3. Reverse transcriptase-PCR analysis revealed that the gene is expressed just in seeds, starting at middle embryogenesis; no gene products are observed in embryo axes after 18 h post-imbibition although they are more persistent in cotyledons. The activity of the isoforms was studied by yeast one-hybrid assays. When yeast was transformed with the isoforms fused to the DNA binding domain of Gal4p, only the polypeptides PsABI3-2 and PsABI3-7 failed to complement the activity of Gal4p. Acidic domains A1 and A2 exhibit transactivating activity, but the former requires a small C-terminal extension to be active. Yeast two-hybrid analysis showed that PsABI3 is able to heterodimerize with Arabidopsis thaliana ABI5, thus proving that PsABI3 is functionally active. The minimum requirement for the interaction PsABI3-AtABI5 is the presence of the subdomain B1 with an extension, 81 amino acids long, at their C-terminal side. Finally, a transient onion transformation assay showed that both the active PsABI3-1 and the inactive PsABI3-2 isoforms are localized to nuclei. Considering that the major isoforms remain approximately constant in developing seeds although their relative proportion varied, the possible role of splicing in the regulatory network of ABA signalling is discussed.
Collapse
Affiliation(s)
- Andrés P. Gagete
- Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain
| | - Marta Riera
- Consorcio CSIC-IRTA. CID. E-08034 Barcelona, Spain
| | - Luis Franco
- Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain
| | - M. Isabel Rodrigo
- Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
6
|
Wang J, Suen PK, Xu ZF, Jiang L. A 64 kDa sucrose binding protein is membrane-associated and tonoplast-localized in developing mung bean seeds. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:629-39. [PMID: 19129164 PMCID: PMC2651462 DOI: 10.1093/jxb/ern308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/03/2008] [Accepted: 11/10/2008] [Indexed: 05/18/2023]
Abstract
Sucrose binding proteins (SBPs) were predicted to be membrane-associated, but have been shown to localize in the lumen of protein storage vacuoles of various seeds. In this study, a new 64 kDa SBP has been identified from developing mung bean (Vigna radiata) seeds (here termed VrSBP1) via MS/MS analysis and N-terminal amino acid sequencing analysis and specific antibodies were generated using purified VrSBP1 proteins. Western blot analysis with the new VrSBP1 antibodies showed that, similar to most seed storage proteins, VrSBP1 proteins accumulated during seed development and were subsequently mobilized once the mung bean seeds germinated. Immunogold electron microscope (EM) studies on ultra-thin sections of high-pressure freezing/frozen substituted developing mung bean cotyledons demonstrated that VrSBP1 was localized specifically to the tonoplast of the protein storage vacuole and to the limiting membrane of a novel putative prevacuolar compartment. Biochemical and subcellular fractionation studies further demonstrated that VrSBP1 proteins were membrane-associated in developing mung beans, consistent with their tonoplast localization. This study thus shows convincing evidence of tonoplast-localization of a plant SBP for its future functional characterization and provides a model of studying non-integral membrane proteins associated with the tonoplasts in plant cells.
Collapse
Affiliation(s)
- Junqi Wang
- Department of Biology and Centre for Cell and Development Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Pui Kit Suen
- Department of Biology and Centre for Cell and Development Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zeng-Fu Xu
- School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liwen Jiang
- Department of Biology and Centre for Cell and Development Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
7
|
Freitas RL, Carvalho CM, Fietto LG, Loureiro ME, Almeida AM, Fontes EPB. Distinct repressing modules on the distal region of the SBP2 promoter contribute to its vascular tissue-specific expression in different vegetative organs. PLANT MOLECULAR BIOLOGY 2007; 65:603-14. [PMID: 17710554 DOI: 10.1007/s11103-007-9225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 08/08/2007] [Indexed: 05/16/2023]
Abstract
The Glycine max sucrose binding protein (GmSBP2) promoter directs vascular tissue-specific expression of reporter genes in transgenic tobacco. Here we showed that an SBP2-GFP fusion protein under the control of the GmSBP2 promoter accumulates in the vascular tissues of vegetative organs, which is consistent with the proposed involvement of SBP in sucrose transport-dependent physiological processes. Through gain-of-function experiments we confirmed that the tissue-specific determinants of the SBP2 promoter reside in the distal cis-regulatory domain A, CRD-A (position -2000 to -700) that is organized into a modular configuration to suppress promoter activity in tissues other than vascular tissues. The four analyzed CRD-A sub-modules, designates Frag II (-1785/-1508), Frag III (-1507/-1237), Frag IV (-1236/-971) and Frag V (-970/-700), act independently to alter the constitutive pattern of -92pSBP2-mediated GUS expression in different organs. Frag V fused to -92pSBP2-GUS restored the tissue-specific pattern of the full-length promoter in the shoot apex, but not in other organs. Likewise, Frag IV confined GUS expression to the vascular bundle of leaves, whereas Frag II mediated vascular specific expression in roots. Strong stem expression-repressing elements were located at positions -1485 to -1212, as Frag III limited GUS expression to the inner phloem. We have also mapped a procambium silencer to the consensus sequence CAGTTnCaAccACATTcCT which is located in both distal and proximal upstream modules. Fusion of either repressing element-containing module to the constitutive -92pSBP2 promoter suppresses GUS expression in the elongation zone of roots. Together our results demonstrate the unusual aspect of distal sequences negatively controlling tissue-specificity of a plant promoter.
