1
|
Kontkanen OV, Biriukov D, Futera Z. Applicability of perturbed matrix method for charge transfer studies at bio/metallic interfaces: a case of azurin. Phys Chem Chem Phys 2023; 25:12479-12489. [PMID: 37097130 DOI: 10.1039/d3cp00197k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
As the field of nanoelectronics based on biomolecules such as peptides and proteins rapidly grows, there is a need for robust computational methods able to reliably predict charge transfer properties at bio/metallic interfaces. Traditionally, hybrid quantum-mechanical/molecular-mechanical techniques are employed for systems where the electron hopping transfer mechanism is applicable to determine physical parameters controlling the thermodynamics and kinetics of charge transfer processes. However, these approaches are limited by a relatively high computational cost when extensive sampling of a configurational space is required, like in the case of soft biomatter. For these applications, semi-empirical approaches such as the perturbed matrix method (PMM) have been developed and successfully used to study charge-transfer processes in biomolecules. Here, we explore the performance of PMM on prototypical redox-active protein azurin in various environments, from solution to vacuum interfaces with gold surfaces and protein junction. We systematically benchmarked the robustness and convergence of the method with respect to the quantum-centre size, size of the Hamiltonian, number of samples, and level of theory. We show that PMM can adequately capture all the trends associated with the structural and electronic changes related to azurin oxidation at bio/metallic interfaces.
Collapse
Affiliation(s)
- Outi Vilhelmiina Kontkanen
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| | - Denys Biriukov
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Zdenek Futera
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
2
|
Moudgil A, Kalyani N, Mishra P, Das S. Azurin-TiO 2 hybrid nanostructure field effect transistor for efficient ultraviolet detection. NANOTECHNOLOGY 2019; 30:495205. [PMID: 31476745 DOI: 10.1088/1361-6528/ab4082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hybrid semiconductor nanostructures have attracted tremendous response due to their unique properties and applications in nano-optoelectronics and sensors. Here, we fabricated a back-gated transistor based on 300 nm channel of the Azurin-TiO2 hybrid nanostructure, whose enhanced performance is attributed to the synergetic effect of the metal oxide and azurin. Surface potential mapping under the dark and light condition using Kelvin probe force microscopy, gives the perfect correlation of band gap estimation for Azurin, TiO2 and Azurin-TiO2 nanostructures. The extracted parameters of the transistor exhibit the majority carrier mobility of 2.26 cm2 V-1 s-1, Schottky barrier height of 133.56 meV and low off current (6 × 10-10 A). The photodetector showed the high spectral response of 8.7 × 105 A W-1 and detectivity of 6.4 × 1014 Jones for 260 nm wavelength, at an applied gate bias of 5 V. The short carrier transit time (3 μs) and large recombination time (0.4 s) with multiple recirculations of photo generated carries facilitate the high gain of 2.6 × 106. A significant rejection ratio (R 260/R 530) of 56.2 at V GS = 5 V and the linear dynamic range of 45.75 dB for 260 nm wavelength is achieved. The obtained rise and fall time of the photodetector is 0.52 s, and 0.65 s, respectively. This study suggests the applicability of Azurin-TiO2 hybrid nanostructures with high performance for the biocompatible optoelectronic devices.
Collapse
Affiliation(s)
- Akshay Moudgil
- Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | | | | | |
Collapse
|
3
|
Kradolfer S, Lipiec E, Baldacchini C, Bizzarri AR, Cannistraro S, Zenobi R. Vibrational Changes Induced by Electron Transfer in Surface Bound Azurin Metalloprotein Studied by Tip-Enhanced Raman Spectroscopy and Scanning Tunneling Microscopy. ACS NANO 2017; 11:12824-12831. [PMID: 29202236 DOI: 10.1021/acsnano.7b07768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The copper protein azurin, due to the peculiar coupling of its optical and vibronic properties with electron transfer (ET) and its biorecognition capabilities, is a very promising candidate for bioelectronic, bio-optoelectronic and biosensor applications. However, a complete understanding of the fundamental processes relating azurin ET and its optical and vibronic characteristics with the charge transport mechanisms occurring in proteins bound to a conductive surface, the typical scenario for a biosensor or bioelectronic component, is still lacking. We studied azurin proteins bound to a gold electrode surface by scanning tunneling microscopy combined with tip-enhanced Raman spectroscopy (STM-TERS). Robust TER spectra were obtained, and the protein's vibronic response under optical excitation in resonance with its ligand-to-metal charge transfer band was found to be affected by the tunneling parameters, indicating a direct involvement of the active site vibrations in the electron transport process.
