1
|
Olshina MA, Arkind G, Kumar Deshmukh F, Fainer I, Taranavsky M, Hayat D, Ben-Dor S, Ben-Nissan G, Sharon M. Regulation of the 20S Proteasome by a Novel Family of Inhibitory Proteins. Antioxid Redox Signal 2020; 32:636-655. [PMID: 31903784 DOI: 10.1089/ars.2019.7816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aims: The protein degradation machinery plays a critical role in the maintenance of cellular homeostasis, preventing the accumulation of damaged or misfolded proteins and controlling the levels of regulatory proteins. The 20S proteasome degradation machinery, which predominates during oxidative stress, is able to cleave any protein with a partially unfolded region, however, uncontrolled degradation of the myriad of potential substrates is improbable. This study aimed to identify and characterize the regulatory mechanism that controls 20S proteasome-mediated degradation. Results: Using a bioinformatic screen based on known 20S proteasome regulators, we have discovered a novel family of 20S proteasome regulators, named catalytic core regulators (CCRs). These regulators share structural and sequence similarities, and coordinate the function of the 20S proteasome by affecting the degradation of substrates. The CCRs are involved in the oxidative stress response via Nrf2, organizing into a feed-forward loop regulatory circuit, with some members stabilizing Nrf2, others being induced by Nrf2, and all of them inhibiting the 20S proteasome. Innovation and Conclusion: These data uncover a new family of regulatory proteins that utilize a fine-tuned mechanism to carefully modulate the activity of the 20S proteasome, in particular under conditions of oxidative stress, ensuring its proper functioning by controlling the degradative flux.
Collapse
Affiliation(s)
- Maya A Olshina
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Galina Arkind
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Irit Fainer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mark Taranavsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Hayat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2
|
Ravindran R, Polk P, Robinson LC, Tatchell K. New ubiquitin-dependent mechanisms regulating the Aurora B-protein phosphatase 1 balance in Saccharomyces cerevisiae. J Cell Sci 2018; 131:jcs.217620. [PMID: 30054382 DOI: 10.1242/jcs.217620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
Protein ubiquitylation regulates many cellular processes, including cell division. We report here a novel mutation altering the Saccharomyces cerevisiae E1 ubiquitin-activating enzyme (uba1-W928R) that suppresses the temperature sensitivity and chromosome loss phenotype of a well-characterized Aurora B mutant (ip1-2). The uba1-W928R mutation increases histone H3-S10 phosphorylation in the ipl1-2 strain, indicating that uba1-W928R acts by increasing Ipl1 activity and/or reducing the opposing protein phosphatase 1 (PP1; Glc7 in S. cerevisiae) phosphatase activity. Consistent with this hypothesis, Ipl1 protein levels and stability are elevated in the uba1-W928R mutant, likely mediated via the E2 enzymes Ubc4 and Cdc34. In contrast, the uba1-W928R mutation does not affect Glc7 stability, but exhibits synthetic lethality with several glc7 mutations. Moreover, uba1-W928R cells have an altered subcellular distribution of Glc7 and form nuclear Glc7 foci. These effects are likely mediated via the E2 enzymes Rad6 and Cdc34. Our new UBA1 allele reveals new roles for ubiquitylation in regulating the Ipl1-Glc7 balance in budding yeast. While ubiquitylation likely regulates Ipl1 protein stability via the canonical proteasomal degradation pathway, a non-canonical ubiquitin-dependent pathway maintains normal Glc7 localization and activity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rini Ravindran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Paula Polk
- Research Core Facility Genomics Core, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Lucy C Robinson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Kelly Tatchell
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
3
|
McHugh A, Fernandes K, South AP, Mellerio JE, Salas-Alanís JC, Proby CM, Leigh IM, Saville MK. Preclinical comparison of proteasome and ubiquitin E1 enzyme inhibitors in cutaneous squamous cell carcinoma: the identification of mechanisms of differential sensitivity. Oncotarget 2018; 9:20265-20281. [PMID: 29755650 PMCID: PMC5945540 DOI: 10.18632/oncotarget.24750] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/02/2018] [Indexed: 11/25/2022] Open
Abstract
Proteasome inhibitors have distinct properties and the biochemical consequences of suppressing ubiquitin E1 enzymes and the proteasome differ. We compared the effects of the proteasome inhibitors bortezomib, ixazomib and carfilzomib and the ubiquitin E1 enzyme inhibitor MLN7243/TAK-243 on cell viability and cell death in normal keratinocytes and cutaneous squamous cell carcinoma (cSCC) cell lines. The effects of both a pulse of treatment and more extended incubation were investigated. This is relevant to directly-delivered therapy (topical treatment/intratumoral injection) where the time of exposure can be controlled and a short exposure may better reflect systemically-delivered inhibitor pharmacokinetics. These agents can selectively kill cSCC cells but there are variations in the pattern of cSCC cell line sensitivity/resistance. Variations in the responses to proteasome inhibitors are associated with differences in the specificity of the inhibitors for the three proteolytic activities of the proteasome. There is greater selectivity for killing cSCC cells compared to normal keratinocytes with a pulse of proteasome inhibitor treatment than with a more extended exposure. We provide evidence that c-MYC-dependent NOXA upregulation confers susceptibility to a short incubation with proteasome inhibitors by priming cSCC cells for rapid BAK-dependent death. We observed that bortezomib-resistant cSCC cells can be sensitive to MLN7243-induced death. Low expression of the ubiquitin E1 UBA1/UBE1 participates in conferring susceptibility to MLN7243 by increasing sensitivity to MLN7243-mediated attenuation of ubiquitination. This study supports further investigation of the potential of proteasome and ubiquitin E1 inhibition for cSCC therapy. Direct delivery of inhibitors could facilitate adequate exposure of skin cancers.
Collapse
Affiliation(s)
- Angela McHugh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Kenneth Fernandes
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jemima E Mellerio
- St. John's Institute of Dermatology, King's College London, Guy's Campus, London, SE1 7EH, UK
| | - Julio C Salas-Alanís
- DEBRA Mexico, Azteca Guadalupe, Nuevo Leon, 67150 Mexico.,Hospital Regional "Lic. Adolfo Lopez Mateos", Colonia Florida, Del Alvaro Obregon, 01030 Ciudad de Mexico
| | - Charlotte M Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Irene M Leigh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.,Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Mark K Saville
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
4
|
Solomon H, Bräuning B, Fainer I, Ben-Nissan G, Rabani S, Goldfinger N, Moscovitz O, Shakked Z, Rotter V, Sharon M. Post-translational regulation of p53 function through 20S proteasome-mediated cleavage. Cell Death Differ 2017; 24:2187-2198. [PMID: 28885617 DOI: 10.1038/cdd.2017.139] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022] Open
Abstract
The tumor suppressor p53 is a transcription factor that regulates the expression of a range of target genes in response to cellular stress. Adding to the complexity of understanding its cellular function is that in addition to the full-length protein, several p53 isoforms are produced in humans, harboring diverse expression patterns and functionalities. One isoform, Δ40p53, which lacks the first transactivation domain including the binding region for the negative regulator MDM2, was shown to be a product of alternative translation initiation. Here we report the discovery of an alternative cellular mechanism for Δ40p53 formation. We show that the 20S proteasome specifically cleaves the full-length protein (FLp53) to generate the Δ40p53 isoform. Moreover, we demonstrate that a dimer of FLp53 interacts with a Δ40p53 dimer, creating a functional hetero-tetramer. Consequently, the co-expression of both isoforms attenuates the transcriptional activity of FLp53 in a dominant negative manner. Finally, we demonstrate that following oxidative stress, at the time when the 20S proteasome becomes the major degradation machinery and FLp53 is activated, the formation of Δ40p53 is enhanced, creating a negative feedback loop that balances FLp53 activation. Overall, our results suggest that Δ40p53 can be generated by a 20S proteasome-mediated post-translational mechanism so as to control p53 function. More generally, the discovery of a specific cleavage function for the 20S proteasome may represent a more general cellular regulatory mechanism to produce proteins with distinct functional properties.