Collapse
Affiliation(s)
- Rejane L Freitas
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571-000 Vicosa, MG, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Pandey A, Chakraborty S, Datta A, Chakraborty N. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol Cell Proteomics 2007; 7:88-107. [PMID: 17921517 DOI: 10.1074/mcp.m700314-mcp200] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dehydration or water-deficit is one of the most important environmental stress factors that greatly influences plant growth and development and limits crop productivity. Plants respond and adapt to such stress by altering their cellular metabolism and activating various defense machineries. Mechanisms that operate signal perception, transduction, and downstream regulatory events provide valuable information about the underlying pathways involved in environmental stress responses. The nuclear proteins constitute a highly organized, complex network that plays diverse roles during cellular development and other physiological processes. To gain a better understanding of dehydration response in plants, we have developed a comparative nuclear proteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water and the changes in the nuclear proteome were examined using two-dimensional gel electrophoresis. Approximately 205 protein spots were found to be differentially regulated under dehydration. Mass spectrometry analysis allowed the identification of 147 differentially expressed proteins, presumably involved in a variety of functions including gene transcription and replication, molecular chaperones, cell signaling, and chromatin remodeling. The dehydration responsive nuclear proteome of chickpea revealed a coordinated response, which involves both the regulatory as well as the functional proteins. This study, for the first time, provides an insight into the complex metabolic network operating in the nucleus during dehydration.
Collapse
Affiliation(s)
- Aarti Pandey
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|
9
|
Alkhalfioui F, Renard M, Vensel WH, Wong J, Tanaka CK, Hurkman WJ, Buchanan BB, Montrichard F. Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds. PLANT PHYSIOLOGY 2007; 144:1559-79. [PMID: 17513483 PMCID: PMC1914137 DOI: 10.1104/pp.107.098103] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Germination of cereals is accompanied by extensive change in the redox state of seed proteins. Proteins present in oxidized form in dry seeds are converted to the reduced state following imbibition. Thioredoxin (Trx) appears to play a role in this transition in cereals. It is not known, however, whether Trx-linked redox changes are restricted to cereals or whether they take place more broadly in germinating seeds. To gain information on this point, we have investigated a model legume, Medicago truncatula. Two complementary gel-based proteomic approaches were followed to identify Trx targets in seeds: Proteins were (1) labeled with a thiol-specific probe, monobromobimane (mBBr), following in vitro reduction by an NADP/Trx system, or (2) isolated on a mutant Trx affinity column. Altogether, 111 Trx-linked proteins were identified with few differences between axes and cotyledons. Fifty nine were new, 34 found previously in cereal or peanut seeds, and 18 in other plants or photosynthetic organisms. In parallel, the redox state of proteins assessed in germinating seeds using mBBr revealed that a substantial number of proteins that are oxidized or partly reduced in dry seeds became more reduced upon germination. The patterns were similar for proteins reduced in vivo during germination or in vitro by Trx. In contrast, glutathione and glutaredoxin were less effective as reductants in vitro. Overall, more than half of the potential targets identified with the mBBr labeling procedure were reduced during germination. The results provide evidence that Trx functions in the germination of seeds of dicotyledons as well as monocotyledons.