Collapse
Affiliation(s)
- Stefan Kradolfer
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
| | - Ewelina Lipiec
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
- The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences 31-342 Krakow, Poland
| | - Chiara Baldacchini
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia , I-01100 Viterbo, Italy
- Institute of Agro-Environmental and Forest Biology, CNR , I-05010 Porano, Italy
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia , I-01100 Viterbo, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia , I-01100 Viterbo, Italy
| | - Renato Zenobi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Bizzarri AR, Baldacchini C, Cannistraro S. Structure, Dynamics, and Electron Transfer of Azurin Bound to a Gold Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9190-9200. [PMID: 28789529 DOI: 10.1021/acs.langmuir.7b01102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Blue copper redox protein azurin (AZ) constitutes an ideal active element for building bionano-optoelectronic devices based on the intriguing interplay among its electron transfer (ET), vibrational, and optical properties. A full comprehension of its dynamical and functional behavior is required for efficient applications. Here, AZ bound to gold electrode via its disulfide bridge was investigated by a molecular dynamics simulation approach taking into account for gold electron polarization which provides a more realistic description of the protein-gold interaction. Upon binding to gold, AZ undergoes slight changes in its secondary structure with the preservation of the copper-containing active site structure. Binding of AZ to gold promotes new collective motions, with respect to free AZ, as evidenced by essential dynamics. Analysis of the ET from the AZ copper ion to the gold substrate, performed by the Pathways model, put into evidence the main residues and structural motifs of AZ involved in the ET paths. During the dynamical evolution of the bionanosystem, transient contacts between some lateral protein atoms and the gold substrate occurred; concomitantly, the opening of additional ET channels with much higher rates was registered. These results provide new and detailed insights on the dynamics and ET properties of the AZ-gold system, by also helping to rationalize some imaging and conductive experimental evidences and also to design new bionanodevices with tailored features.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia , Viterbo 01100, Italy
| | - Chiara Baldacchini
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia , Viterbo 01100, Italy
- IBAF-CNR , Porano 05010, Italy
| | - Salvatore Cannistraro
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia , Viterbo 01100, Italy
| |
Collapse
|
5
|
Casalini S, Berto M, Kovtun A, Operamolla A, Di Rocco G, Facci P, Liscio A, Farinola GM, Borsari M, Bortolotti CA. Surface Immobilized His-tagged Azurin as a Model Interface for the Investigation of Vectorial Electron Transfer in Biological Systems. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Elucidation of Electron- Transfer Pathways in Copper and Iron Proteins by Pulse Radiolysis Experiments. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/9780470144428.ch1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
7
|
Matsunaga Y, Fujisawa K, Ibi N, Miyashita Y, Okamoto KI. Structural and Spectroscopic Characterization of First-Row Transition Metal(II) Substituted Blue Copper Model Complexes with Hydrotris(pyrazolyl)borate. Inorg Chem 2004; 44:325-35. [PMID: 15651879 DOI: 10.1021/ic049814x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[CuL(SC(6)F(5))] (1) (L = hydrotris(3,5-diisopropyl-1-pyrazolyl)borate anion) has been reported as a good model for blue copper proteins [Kitajima, N.; Fujisawa, K.; Tanaka, M.; Moro-oka, Y. J. Am. Chem. Soc. 1992, 114, 9232-9233]. To obtain more structural and spectroscopic insight, the first-row transition metal(II) substituted complexes of Cu(II) (1) to Mn(II) (2), Fe(II) (3), Co(II) (4), Ni(II) (5), and Zn(II) (6) were synthesized and their crystal structures were determined. These model complexes have a distorted tetrahedral geometry arising from the tripodal ligand L. The d value, which is defined by the distance from the N(2)S basal plane to the metal(II) ion, and the bond angles such as N-M-N and S-M-N are good indicators of these structural distortions. The obtained complexes were characterized by UV-vis absorption, EPR, NMR, far-IR, and FT-Raman spectroscopies and electrochemical and magnetic properties. In UV-vis absorption spectra, the sulfur-to-metal(II) CT bands and the d-d transition bands are observed for 1 and 3-5. For 1, the strong sulfur to Cu(II) CT band at 663 nm, which is one of the unique properties of blue copper proteins, is observed. The CT energies of the Fe(II) (3), Co(II) (4), and Ni(II) (5) complexes are shifted to higher energy (308 and 355 nm for 3, 311 and 340 nm for 4, 357 and 434 nm for 5) and are almost the same as the corresponding Co(II)- and Ni(II)-substituted blue copper proteins. In the far-IR spectra, three far-IR absorption bands for 2-6 at ca. 400, ca. 350, and ca. 310 cm(-1) are also observed similar to those for 1. Other properties are consistent with their distorted tetrahedral geometries.