Collapse
Affiliation(s)
- Hilla Solomon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bastian Bräuning
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Irit Fainer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Stav Rabani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Moscovitz
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zippora Shakked
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Groen EJN, Gillingwater TH. UBA1: At the Crossroads of Ubiquitin Homeostasis and Neurodegeneration. Trends Mol Med 2016; 21:622-632. [PMID: 26432019 PMCID: PMC4596250 DOI: 10.1016/j.molmed.2015.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are a leading cause of disability and early death. A common feature of these conditions is disruption of protein homeostasis. Ubiquitin-like modifier activating enzyme 1 (UBA1), the E1 ubiquitin-activating enzyme, sits at the apex of the ubiquitin cascade and represents an important regulator of cellular protein homeostasis. Critical contributions of UBA1-dependent pathways to the regulation of homeostasis and degeneration in the nervous system are emerging, including specific disruption of UBA1 in spinal muscular atrophy (SMA) and Huntington's disease (HD). In this review we discuss recent findings that put UBA1 at the centre of cellular homeostasis and neurodegeneration, highlighting the potential for UBA1 to act as a promising therapeutic target for a range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ewout J N Groen
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Wang R, Zhang P, Li J, Guan H, Shi G. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor - 1 alpha protein in hypoxic conditions. Biochem Biophys Res Commun 2016; 470:117-122. [DOI: 10.1016/j.bbrc.2016.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/02/2016] [Indexed: 10/22/2022]
|
7
|
Sugaya K, Ishihara Y, Inoue S. Nuclear localization of ubiquitin-activating enzyme Uba1 is characterized in its mammalian temperature-sensitive mutant. Genes Cells 2015; 20:659-66. [PMID: 26059705 DOI: 10.1111/gtc.12257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/12/2015] [Indexed: 11/26/2022]
Abstract
In our previous study, a point mutation in Uba1, the gene encoding ubiquitin-activating enzyme, was identified in temperature-sensitive (ts) CHO-K1 mutant tsTM3 cells, which led to a Met-to-Ile substitution at amino acid 256 in Uba1 protein. Characterization of this mutant revealed a deficiency of nuclear Uba1 and impaired ubiquitination in the nucleus. The ts defects in tsTM3 were complemented by the expression of the wild-type Uba1 tagged with green fluorescent protein (GFP). In this study, the expression and localization of Uba1 were investigated using the various forms of Uba1 tagged with GFP. Western blot analysis and confocal microscopy revealed that nuclear localization of Uba1, as well as even the modified and truncated forms of Uba1, appears to be essential to rescue tsTM3 cells. The localization of Uba1 in the nucleus, even if it was a small amount, was proportional to the efficiency of complementation of tsTM3 cells. Uba1 plays an important role in the nucleus, and a ts mutation found in tsTM3 cells appears to result in the loss of localization of Uba1 in the nucleus.
Collapse
Affiliation(s)
- Kimihiko Sugaya
- Research Center for Radiation Protection and Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yoshie Ishihara
- Research Center for Radiation Protection and Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Sonoe Inoue
- Research Center for Radiation Protection and Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
8
|
The Parkinson's-associated protein DJ-1 regulates the 20S proteasome. Nat Commun 2015; 6:6609. [PMID: 25833141 DOI: 10.1038/ncomms7609] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 02/11/2015] [Indexed: 12/13/2022] Open
Abstract
The Parkinson's-associated protein, DJ-1, is a highly conserved homodimer, ubiquitously expressed in cells. Here we demonstrate that DJ-1 is a 20S proteasome regulator. We show that DJ-1 physically binds the 20S proteasome and inhibits its activity, rescuing partially unfolded proteins from degradation. Consequently, DJ-1 stabilizes the cellular levels of 20S proteasome substrates, as we show for α-synuclein and p53. Furthermore, we demonstrate that following oxidative stress, DJ-1 is involved in the Nrf2-dependent oxidative stress response that leads to the upregulation of both the 20S proteasome and its regulator, NQO1. Overall, our results suggest a regulatory circuit in which DJ-1, under conditions of oxidative stress, both upregulates and inhibits the 20S proteasome, providing a rigorous control mechanism at a time when the 20S proteasome becomes the major proteolytic machinery. Such a tight regulation of the 20S proteasome may sustain the balance between the need to rapidly eliminate oxidatively damaged proteins and maintain the abundance of native, intrinsically unstructured proteins, which coordinate regulatory and signalling events.
Collapse
|
9
|
Sugaya K, Ishihara Y, Inoue S, Tsuji H. Characterization of ubiquitin-activating enzyme Uba1 in the nucleus by its mammalian temperature-sensitive mutant. PLoS One 2014; 9:e96666. [PMID: 24805847 PMCID: PMC4013028 DOI: 10.1371/journal.pone.0096666] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/10/2014] [Indexed: 12/16/2022] Open
Abstract
Temperature-sensitive (ts) CHO-K1 mutant tsTM3 exhibits chromosomal instability and cell-cycle arrest in the S to G2 phases with decreased DNA synthesis at the nonpermissive temperature, 39°C. Previously, complementation tests with other mutants showed that tsTM3 harbors a genetic defect in the ubiquitin-activating enzyme Uba1. Sequence comparison of the Uba1 gene between wild-type and mutant cells in this study revealed that the mutant phenotype is caused by a G-to-A transition that yields a Met-to-Ile substitution at position 256 in hamster Uba1. The ts defects in tsTM3 were complemented by expression of the wild-type Uba1 tagged with green fluorescent protein. Expression of the Uba1 primarily in the nucleus appeared to rescue tsTM3 cells. Incubation at 39°C resulted in a decrease of nuclear Uba1 in tsTM3 cells, suggesting that loss of Uba1 in the nucleus may lead to the ts defects. Analyses with the fluorescent ubiquitination-based cell cycle indicator revealed that loss of function of Uba1 leads to failure of the ubiquitin system in the nucleus. Incubation at 39°C caused an increase in endogenous geminin in tsTM3 cells. A ts mutation of Uba1 found in tsTM3 cells appears to be a novel mutation reflecting the important roles of Uba1 in nucleus.
Collapse
Affiliation(s)
- Kimihiko Sugaya
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
- Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba, Japan
- * E-mail:
| | - Yoshie Ishihara
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
- Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba, Japan
| | - Sonoe Inoue
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
- Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba, Japan
| | - Hideo Tsuji
- Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
10
|
Penkert RR, Kalejta RF. Tale of a tegument transactivator: the past, present and future of human CMV pp71. Future Virol 2012; 7:855-869. [PMID: 23378857 DOI: 10.2217/fvl.12.86] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herpesviruses assemble large virions capable of delivering to a newly infected cell not only the viral genome, but also viral proteins packaged within the tegument layer between the DNA-containing capsid and the lipid envelope. In this review, we describe the tegument transactivator of the β-herpesvirus human CMV, the pp71 protein. We present the known mechanistic features through which it activates viral gene expression during a lytic infection but fails to do so when the virus establishes latency, and describe how pp71 stimulates the cell cycle and may help infected cells avoid detection by the adaptive immune system. A historical overview of pp71 is extended with current perceptions of its roles during human CMV infections and suggestions for future avenues of experimentation.