Collapse
Affiliation(s)
- Fatima Alkhalfioui
- Physiologie Moléculaire des Semences, Unité Mixte de Recherche 1191, Université d'Angers, Institut National d'Horticulture, Institut National de la Recherche Agronomique, Anjou Recherche Semences, Angers Cedex 01, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ríos G, Gagete AP, Castillo J, Berbel A, Franco L, Rodrigo MI. Abscisic acid and desiccation-dependent expression of a novel putative SNF5-type chromatin-remodeling gene in Pisum sativum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:427-35. [PMID: 17481910 DOI: 10.1016/j.plaphy.2007.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 03/16/2007] [Indexed: 05/15/2023]
Abstract
Snf5-like proteins are components of multiprotein chromatin remodeling complexes involved in the ATP-dependent alteration of DNA-histone contacts. Mostly described in yeast and animals, the only plant SNF5-like gene characterized so far has been BSH from Arabidopsis thaliana (L.) Heynh. We report the cloning and characterization of expression of a SNF5-like gene from pea (Pisum sativum L. cv. Lincoln), which has been designated PsSNF5. Southern analysis showed a single copy of the gene in the pea genome. The cDNA contained a 723bp open reading frame encoding a 240 amino acid protein of 27.4kDa with a potential nuclear localization signal. PsSNF5 protein sequence closely resembled BSH, with which it showed an overall amino acid identity of 78.5%. Two-hybrid experiments showed that PsSNF5 is functionally interchangeable with Arabidopsis BSH in the interactions with other components of the remodeling complex. Phylogenetic analysis demonstrated that PsSNF5 clustered with translated expressed sequence tags from other Leguminosae, hypothetically coding for new Snf5-like proteins. RT-PCR expression analysis demonstrated that the PsSNF5 gene is constitutively expressed in all the tissues examined, with minor differences in expression level in different tissues. Nevertheless, expression analysis revealed that PsSNF5 was up-regulated in the last stages of embryo development, when water content decreases. Moreover, abscisic acid and drought stress induced PsSNF5 accumulation in germinating embryos and vegetative tissues, suggesting that chromatin remodeling induced by PsSNF5-containing complexes might contribute to the response to that phytohormone.
Collapse
Affiliation(s)
- Gabino Ríos
- Department of Biochemistry and Molecular Biology, University of Valencia, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG, MacCarthy L, Crosby WL, Sarhan F. Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 2006; 7:149. [PMID: 16772040 PMCID: PMC1539019 DOI: 10.1186/1471-2164-7-149] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 06/13/2006] [Indexed: 11/30/2022] Open
Abstract
Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals.
Collapse
Affiliation(s)
- Mario Houde
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - Mahdi Belcaid
- Département d'Informatique, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - François Ouellet
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - Jean Danyluk
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - Antonio F Monroy
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal QC, H4B 1R6, Canada
| | - Ani Dryanova
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal QC, H4B 1R6, Canada
| | - Patrick Gulick
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal QC, H4B 1R6, Canada
| | - Anne Bergeron
- Département d'Informatique, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - André Laroche
- Agriculture et Agroalimentaire Canada, Centre de recherches de Lethbridge, 5403, 1st Avenue South, C.P. 3000, Lethbridge AB, T1J 4B1, Canada
| | - Matthew G Links
- Department of Biological Sciences, University of Windsor, 401 Sunset ave, Windsor ON, N9B 3P4, Canada
| | - Luke MacCarthy
- Department of Computer Science, University of Saskatchewan, 176 Thorvaldson Building, 110 Science Place, Saskatoon SK, S7N 5C9, Canada
| | - William L Crosby
- Department of Biological Sciences, University of Windsor, 401 Sunset ave, Windsor ON, N9B 3P4, Canada
| | - Fathey Sarhan
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| |
Collapse
|
12
|
Waclawovsky AJ, Freitas RL, Rocha CS, Contim LAS, Fontes EPB. Combinatorial regulation modules on GmSBP2 promoter: a distal cis-regulatory domain confines the SBP2 promoter activity to the vascular tissue in vegetative organs. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1759:89-98. [PMID: 16574256 DOI: 10.1016/j.bbaexp.2006.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 02/03/2006] [Accepted: 02/06/2006] [Indexed: 11/27/2022]
Abstract
The Glycine max sucrose binding protein (GmSBP2) promoter directs phloem-specific expression of reporter genes in transgenic tobacco. Here, we identified cis-regulatory domains (CRD) that contribute with positive and negative regulation for the tissue-specific pattern of the GmSPB2 promoter. Negative regulatory elements in the distal CRD-A (-2000 to -700) sequences suppressed expression from the GmSBP2 promoter in tissues other than seed tissues and vascular tissues of vegetative organs. Deletion of this region relieved repression resulting in a constitutive promoter highly active in all tissues analyzed. Further deletions from the strong constitutive -700GmSBP2 promoter delimited several intercalating enhancer-like and repressing domains that function in a context-dependent manner. Histochemical examination revealed that the CRD-C (-445 to -367) harbors both negative and positive elements. This region abolished promoter expression in roots and in all tissues of stems except for the inner phloem. In contrast, it restores root meristem expression when fused to the -132pSBP2-GUS construct, which contains root meristem expression-repressing determinants mapped to the 44-bp CRD-G (-136 to -92). Thus, the GmSBP2 promoter is functionally organized into a proximal region with the combinatorial modular configuration of plant promoters and a distal domain, which restricts gene expression to the vascular tissues in vegetative organs.