Collapse
Affiliation(s)
- Yuki Matsunaga
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | | | | | | | | |
Collapse
|
8
|
Goto M, Yamada T, Kimbara K, Horner J, Newcomb M, Gupta TKD, Chakrabarty AM. Induction of apoptosis in macrophages by Pseudomonas aeruginosa azurin: tumour-suppressor protein p53 and reactive oxygen species, but not redox activity, as critical elements in cytotoxicity. Mol Microbiol 2003; 47:549-59. [PMID: 12519204 DOI: 10.1046/j.1365-2958.2003.03317.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Azurin is a copper-containing protein involved in electron transfer during denitrification. We reported recently that purified azurin demonstrates cytotoxicity to macrophages by forming a complex with the tumour-suppressor protein p53, thereby stabilizing it and enhancing its function as an inducer of proapoptotic activity (Yamada, T., Goto, M., Punj, V., Zaborina, O., Kimbara, K., Das Gupta, T. K., and Chakrabarty, A. M. 2002, Infect Immun70: 7054-7062). It is, however, not known whether the oxidoreductase (redox) activity of azurin or the involvement of copper is important for its cytotoxicity. We have isolated apo-azurin devoid of copper and site-directed mutants that are redox negative because of either replacement of a cysteine residue (Cys-112) involved in co-ordination with copper or mutational replacement of two methionine residues (Met-44 and Met-64) that are present in the hydrophobic patch of azurin and allow interaction of azurin with its redox partner cytochrome c551. We demonstrate that, although the wild type (wt) and the Cys-112 Asp mutant azurin can form complexes with the tumour-suppressor protein p53 and generate high levels of reactive oxygen species (ROS), the redox-negative Met-44LysMet-64Glu mutant azurin is defective in complex formation with p53, generates low levels of ROS and lacks appreciable cytotoxicity towards macrophages. Thus, complex formation with p53 and ROS generation, rather than azurin redox activity, are important in the cytotoxic action of azurin towards macrophages.
Collapse
Affiliation(s)
- Masatoshi Goto
- Department of Microbiology, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, Il 60612, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Yamada T, Goto M, Punj V, Zaborina O, Kimbara K, Das Gupta TK, Chakrabarty AM. The bacterial redox protein azurin induces apoptosis in J774 macrophages through complex formation and stabilization of the tumor suppressor protein p53. Infect Immun 2002; 70:7054-62. [PMID: 12438386 PMCID: PMC133031 DOI: 10.1128/iai.70.12.7054-7062.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two redox proteins, azurin and cytochrome c(551) elaborated by Pseudomonas aeruginosa, demonstrate significant cytotoxic activity towards macrophages. Azurin can enter macrophages, localize in the cytosol and nuclear fractions, and induce apoptosis. Two redox-negative mutants of azurin have less cytotoxicity than does wild-type (wt) azurin. Azurin has been shown to form a complex with the tumor suppressor protein p53, a known inducer of apoptosis, thereby stabilizing it and enhancing its intracellular level. A higher level of reactive oxygen species (ROS), generated during treatment of macrophages with wt azurin, correlates with its cytotoxicity. Treatment with some ROS-removing antioxidants greatly reduces azurin-mediated cytotoxicity, thus demonstrating a novel virulence property of this bacterial redox protein.