Collapse
Affiliation(s)
- Rhiannon R Penkert
- Institute for Molecular Virology & McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
11
|
Bandau S, Knebel A, Gage ZO, Wood NT, Alexandru G. UBXN7 docks on neddylated cullin complexes using its UIM motif and causes HIF1α accumulation. BMC Biol 2012; 10:36. [PMID: 22537386 PMCID: PMC3349548 DOI: 10.1186/1741-7007-10-36] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/26/2012] [Indexed: 12/31/2022] Open
Abstract
Background The proteins from the UBA-UBX family interact with ubiquitylated proteins via their UBA domain and with p97 via their UBX domain, thereby acting as substrate-binding adaptors for the p97 ATPase. In particular, human UBXN7 (also known as UBXD7) mediates p97 interaction with the transcription factor HIF1α that is actively ubiquitylated in normoxic cells by a CUL2-based E3 ligase, CRL2. Mass spectrometry analysis of UBA-UBX protein immunoprecipitates showed that they interact with a multitude of E3 ubiquitin-ligases. Conspicuously, UBXN7 was most proficient in interacting with cullin-RING ligase subunits. We therefore set out to determine whether UBXN7 interaction with cullins was direct or mediated by its ubiquitylated targets bound to the UBA domain. Results We show that UBXN7 interaction with cullins is independent of ubiquitin- and substrate-binding. Instead, it relies on the UIM motif in UBXN7 that directly engages the NEDD8 modification on cullins. To understand the functional consequences of UBXN7 interaction with neddylated cullins, we focused on HIF1α, a CUL2 substrate that uses UBXD7/p97 as a ubiquitin-receptor on its way to proteasome-mediated degradation. We find that UBXN7 over-expression converts CUL2 to its neddylated form and causes the accumulation of non-ubiquitylated HIF1α. Both of these effects are strictly UIM-dependent and occur only when UBXN7 contains an intact UIM motif. We also show that HIF1α carrying long ubiquitin-chains can recruit alternative ubiquitin-receptors, lacking p97's ATP-dependent segregase activity. Conclusions Our study shows that independently of its function as a ubiquitin-binding adaptor for p97, UBXN7 directly interacts with neddylated cullins and causes the accumulation of the CUL2 substrate HIF1α. We propose that by sequestering CUL2 in its neddylated form, UBXN7 negatively regulates the ubiquitin-ligase activity of CRL2 and this might prevent recruitment of ubiquitin-receptors other than p97 to nuclear HIF1α.
Collapse
Affiliation(s)
- Susanne Bandau
- Scottish Institute for Cell Signalling, College of Life Sciences, University of Dundee, UK
| | | | | | | | | |
Collapse
|
12
|
Lao T, Chen S, Sang N. Two mutations impair the stability and function of ubiquitin-activating enzyme (E1). J Cell Physiol 2012; 227:1561-8. [PMID: 21678405 DOI: 10.1002/jcp.22870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein ubiquitination plays critical roles in the regulation of multiple cellular processes including cell proliferation, signal transduction, oncogenesis, and hypoxic response. TS20 is a Balb3T3-derived cell line in which ubiquitination is inhibited by restrictive temperature. While TS20 has been used to elucidate the degradation of many important proteins including p53, p27, HIF-1α, and ornithine decarboxylase, the molecular basis of its temperature sensitivity has not been fully determined. We cloned full-length E1 cDNA from TS20. Sequencing analysis revealed two point mutations (nt736G to A and nt2313G to C) that lead to substitution of aa189A to T and aa714W to C, respectively. Transient transfection assays revealed that mutant E1 was less stable than its wild-type counterpart, and restrictive temperature (39°C) accelerated its degradation. Under permissive temperature, reverting aa714C to W significantly improved E1 stability and activity. Under restrictive temperature, reverting of both substitutions was required to fully restore E1 stability. Similar results were observed when the mutants were expressed in non-TS20 cells, indicating the mutations are sufficient for its temperature sensitive degradation observed in TS20 cells. Functionally, reverting aa714C to W was sufficient to facilitate the monoubiquitination of H2A and to support TS20 growth at 39°C. It also significantly improved the ubiquitination-dependent disposal of HIF-1α. Our data conclusively demonstrate that mutations introgenic to UVBE1 cause E1 instability, which leads to deficiency of E1 function. Our data establish the molecular basis for unambiguous interpretation of experimental data based on TS20 cells, and provide new insight into the structural determinants of E1 stability.
Collapse
Affiliation(s)
- Taotao Lao
- Department of Biology and Graduate Program of Biological Sciences, College of Arts & Sciences, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
13
|
Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to 20S proteasomal degradation of p63 resulting in thinning of epithelium and chemical-induced skin cancer. Oncogene 2010; 30:1098-107. [PMID: 21042282 DOI: 10.1038/onc.2010.491] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1) is a cytosolic enzyme that protects cells against chemical and radiation-induced oxidative stress and skin cancer. Disruption of NQO1 gene in mice showed thinning of skin epithelium and loss of cytokeratin 14, an early marker of skin differentiation. Immunohistochemistry and western analysis demonstrated downregulation of p63 in NQO1-/- mouse skin, as compared with wild-type (WT) mouse. Further analysis including modulation of NQO1 expression revealed a direct correlation between the levels of NQO1 and p63 in skin-derived keratinocytes and dermal fibroblasts. Modulation of proteasomal activity revealed that p63 is degraded by 20S proteasome and that this degradation is significantly rescued by NQO1. Coimmunoprecipitation studies showed that NQO1 interacts directly with p63 but not 20S to protect against this degradation. In addition, benzo[a]pyrene treatment led to induction of NQO1 and stabilization of p63 in WT but not in NQO1-/- mouse skin and keratinocytes. These data suggest that NQO1 controls stabilization of p63 and progression towards keratinocyte differentiation leading to normal skin development and presumably skin carcinogenesis.
Collapse
|
14
|
Stagni V, Mingardi M, Santini S, Giaccari D, Barilà D. ATM kinase activity modulates cFLIP protein levels: potential interplay between DNA damage signalling and TRAIL-induced apoptosis. Carcinogenesis 2010; 31:1956-63. [DOI: 10.1093/carcin/bgq193] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
c-Fos proteasomal degradation is activated by a default mechanism, and its regulation by NAD(P)H:quinone oxidoreductase 1 determines c-Fos serum response kinetics. Mol Cell Biol 2010; 30:3767-78. [PMID: 20498278 DOI: 10.1128/mcb.00899-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The short-lived proto-oncoprotein c-Fos is a component of the activator protein 1 (AP-1) transcription factor. A large region of c-Fos is intrinsically unstructured and susceptible to a recently characterized proteasomal ubiquitin-independent degradation (UID) pathway. UID is active by a default mechanism that is inhibited by NAD(P)H:quinone oxidoreductase 1 (NQO1), a 20S proteasome gatekeeper. Here, we show that NQO1 binds and induces robust c-Fos accumulation by blocking the UID pathway. c-Jun, a partner of c-Fos, also protects c-Fos from proteasomal degradation by default. Our findings suggest that NQO1 protects monomeric c-Fos from proteasomal UID, a function that is fulfilled later by c-Jun. We show that this process regulates c-Fos homeostasis (proteostasis) in response to serum stimulation, phosphorylation, nuclear translocation, and transcription activity. In addition, we show that NQO1 is important to ensure immediate c-Fos accumulation in response to serum, since a delayed response was observed under low NQO1 expression. These data suggest that in vivo, protein unstructured regions determine the kinetics and the homeostasis of regulatory proteins. Our data provide evidence for another layer of regulation of key regulatory proteins that functions at the level of protein degradation and is designed to ensure optimal formation of functional complexes such as AP-1.