Collapse
|
13
|
Castillo J, Genovés A, Franco L, Rodrigo MI. A multifunctional bicupin serves as precursor for a chromosomal protein of Pisum sativum seeds. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:3159-69. [PMID: 16263906 DOI: 10.1093/jxb/eri313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The fact that the psp54 gene codes for p16, a seed chromatin protein of Pisum sativum, has been described previously. In the present paper it is shown that p54, the p16 precursor, also exists as a free polypeptide in pea and that it also yields p38, a second polypeptide from the N-terminal region of p54, which is co-localized at a subcellular level with p16. By using antibodies against pea p16 and p38, it was found that these proteins are present in the members of the tribe Viciae examined. Sequence analysis and 3D modelling indicates that p54 proteins belong to the cupin superfamily, and that they are related to sucrose binding proteins and, to a lesser extent, to vicilin-type seed storage proteins. Nevertheless, several distinctive characteristics of psp54 expression have been found: (i) the gene is differentially induced by ABA and several stress situations, in accordance with the presence of putative separate ABA and stress responsive elements in its promoter; (ii) the proteins are present in pods and seed coats, tissues of maternal origin; and (iii) p54 mRNA accumulates in the dry seeds. In view of both the functional properties of p54-derived proteins and the features of the psp54 gene expression, it is concluded that p54 represents a novel class within the cupin superfamily.
Collapse
Affiliation(s)
- Josefa Castillo
- Department of Biochemistry and Molecular Biology, University of Valencia, E-46100, Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
14
|
Wenzel D, Schauermann G, von Lüpke A, Hinz G. The cargo in vacuolar storage protein transport vesicles is stratified. Traffic 2005; 6:45-55. [PMID: 15569244 DOI: 10.1111/j.1600-0854.2004.00243.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing pea seeds contain two functionally distinct vacuoles--lytic vacuoles and protein storage vacuoles (PSV). The Golgi apparatus of these cells has to discriminate between proteins destined for these vacuolar compartments. Whereas it is known that sorting into the lytic vacuole is performed via the conserved clathrin-coated vesicle pathway, sorting of proteins into the protein storage vacuole remains enigmatic. In developing pea cotyledons, the major storage proteins are sorted via 'dense vesicles'. In this report we examined the sorting of a minor protein of the protein storage vacuole, the sucrose-binding-protein homolog (SBP), along the secretory pathway employing immunoelectron microscopy on cryosectioned pea cotyledons. SBP follows the same vesicular route into the PSV as the main storage proteins legumin and vicilin, via the dense-vesicles. Furthermore, legumin and SBP are sorted together into the same dense vesicle population at the stack. Although soluble cargo proteins of the dense vesicles, they show a stratified distribution in the lumen of the dense vesicles. Whereas the legumin label is equally distributed across the lumen, the SBP label is concentrated at the membrane of the vesicle. This observation is discussed with respect to a putative receptor-mediated sorting of the proteins into the dense vesicles.
Collapse
Affiliation(s)
- Dirk Wenzel
- Abteilung für Strukturelle Zellphysiologie, Albrecht-von-Haller Institut für Pflanzenwissenschaften, Georg-August Universität Göttingen, Germany
| | | | | | | |
Collapse
|
15
|
Kalifa Y, Gilad A, Konrad Z, Zaccai M, Scolnik P, Bar-Zvi D. The water- and salt-stress-regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein. Biochem J 2004; 381:373-8. [PMID: 15101820 PMCID: PMC1133842 DOI: 10.1042/bj20031800] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 04/07/2004] [Accepted: 04/22/2004] [Indexed: 11/17/2022]
Abstract
Tomato (Lycopersicon esculantum) ASR1 (abscisic acid stress ripening protein), a small plant-specific protein whose cellular mode of action defies deduction based on its sequence or homology analyses, is one of numerous plant gene products with unknown biological roles that become over-expressed under water- and salt-stress conditions. Steady-state cellular levels of tomato ASR1 mRNA and protein are transiently increased following exposure of plants to poly(ethylene glycol), NaCl or abscisic acid. Western blot and indirect immunofluorescence analysis with anti-ASR1 antibodies demonstrated that ASR1 is present both in the cytoplasmic and nuclear subcellular compartments; approx. one-third of the total ASR1 protein could be detected in the nucleus. Nuclear ASR1 is a chromatin-bound protein, and can be extracted with 1 M NaCl, but not with 0.5% Triton X-100. ASR1, overexpressed in Escherichia coli and purified to homogeneity, possesses zinc-dependent DNA-binding activity. Competitive-binding experiments and SELEX (systematic evolution of ligands by exponential enrichment) analysis suggest that ASR1 binds at a preferred DNA sequence.