Collapse
Affiliation(s)
- Tohru Yamada
- Department of Microbiology & Immunology, University of Illinois College of Medicine, Chicago 60612, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Yamada T, Goto M, Punj V, Zaborina O, Chen ML, Kimbara K, Majumdar D, Cunningham E, Das Gupta TK, Chakrabarty AM. Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc Natl Acad Sci U S A 2002; 99:14098-103. [PMID: 12393814 PMCID: PMC137843 DOI: 10.1073/pnas.222539699] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The use of live bacteria in the treatment of cancer has a long and interesting history. We report the use of a purified bacterial redox protein, azurin, that enters human cancer (melanoma UISO-Mel-2) cells and induces apoptosis. The induction of apoptosis occurs readily in melanoma cells harboring a functional tumor suppressor protein p53, but much less efficiently in p53-null mutant melanoma (UISO-Mel-6) cells. A redox-negative mutant form of azurin (M44K/M64E) demonstrates much less cytotoxicity to the UISO-Mel-2 cells than the wild-type protein. Azurin has been shown to be internalized in UISO-Mel-2 cells and is localized predominantly in the cytosol and in the nuclear fraction. In the p53-null UISO-Mel-6 cells, azurin is localized only in the cytosol. Thus, intracellular trafficking of azurin to the nucleus is p53-dependent. Azurin forms a complex with p53, thereby stabilizing it and raising its intracellular level in cytosolic, mitochondrial, and nuclear fractions. Corresponding to an increasing level of p53, an inducer of apoptosis, the level of Bax also increases in mitochondria, allowing significant release of mitochondrial cytochrome c into the cytosol, thus initiating the onset of apoptosis. The M44K/M64E mutant form of azurin, deficient in cytotoxicity, is also deficient in forming a complex with p53 and is less efficient in stabilizing p53 than wild-type azurin. Azurin has been shown to allow regression of human UISO-Mel-2 tumors xenotransplanted in nude mice and may potentially be used in cancer treatment.
Collapse
Affiliation(s)
- Tohru Yamada
- Department of Microbiology, and Surgical Oncology, University of Illinois, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Farver O, Zhang J, Chi Q, Pecht I, Ulstrup J. Deuterium isotope effect on the intramolecular electron transfer in Pseudomonas aeruginosa azurin. Proc Natl Acad Sci U S A 2001; 98:4426-30. [PMID: 11287635 PMCID: PMC31851 DOI: 10.1073/pnas.071043798] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intramolecular electron transfer in azurin in water and deuterium oxide has been studied over a broad temperature range. The kinetic deuterium isotope effect, k(H)/k(D), is smaller than unity (0.7 at 298 K), primarily caused by the different activation entropies in water (-56.5 J K(-1) mol(-1)) and in deuterium oxide (-35.7 J K(-1) mol(-1)). This difference suggests a role for distinct protein solvation in the two media, which is supported by the results of voltammetric measurements: the reduction potential (E(0')) of Cu(2+/+) at 298 K is 10 mV more positive in D(2)O than in H(2)O. The temperature dependence of E(0') is also different, yielding entropy changes of -57 J K(-1) mol(-1) in water and -84 J K(-1) mol(-1) in deuterium oxide. The driving force difference of 10 mV is in keeping with the kinetic isotope effect, but the contribution to DeltaS from the temperature dependence of E(0') is positive rather than negative. Isotope effects are, however, also inherent in the nuclear reorganization Gibbs free energy and in the tunneling factor for the electron transfer process. A slightly larger thermal protein expansion in H(2)O than in D(2)O (0.001 nm K(-1)) is sufficient both to account for the activation entropy difference and to compensate for the different temperature dependencies of E(0'). Thus, differences in driving force and thermal expansion appear as the most straightforward rationale for the observed isotope effect.
Collapse
Affiliation(s)
- O Farver
- Institute of Analytical and Pharmaceutical Chemistry, The Royal Danish School of Pharmacy, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | |
Collapse
|