Collapse
|
16
|
Allende-Vega N, Saville MK. Targeting the ubiquitin-proteasome system to activate wild-type p53 for cancer therapy. Semin Cancer Biol 2009; 20:29-39. [PMID: 19897040 DOI: 10.1016/j.semcancer.2009.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 10/29/2009] [Indexed: 11/17/2022]
Abstract
Ubiquitination plays a key role in regulating the tumour suppressor p53. It targets p53 for degradation by the 26S proteasome. The ubiquitin pathway also regulates the activity and localisation of p53. Ubiquitination requires ubiquitin-activating and -conjugating enzymes and ubiquitin ligases. In addition, ubiquitination can be reversed by the action of deubiquitinating enzymes. Here we give an overview of the role of components of the ubiquitin-proteasome system in the regulation of p53 and review progress in targeting these proteins to activate wild-type p53 for the treatment of cancer.
Collapse
Affiliation(s)
- Nerea Allende-Vega
- CR-UK Cell Transformation Research Group, Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | | |
Collapse
|
17
|
Yan H, Chin ML, Horvath EA, Kane EA, Pfleger CM. Impairment of ubiquitylation by mutation in Drosophila E1 promotes both cell-autonomous and non-cell-autonomous Ras-ERK activation in vivo. J Cell Sci 2009; 122:1461-70. [PMID: 19366732 PMCID: PMC2721006 DOI: 10.1242/jcs.042267] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2009] [Indexed: 12/31/2022] Open
Abstract
Ras signaling can promote proliferation, cell survival and differentiation. Mutations in components of the Ras pathway are found in many solid tumors and are associated with developmental disorders. We demonstrate here that Drosophila tissues containing hypomorphic mutations in E1, the most upstream enzyme in the ubiquitin pathway, display cell-autonomous upregulation of Ras-ERK activity and Ras-dependent ectopic proliferation. Ubiquitylation is widely accepted to regulate receptor tyrosine kinase (RTK) endocytosis upstream of Ras. However, although the ectopic proliferation of E1 hypomorphs is dramatically suppressed by removing one copy of Ras, removal of the more upstream components Egfr, Grb2 or sos shows no suppression. Thus, decreased ubiquitylation may lead to growth-relevant Ras-ERK activation by failing to regulate a step downstream of RTK endocytosis. We further demonstrate that Drosophila Ras is ubiquitylated. Our findings suggest that Ras ubiquitylation restricts growth and proliferation in vivo. We also report our intriguing observation that complete inactivation of E1 causes non-autonomous activation of Ras-ERK in adjacent tissue, mimicking oncogenic Ras overexpression. We demonstrate that maintaining sufficient E1 function is required both cell autonomously and non-cell autonomously to prevent inappropriate Ras-ERK-dependent growth and proliferation in vivo and may implicate loss of Ras ubiquitylation in developmental disorders and cancer.
Collapse
Affiliation(s)
- Hua Yan
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
18
|
Jariel-Encontre I, Bossis G, Piechaczyk M. Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta Rev Cancer 2008; 1786:153-77. [PMID: 18558098 DOI: 10.1016/j.bbcan.2008.05.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 02/08/2023]
Abstract
The proteasome is the main proteolytic machinery of the cell and constitutes a recognized drugable target, in particular for treating cancer. It is involved in the elimination of misfolded, altered or aged proteins as well as in the generation of antigenic peptides presented by MHC class I molecules. It is also responsible for the proteolytic maturation of diverse polypeptide precursors and for the spatial and temporal regulation of the degradation of many key cell regulators whose destruction is necessary for progression through essential processes, such as cell division, differentiation and, more generally, adaptation to environmental signals. It is generally believed that proteins must undergo prior modification by polyubiquitin chains to be addressed to, and recognized by, the proteasome. In reality, however, there is accumulating evidence that ubiquitin-independent proteasomal degradation may have been largely underestimated. In particular, a number of proto-oncoproteins and oncosuppressive proteins are privileged ubiquitin-independent proteasomal substrates, the altered degradation of which may have tumorigenic consequences. The identification of ubiquitin-independent mechanisms for proteasomal degradation also poses the paramount question of the multiplicity of catabolic pathways targeting each protein substrate. As this may help design novel therapeutic strategies, the underlying mechanisms are critically reviewed here.
Collapse
Affiliation(s)
- Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, IFR122, 1919 Route de Mende, Montpellier, F-34293, France
| | | | | |
Collapse
|
19
|
Lee TV, Ding T, Chen Z, Rajendran V, Scherr H, Lackey M, Bolduc C, Bergmann A. The E1 ubiquitin-activating enzyme Uba1 in Drosophila controls apoptosis autonomously and tissue growth non-autonomously. Development 2007; 135:43-52. [PMID: 18045837 DOI: 10.1242/dev.011288] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ubiquitination is an essential process regulating turnover of proteins for basic cellular processes such as the cell cycle and cell death (apoptosis). Ubiquitination is initiated by ubiquitin-activating enzymes (E1), which activate and transfer ubiquitin to ubiquitin-conjugating enzymes (E2). Conjugation of target proteins with ubiquitin is then mediated by ubiquitin ligases (E3). Ubiquitination has been well characterized using mammalian cell lines and yeast genetics. However, the consequences of partial or complete loss of ubiquitin conjugation in a multi-cellular organism are not well understood. Here, we report the characterization of Uba1, the only E1 in Drosophila. We found that weak and strong Uba1 alleles behave genetically differently with sometimes opposing phenotypes. Whereas weak Uba1 alleles protect cells from cell death, clones of strong Uba1 alleles are highly apoptotic. Strong Uba1 alleles cause cell cycle arrest which correlates with failure to reduce cyclin levels. Surprisingly, clones of strong Uba1 mutants stimulate neighboring wild-type tissue to undergo cell division in a non-autonomous manner giving rise to overgrowth phenotypes of the mosaic fly. We demonstrate that the non-autonomous overgrowth is caused by failure to downregulate Notch signaling in Uba1 mutant clones. In summary, the phenotypic analysis of Uba1 demonstrates that impaired ubiquitin conjugation has significant consequences for the organism, and may implicate Uba1 as a tumor suppressor gene.
Collapse
Affiliation(s)
- Tom V Lee
- The University of Texas M D Anderson Cancer Center, Department of Biochemistry and Molecular Biology, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kelly SM, VanSlyke JK, Musil LS. Regulation of ubiquitin-proteasome system mediated degradation by cytosolic stress. Mol Biol Cell 2007; 18:4279-91. [PMID: 17699585 PMCID: PMC2043544 DOI: 10.1091/mbc.e07-05-0487] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ER-associated, ubiquitin-proteasome system (UPS)-mediated degradation of the wild-type (WT) gap junction protein connexin32 (Cx32) is inhibited by mild forms of cytosolic stress at a step before its dislocation into the cytosol. We show that the same conditions (a 30-min, 42 degrees C heat shock or oxidative stress induced by arsenite) also reduce the endoplasmic reticulum (ER)-associated turnover of disease-causing mutants of Cx32 and the cystic fibrosis transmembrane conductance regulator (CFTR), as well as that of WT CFTR and unassembled Ig light chain. Stress-stabilized WT Cx32 and CFTR, but not the mutant/unassembled proteins examined, could traverse the secretory pathway. Heat shock also slowed the otherwise rapid UPS-mediated turnover of the cytosolic proteins myoD and GFPu, but not the degradation of an ubiquitination-independent construct (GFP-ODC) closely related to the latter. Analysis of mutant Cx32 from cells exposed to proteasome inhibitors and/or cytosolic stress indicated that stress reduces degradation at the level of substrate polyubiquitination. These findings reveal a new link between the cytosolic stress-induced heat shock response, ER-associated degradation, and polyubiquitination. Stress-denatured proteins may titer a limiting component of the ubiquitination machinery away from pre-existing UPS substrates, thereby sparing the latter from degradation.