Collapse
Affiliation(s)
- Yossi Kalifa
- *Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ayelet Gilad
- *Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Zvia Konrad
- *Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Michele Zaccai
- †The Institutes for Applied Research, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | - Dudy Bar-Zvi
- *Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
16
|
Castillo J, Zúñiga A, Franco L, Rodrigo MI. A chromatin-associated protein from pea seeds preferentially binds histones H3 and H4. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4641-8. [PMID: 12230577 DOI: 10.1046/j.1432-1033.2002.03164.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pisum sativum p16 is a protein present in the chromatin of ungerminated embryonic axes. The purification of p16 and the isolation of a cDNA clone of psp54, the gene encoding its precursor have been recently reported [Castillo, J., Rodrigo, M. I., Márquez, J. A., Zúñiga, A and Franco, L. (2000) Eur. J. Biochem.267, 2156-2165]. In the present paper, we present data showing that p16 is a nuclear protein. First, after subcellular fractionation, p16 was clearly found in nuclei, although the protein is also present in other organelles. Immunocytochemical methods also confirm the above results. p16 seems to be firmly anchored to chromatin, as only extensive DNase I digestion of nuclei allows its release. Far Western and pull-down experiments demonstrate a strong in vitro interaction between p16 and histones, especially H3 and H4, suggesting that p16 is tethered to chromatin through histones. Because the psp54 gene is specifically expressed during the late development of seed, the role of p16 might be related to the changes that occur in chromatin during the processes of seed maturation and germination.
Collapse
Affiliation(s)
- Josefa Castillo
- Department of Biochemistry and Molecular Biology, University of Valencia, Spain
| | | | | | | |
Collapse
|
17
|
Pastorello EA, Vieths S, Pravettoni V, Farioli L, Trambaioli C, Fortunato D, Lüttkopf D, Calamari M, Ansaloni R, Scibilia J, Ballmer-Weber BK, Poulsen LK, Wütrich B, Hansen KS, Robino AM, Ortolani C, Conti A. Identification of hazelnut major allergens in sensitive patients with positive double-blind, placebo-controlled food challenge results. J Allergy Clin Immunol 2002; 109:563-70. [PMID: 11898007 DOI: 10.1067/mai.2002.121946] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The hazelnut major allergens identified to date are an 18-kd protein homologous to Bet v 1 and a 14-kd allergen homologous to Bet v 2. No studies have reported hazelnut allergens recognized in patients with positive double-blind, placebo-controlled food challenge (DBPCFC) results or in patients allergic to hazelnut but not to birch. OBJECTIVE We characterized the hazelnut allergens by studying the IgE reactivity of 65 patients with positive DBPCFC results and 7 patients with severe anaphylaxis to hazelnut. METHODS Hazelnut allergens were identified by means of SDS-PAGE and IgE immunoblotting. Further characterization was done with amino acid sequencing, evaluation of the IgE-binding properties of raw and roasted hazelnut with enzyme allergosorbent test inhibition, assessment of cross-reactivity with different allergens by means of immunoblotting inhibition, and purification by means of HPLC. RESULTS All the sera from the patients with positive DBPCFC results recognized an 18- and a 47-kd allergen; other major allergens were at molecular weights of 32 and 35 kd. Binding to the 18-kd band was inhibited by birch extract, indicating its homology with the birch major allergen, and abolished in roasted hazelnut. The 47-kd allergen is a sucrose-binding protein, the 35-kd allergen is a legumin, and the 32-kd allergen is a 2S albumin. Patients with severe anaphylactic reactions to hazelnut showed specific IgE reactivity to a 9-kd allergen, totally inhibited by purified peach lipid-transfer protein (LTP), which was heat stable and, when purified, corresponded to an LTP. CONCLUSIONS The major allergen of hazelnut is an 18-kd protein homologous to Bet v 1, and the 9-kd allergen is presumably an LTP. Other major allergens have molecular weights of 47, 32, and 35 kd.
Collapse
Affiliation(s)
- Elide A Pastorello
- Allergy Center, 3rd Division of General Medicine, Ospedale Maggiore IRCCS, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|