Collapse
Affiliation(s)
- Sean M. Kelly
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239
| | - Judy K. VanSlyke
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239
| | - Linda S. Musil
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
21
|
Wang QE, Prætorius-Ibba M, Zhu Q, El-Mahdy MA, Wani G, Zhao Q, Qin S, Patnaik S, Wani AA. Ubiquitylation-independent degradation of Xeroderma pigmentosum group C protein is required for efficient nucleotide excision repair. Nucleic Acids Res 2007; 35:5338-50. [PMID: 17693435 PMCID: PMC2018625 DOI: 10.1093/nar/gkm550] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Xeroderma Pigmentosum group C (XPC) protein is indispensable to global genomic repair (GGR), a subpathway of nucleotide excision repair (NER), and plays an important role in the initial damage recognition. XPC can be modified by both ubiquitin and SUMO in response to UV irradiation of cells. Here, we show that XPC undergoes degradation upon UV irradiation, and this is independent of protein ubiquitylation. The subunits of DDB-Cul4A E3 ligase differentially regulate UV-induced XPC degradation, e.g DDB2 is required and promotes, whereas DDB1 and Cul4A protect the protein degradation. Mutation of XPC K655 to alanine abolishes both UV-induced XPC modification and degradation. XPC degradation is necessary for recruiting XPG and efficient NER. The overall results provide crucial insights regarding the fate and role of XPC protein in the initiation of excision repair.
Collapse
Affiliation(s)
- Qi-En Wang
- Department of Radiology, Department of Molecular and Cellular Biochemistry and Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Ave, Columbus, OH 43210, USA
- *To whom correspondence should be addressed. +1 614 292 9015+1 614 293 0802;
| | - Mette Prætorius-Ibba
- Department of Radiology, Department of Molecular and Cellular Biochemistry and Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Ave, Columbus, OH 43210, USA
| | - Qianzheng Zhu
- Department of Radiology, Department of Molecular and Cellular Biochemistry and Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Ave, Columbus, OH 43210, USA
| | - Mohamed A. El-Mahdy
- Department of Radiology, Department of Molecular and Cellular Biochemistry and Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Ave, Columbus, OH 43210, USA
| | - Gulzar Wani
- Department of Radiology, Department of Molecular and Cellular Biochemistry and Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Ave, Columbus, OH 43210, USA
| | - Qun Zhao
- Department of Radiology, Department of Molecular and Cellular Biochemistry and Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Ave, Columbus, OH 43210, USA
| | - Song Qin
- Department of Radiology, Department of Molecular and Cellular Biochemistry and Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Ave, Columbus, OH 43210, USA
| | - Srinivas Patnaik
- Department of Radiology, Department of Molecular and Cellular Biochemistry and Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Ave, Columbus, OH 43210, USA
| | - Altaf A. Wani
- Department of Radiology, Department of Molecular and Cellular Biochemistry and Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Ave, Columbus, OH 43210, USA
- *To whom correspondence should be addressed. +1 614 292 9015+1 614 293 0802;
| |
Collapse
|
22
|
Gong X, Kole L, Iskander K, Jaiswal AK. NRH:quinone oxidoreductase 2 and NAD(P)H:quinone oxidoreductase 1 protect tumor suppressor p53 against 20s proteasomal degradation leading to stabilization and activation of p53. Cancer Res 2007; 67:5380-8. [PMID: 17545619 DOI: 10.1158/0008-5472.can-07-0323] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor suppressor p53 is either lost or mutated in several types of cancer. MDM2 interaction with p53 results in ubiquitination and 26S proteasomal degradation of p53. Chronic DNA damage leads to inactivation of MDM2, stabilization of p53, and apoptotic cell death. Here, we present a novel MDM2/ubiquitination-independent mechanism of stabilization and transient activation of p53. The present studies show that 20S proteasomes degrade p53. The 20S degradation of p53 was observed in ubiquitin-efficient and -deficient cells, indicating that this pathway of degradation did not require ubiquitination of p53. The cytosolic quinone oxidoreductases [NRH:quinone oxidoreductase 2 (NQO2) and NAD(P)H:quinone oxidoreductase 1 (NQO1)] interacted with p53 and protected p53 against 20S proteasomal degradation. Further studies revealed that acute exposure to radiation or chemical leads to induction of NQO1 and NQO2 that stabilizes and transiently activates p53 and downstream genes. These results suggest that stress-induced NQO1 and NQO2 transiently stabilize p53, which leads to protection against adverse effects of stressors.
Collapse
Affiliation(s)
- Xing Gong
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
23
|
Camus S, Menéndez S, Cheok CF, Stevenson LF, Laín S, Lane DP. Ubiquitin-independent degradation of p53 mediated by high-risk human papillomavirus protein E6. Oncogene 2007; 26:4059-70. [PMID: 17224909 PMCID: PMC2742713 DOI: 10.1038/sj.onc.1210188] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 11/02/2006] [Accepted: 11/06/2006] [Indexed: 11/09/2022]
Abstract
In vitro, high-risk human papillomavirus E6 proteins have been shown, in conjunction with E6-associated protein (E6AP), to mediate ubiquitination of p53 and its degradation by the 26S proteasome by a pathway that is thought to be analogous to Mdm2-mediated p53 degradation. However, differences in the requirements of E6/E6AP and Mdm2 to promote the degradation of p53, both in vivo and in vitro, suggest that these two E3 ligases may promote p53 degradation by distinct pathways. Using tools that disrupt ubiquitination and degradation, clear differences between E6- and Mdm2-mediated p53 degradation are presented. The consistent failure to fully protect p53 protein from E6-mediated degradation by disrupting the ubiquitin-degradation pathway provides the first evidence of an E6-dependent, ubiquitin-independent, p53 degradation pathway in vivo.
Collapse
Affiliation(s)
- S Camus
- Department of Cell Cycle Control, Institute of Molecular and Cell Biology, Proteos, Singapore.
| | | | | | | | | | | |
Collapse
|
24
|
Ghaboosi N, Deshaies RJ. A conditional yeast E1 mutant blocks the ubiquitin-proteasome pathway and reveals a role for ubiquitin conjugates in targeting Rad23 to the proteasome. Mol Biol Cell 2007; 18:1953-63. [PMID: 17360968 PMCID: PMC1855034 DOI: 10.1091/mbc.e06-10-0965] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/20/2007] [Accepted: 03/01/2007] [Indexed: 01/26/2023] Open
Abstract
E1 ubiquitin activating enzyme catalyzes the initial step in all ubiquitin-dependent processes. We report the isolation of uba1-204, a temperature-sensitive allele of the essential Saccharomyces cerevisiae E1 gene, UBA1. Uba1-204 cells exhibit dramatic inhibition of the ubiquitin-proteasome system, resulting in rapid depletion of cellular ubiquitin conjugates and stabilization of multiple substrates. We have employed the tight phenotype of this mutant to investigate the role ubiquitin conjugates play in the dynamic interaction of the UbL/UBA adaptor proteins Rad23 and Dsk2 with the proteasome. Although proteasomes purified from mutant cells are intact and proteolytically active, they are depleted of ubiquitin conjugates, Rad23, and Dsk2. Binding of Rad23 to these proteasomes in vitro is enhanced by addition of either free or substrate-linked ubiquitin chains. Moreover, association of Rad23 with proteasomes in mutant and wild-type cells is improved upon stabilizing ubiquitin conjugates with proteasome inhibitor. We propose that recognition of polyubiquitin chains by Rad23 promotes its shuttling to the proteasome in vivo.
Collapse
Affiliation(s)
- Nazli Ghaboosi
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Raymond J. Deshaies
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
25
|
Fu D, Richardson DR. Iron chelation and regulation of the cell cycle: 2 mechanisms of posttranscriptional regulation of the universal cyclin-dependent kinase inhibitor p21CIP1/WAF1 by iron depletion. Blood 2007; 110:752-61. [PMID: 17429006 DOI: 10.1182/blood-2007-03-076737] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Iron (Fe) plays a critical role in proliferation, and Fe deficiency results in G(1)/S arrest and apoptosis. However, the precise role of Fe in cell-cycle control remains unclear. We observed that Fe depletion increased the mRNA of the universal cyclin-dependent kinase inhibitor, p21(CIP1/WAF1), while its protein level was not elevated. This observation is unique to the G(1)/S arrest seen after Fe deprivation, as increased p21(CIP1/WAF1) mRNA and protein are usually found when arrest is induced by other stimuli. In this study, we examined the posttranscriptional regulation of p21(CIP1/WAF1) after Fe depletion and demonstrated that its down-regulation was due to 2 mechanisms: (1) inhibited translocation of p21(CIP1/WAF1) mRNA from the nucleus to cytosolic translational machinery; and (2) induction of ubiquitin-independent proteasomal degradation. Iron chelation significantly (P < .01) decreased p21(CIP1/WAF1) protein half-life from 61 (+/- 4 minutes; n = 3) to 28 (+/- 9 minutes, n = 3). Proteasomal inhibitors rescued the chelator-mediated decrease in p21(CIP1/WAF1) protein, while lysosomotropic agents were not effective. In Fe-replete cells, p21(CIP1/WAF1) was degraded in an ubiquitin-dependent manner, while after Fe depletion, ubiquitin-independent proteasomal degradation occurred. These results are important for considering the mechanism of Fe depletion-mediated cell-cycle arrest and apoptosis and the efficacy of chelators as antitumor agents.
Collapse
Affiliation(s)
- Dong Fu
- Iron Metabolism and Chelation Program, Department of Pathology, University of Sydney, New South Wales, Australia
| | | |
Collapse
|
26
|
Basbous J, Chalbos D, Hipskind R, Jariel-Encontre I, Piechaczyk M. Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer. Mol Cell Biol 2007; 27:3936-50. [PMID: 17371847 PMCID: PMC1900028 DOI: 10.1128/mcb.01776-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fra-1, a transcription factor that is phylogenetically and functionally related to the proto-oncoprotein c-Fos, controls many essential cell functions. It is expressed in many cell types, albeit with differing kinetics and abundances. In cells reentering the cell cycle, Fra-1 expression is transiently stimulated albeit later than that of c-Fos and for a longer time. Moreover, Fra-1 overexpression is found in cancer cells displaying high Erk1/2 activity and has been linked to tumorigenesis. One crucial point of regulation of Fra-1 levels is controlled protein degradation, the mechanism of which remains poorly characterized. Here, we have combined genetic, pharmacological, and signaling studies to investigate this process in nontransformed cells and to elucidate how it is altered in cancer cells. We report that the intrinsic instability of Fra-1 depends on a single destabilizer contained within the C-terminal 30 to 40 amino acids. Two serines therein, S252 and S265, are phosphorylated by kinases of the Erk1/2 pathway, which compromises protein destruction upon both normal physiological induction and tumorigenic constitutive activation of this cascade. Our data also indicate that Fra-1, like c-Fos, belongs to a small group of proteins that may, under certain circumstances, undergo ubiquitin-independent degradation by the proteasome. Our work reveals both similitudes and differences between Fra-1 and c-Fos degradation mechanisms. In particular, the presence of a single destabilizer within Fra-1, instead of two that are differentially regulated in c-Fos, explains the much faster turnover of the latter when cells traverse the G(0)/G(1)-to-S-phase transition. Finally, our study offers further insights into the signaling-regulated expression of the other Fos family proteins.
Collapse
Affiliation(s)
- Jihane Basbous
- Institut de Génétique Moléculaire de Montpellier, CNRS, 1919 Route de Mende, Montpellier F-34293, France
| | | | | | | | | |
Collapse
|
27
|
Tsai CL, Wang LH, Shiue YL, Chao TY. Influence of temperature on the ontogenetic expression of neural development-related genes from developing tilapia brain expressed sequence tags. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:243-61. [PMID: 17252285 DOI: 10.1007/s10126-006-6089-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 10/15/2006] [Indexed: 05/13/2023]
Abstract
The developing central neural circuits in teleosts are genetically controlled and temperature-initiated. We compiled a list of transcripts expressed in the developing tilapia (Oreochromis mossambicus) brain using expressed sequence tags derived from the developing brain, and investigated genes with thermosensitive ontogenetic expression. Of 1084 clones, 893 were unique genes, 445 of which were known. Fourteen of the latter were neural development-related, and the ontogenetic expression of nine was temperature-influenced. Discs large homolog 5, myelin expression factor 2, plasticity-related protein-2, tsc2 gene product-related genes, and an inhibitor of differentiation protein 2 (Id2) were differentially temperature-influenced according to their developmental stages. Endothelial differentiation-related factor 1, midkine-related growth factor b, and mitogen-activated protein kinase 14b were specifically influenced by elevated temperature, and beta-catenin-like isoform 1 by lower temperature. Neural development-related genes, particularly those with thermosensitive ontogenetic expression, might be important for developing central neural circuits in teleosts.
Collapse
Affiliation(s)
- C L Tsai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
| | | | | | | |
Collapse
|
28
|
Nouspikel T, Hanawalt PC. Impaired nucleotide excision repair upon macrophage differentiation is corrected by E1 ubiquitin-activating enzyme. Proc Natl Acad Sci U S A 2006; 103:16188-93. [PMID: 17060614 PMCID: PMC1621053 DOI: 10.1073/pnas.0607769103] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global nucleotide excision repair is greatly attenuated in terminally differentiated mammalian cells. We observed this phenomenon in human neurons and in macrophages, noting that the transcription-coupled repair pathway remains functional and that there is no significant reduction in levels of excision repair enzymes. We have discovered that ubiquitin-activating enzyme E1 complements the repair deficiency in macrophage extracts, and although there is no reduction in the concentration of E1 upon differentiation, our results indicate a reduction in phosphorylation of E1. In preliminary studies, we have identified the basal transcription factor TFIIH as the potential target for ubiquitination. We suggest that this unusual type of regulation at the level of the E1 enzyme is likely to affect numerous cellular processes and may represent a strategy to coordinate multiple phenotypic changes upon differentiation by using E1 as a "master switch."
Collapse
Affiliation(s)
- Thierry Nouspikel
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020
| | - Philip C. Hanawalt
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020
| |
Collapse
|
29
|
Nouspikel T. DNA repair in differentiated cells: some new answers to old questions. Neuroscience 2006; 145:1213-21. [PMID: 16920273 DOI: 10.1016/j.neuroscience.2006.07.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 07/04/2006] [Accepted: 07/09/2006] [Indexed: 12/22/2022]
Abstract
Terminally differentiated cells need never replicate their genomes and may therefore dispense with the daunting task of maintaining several repair systems to constantly scan their entire complement of DNA. Obviously, transcribed genes need to be repaired, so that cells can carry out their specialized functions, but dedicated mechanisms such as transcription-coupled repair and differentiation-associated repair can ensure the maintenance of those transcriptionally active domains. Many groups have studied DNA repair in differentiated cells, often with divergent results, possibly because there are distinct classes of differentiated cells, with unique properties. Thus neurons ought to last for a lifetime, whereas myocytes are backed by precursor cells, while white blood cells like macrophages are constantly being replaced. More importantly, different DNA repair systems can vary in their response to cellular differentiation, possibly depending on whether they can be coupled to transcription. Nucleotide excision repair (NER) is probably the most versatile DNA repair system and is coupled to transcription. NER was shown to be attenuated by differentiation in several cell types, including neurons. The attenuation occurs only at the global genome level, with transcribed genes still being efficiently repaired. We have determined that this attenuation results from the lack of ubiquitination of a NER factor, most likely owing to differences in phosphorylation of the ubiquitin-activating enzyme E1. Because there is only one E1 in human cells, it is likely that other metabolic pathways are similarly affected, depending on whether they rely on an E2 enzyme which is sensitive to the state of E1 phosphorylation.
Collapse
Affiliation(s)
- T Nouspikel
- Institute for Cancer Studies, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| |
Collapse
|
30
|
Moorthy AK, Savinova OV, Ho JQ, Wang VYF, Vu D, Ghosh G. The 20S proteasome processes NF-kappaB1 p105 into p50 in a translation-independent manner. EMBO J 2006; 25:1945-56. [PMID: 16619030 PMCID: PMC1456938 DOI: 10.1038/sj.emboj.7601081] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 03/15/2006] [Indexed: 11/09/2022] Open
Abstract
The NF-kappaB p50 is the N-terminal processed product of the precursor, p105. It has been suggested that p50 is generated not from full-length p105 but cotranslationally from incompletely synthesized molecules by the proteasome. We show that the 20S proteasome endoproteolytically cleaves the fully synthesized p105 and selectively degrades the C-terminus of p105, leading to p50 generation in a ubiquitin-independent manner. As small as 25 residues C-terminus to the site of processing are sufficient to promote processing in vivo. However, any p105 mutant that lacks complete ankyrin repeat domain (ARD) is processed aberrantly, suggesting that native processing must occur from a precursor, which extends beyond the ARD. Remarkably, the mutant p105 that lacks the internal region including the glycine-rich region (GRR) is completely degraded by 20S proteasome in vitro. This suggests that the GRR impedes the complete degradation of the p105 precursor, thus contributing to p50 generation.
Collapse
Affiliation(s)
- Anu K Moorthy
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, USA
| | - Olga V Savinova
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, USA
| | - Jessica Q Ho
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, USA
| | - Vivien Ya-Fan Wang
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, USA
| | - Don Vu
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0359, USA. Tel.: +1 858 822 0375; Fax: +1 858 822 1408; E-mail:
| |
Collapse
|
31
|
Xu J. Age-related changes in Usp9x protein expression and DNA methylation in mouse brain. ACTA ACUST UNITED AC 2005; 140:17-24. [PMID: 16023255 DOI: 10.1016/j.molbrainres.2005.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 06/13/2005] [Accepted: 06/15/2005] [Indexed: 01/24/2023]
Abstract
Usp9x, a ubiquitin-specific protease implicated in synaptic development, was found to be more abundant in adult as compared to newborn mouse brain tissue. The Usp9x gene was less methylated in adults than in newborns in both the promoter and the protein coding region. Compared with newborns, the adult mouse brain also had lower levels of Dnmt1, the enzyme responsible for maintaining DNA methylation state. These age-associated changes in DNA methylation and ubiquitin system protein concentrations potentially contribute to developmental changes in brain structure and function.
Collapse
Affiliation(s)
- Jun Xu
- Department of Physiological Science, University of California, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606, USA.
| |
Collapse
|
32
|
Wang QE, Wani MA, Chen J, Zhu Q, Wani G, El-Mahdy MA, Wani AA. Cellular ubiquitination and proteasomal functions positively modulate mammalian nucleotide excision repair. Mol Carcinog 2005; 42:53-64. [PMID: 15547920 DOI: 10.1002/mc.20065] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ubiquitin-proteasome pathway is fundamental to synchronized continuation of many cellular processes, for example, cell-cycle progression, stress response, and cell differentiation. Recent studies have shown that the ubiquitin-proteasome pathway functions in the regulation of nucleotide excision repair (NER) in yeast. In order to investigate the role of the ubiquitin-proteasome pathway in the NER of mammalian cells, global genomic repair (GGR), and transcription-coupled repair (TCR) were examined in a mouse ts20 cell line that harbors a temperature-sensitive ubiquitin-activating enzyme (E1). We found that E1 inactivation-induced ubiquitination deficiency decreased both GGR and TCR, indicating that the ubiquitination system is involved in the optimization of entire NER machinery in mammalian cells. We specifically inhibited the function of 19S proteasome subunit by overexpressing 19S regulatory complex hSug1 or its mutant protein hSug1mk in repair competent human fibroblast, OSU-2, cells and compared their capacity for NER. The results showed that 19S regulatory complex positively modulates NER in cells. In addition, we treated OSU-2 cells with the inhibitors of 20S subunit function, MG132 and lactacystin, and demonstrated that the catalytic activity of 20S subunit is also required for efficient NER. Moreover, the UV-induced recruitment of repair factor xeroderma pigmentosum protein C (XPC) to damage sites was negatively affected by treatment of repair competent cells with MG132. Taken together, we conclude that the ubiquitin-proteasome pathway has a positive regulatory role for optimal NER capacity in mammalian cells and appears to act through facilitating the recruitment of repair factors to DNA damage sites.
Collapse
Affiliation(s)
- Qi-En Wang
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Fajerman I, Schwartz AL, Ciechanover A. Degradation of the Id2 developmental regulator: targeting via N-terminal ubiquitination. Biochem Biophys Res Commun 2004; 314:505-12. [PMID: 14733935 DOI: 10.1016/j.bbrc.2003.12.116] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Degradation of cellular proteins via the ubiquitin-proteasome system (UPS) involves: (i) generation of a substrate-anchored polyubiquitin degradation signal and (ii) destruction of the tagged protein by the 26S proteasome with release of free and reusable ubiquitin. For most substrates, it is believed that the first ubiquitin moiety is conjugated to a epsilon-NH(2) group of an internal Lys residue. Recent findings indicate that for several proteins, the first ubiquitin moiety is fused, in a linear manner, to the free alpha-NH(2) group of the protein. Here, we demonstrate that the inhibitor of differentiation (or inhibitor of DNA binding) 2, Id2, that downregulates gene expression in undifferentiated and self-renewing cells, is degraded by the UPS following ubiquitination at its N-terminal residue. Lysine-less (LL) Id2 is degraded efficiently by the proteasome following ubiquitination. Fusion of a Myc tag to the N-terminal but not to the C-terminal residue of Id2 stabilizes the protein. Furthermore, deletion of the first 15 N-terminal residues of Id2 stabilizes the protein, suggesting that this domain serves as a recognition element, possibly for the ubiquitin ligase, E3. The mechanisms and structural motives that govern Id2 stability may have important implications to the regulation of the protein during normal differentiation and malignant transformation.
Collapse
Affiliation(s)
- Ifat Fajerman
- Department of Biochemistry and the Rappaport Family Institute for Research in the Medical Sciences, the Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | | | | |
Collapse
|
34
|
Moore SC, Jason L, Ausió J. The elusive structural role of ubiquitinated histones. Biochem Cell Biol 2003; 80:311-9. [PMID: 12123284 DOI: 10.1139/o02-081] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is increasingly apparent that histone posttranslational modifications are important in chromatin structure and dynamics. However, histone ubiquitination has received little attention. Histones H1, H3, H2A, and H2B can be ubiquitinated in vivo, but the most prevalent are uH2A and uH2B. The size of this modification suggests some sort of structural impact. Physiological observations suggest that ubiquitinated histones may have multiple functions and structural effects. Ubiquitinated histones have been correlated with transcriptionally active DNA, implying that it may prevent chromatin folding or help maintain an open conformation. Also, in some organisms during spermiogenesis, a process involving extensive chromatin remodeling, uH2A levels increase just prior to histone replacement by protamines. Determination of chromatin's structural changes resulting from histone ubiquitination is therefore important. Recent work using reconstituted nucleosomes and chromatin fibers containing uH2A indicate that in the absence of linker histones, ubiquitination has little structural impact. DNase I digests and analytical ultracentrifugation of reconstituted ubiquitinated nucleosomes show no structural differences. Solubility assays using reconstituted chromatin fibers in the presence of divalent ions demonstrate that uH2A fibers are slightly more prone to aggregation than controls, and analytical ultracentrifugation results with different MgCl2 and NaCl concentrations determined that chromatin folding is not affected by this modification. Additional work to assess possible synergistic affects with histone acetylation also precludes any structural implications. Protamine displacement experiments concluded that the presence of uH2A does not significantly affect the ability of the protamines to displace histones. In addition, uH2A does not interfere with histone H1 binding to the nucleosome. While work with uH2B remains insufficient to come to any definitive conclusions about its structural impact, current work with uH-2A indicates that, contrary to predictions, this histone modification does not affect either nucleosome or chromatin structure. Consequently, the search for a structural role for ubiquitinated histones continues and their effect on and importance in chromatin dynamics remains elusive.
Collapse
Affiliation(s)
- Susan C Moore
- Department of Biochemistry and Microbiology, University of Victoria, BC, Canada
| | | | | |
Collapse
|
35
|
Acquaviva C, Bossis G, Ferrara P, Brockly F, Jariel-Encontre I, Piechaczyk M. Evasion from proteasomal degradation by mutated Fos proteins expressed from FBJ-MSV and FBR-MSV osteosarcomatogenic retroviruses. Biochem Pharmacol 2002; 64:957-61. [PMID: 12213592 DOI: 10.1016/s0006-2952(02)01159-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
c-Fos proto-oncoprotein is highly unstable, which is crucial for rapid gene expression shut-off and control of its intrinsic oncogenic potential. It is massively degraded by the proteasome in vivo in various situations. Although there is evidence that c-Fos can be ubiquitinylated in vitro, the unambiguous demonstration that ubiquitinylation is necessary for recognition and subsequent hydrolysis by the proteasome in vivo is still lacking. Moreover, genetic analysis have also indicated that c-Fos can be addressed to the proteasome via different mechanisms depending on the conditions studied. c-Fos has been transduced by two murine osteosarcomatogenic retroviruses under mutated forms which are more stable and more oncogenic. The stabilization is not simply accounted for by simple deletion of a C-terminal c-Fos destabilizer but, rather, by a complex balance between opposing destabilizing and stabilizing mutations. Though mutations in viral Fos proteins confer full resistance to proteasomal degradation, stabilization is limited because mutations also entail sensitivity to (an) unidentified proteolytic system(s). This observation is consistent with the idea that Fos-expressing viruses have evolved gene expression controls that avoid high protein accumulation-linked apoptosis.
Collapse
Affiliation(s)
- Claire Acquaviva
- Institut de Génétique Moléculaire de Montpellier, UMR5535/IFR24, 1919, route de Mende, Montpellier, France
| | | | | | | | | | | |
Collapse
|
36
|
Acquaviva C, Brockly F, Ferrara P, Bossis G, Salvat C, Jariel-Encontre I, Piechaczyk M. Identification of a C-terminal tripeptide motif involved in the control of rapid proteasomal degradation of c-Fos proto-oncoprotein during the G(0)-to-S phase transition. Oncogene 2001; 20:7563-72. [PMID: 11709728 DOI: 10.1038/sj.onc.1204880] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2001] [Revised: 07/25/2001] [Accepted: 08/01/2001] [Indexed: 11/09/2022]
Abstract
c-Fos proto-oncoprotein is rapidly and transiently expressed in cells undergoing the G(0)-to-S phase transition in response to stimulation for growth by serum. Under these conditions, the rapid decay of the protein occurring after induction is accounted for by efficient recognition and degradation by the proteasome. PEST motifs are sequences rich in Pro, Glu, Asp, Ser and Thr which have been proposed to constitute protein instability determinants. c-Fos contains three such motifs, one of which comprises the C-terminal 20 amino acids and has already been proposed to be the major determinant of c-Fos instability. Using site-directed mutagenesis and an expression system reproducing c-fos gene transient expression in transfected cells, we have analysed the turnover of c-Fos mutants deleted of the various PEST sequences in synchronized mouse embryo fibroblasts. Our data showed no role for the two internal PEST motifs in c-Fos instability. However, deletion of the C-terminal PEST region led to only a twofold stabilization of the protein. Taken together, these data indicate that c-Fos instability during the G0-to-S phase transition is governed by a major non-PEST destabilizer and a C-terminal degradation-accelerating element. Further dissection of c-Fos C-terminal region showed that the degradation-accelerating effect is not contributed by the whole PEST sequence but by a short PTL tripeptide which cannot be considered as a PEST motif and which can act in the absence of any PEST environment. Interestingly, the PTL motif is conserved in other members of the fos multigene family. Nevertheless, its contribution to protein instability is restricted to c-Fos suggesting that the mechanisms whereby the various Fos proteins are broken down are, at least partially, different. MAP kinases-mediated phosphorylation of two serines close to PTL, which are both phosphorylated all over the G(0)-to-S phase transition, have been proposed by others to stabilize c-Fos protein significantly. We, however, showed that the PTL motif does not exert its effect by counteracting a stabilizing effect of these phosphorylations under our experimental conditions.
Collapse
Affiliation(s)
- C Acquaviva
- Institute of Molecular Genetics, UMR5535/IFR24, CNRS, 1919, route de Mende, 34293-Montpellier Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Acquaviva C, Ferrara P, Bossis G, Brockly F, Salvat C, Jariel-Encontre I, Piechaczyk M. Degradation of cellular and viral Fos proteins. Biochimie 2001; 83:357-62. [PMID: 11295497 DOI: 10.1016/s0300-9084(01)01243-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
c-Fos proto-oncoprotein is a short-lived transcription factor with oncogenic potential. We have shown that it is massively degraded by the proteasome in vivo under various experimental conditions. Other proteolytic systems including lysosomes and calpains, might, however, also marginally operate on it. Although there is evidence that c-Fos can be ubiquitinylated in vitro, the unambiguous demonstration that ubiquitinylation is necessary for its addressing to the proteasome in vivo is still lacking. c-Jun, one of the main dimerization partners of c-Fos within the AP-1 transcription complex, is also an unstable protein. Its degradation is clearly proteasome- and ubiquitin-dependent in vivo. Interestingly, several lines of evidence indicate that the addressing of c-Fos and c-Jun to the proteasome is, at least in part, governed by different mechanisms. c-Fos has been transduced by two murine osteosarcomatogenic retroviruses under mutated forms which are more stable and more oncogenic. The stabilization is not simply accounted for by simple deletion of c-Fos main destabilizer but, rather, by a complex balance between opposing destabilizing and stabilizing mutations. Though mutations in viral Fos proteins confer full resistance to proteasomal degradation, stabilization is limited because mutations also entail sensitivity to an unidentified proteolytic system. This observation is consistent with the idea that Fos-expressing viruses have evolved to ensure control protein levels to avoid high protein accumulation-linked apoptosis. In conclusion, the unveiling of the complex mechanism network responsible for the degradation of AP-1 family members is still at its beginning and a number of issues regarding the regulation of this process and the addressing to the proteasome are still unresolved.
Collapse
Affiliation(s)
- C Acquaviva
- Institut de Génétique Moléculaire de Montpellier, UMR5535/IFR24, 1919, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Acquaviva C, Salvat C, Brockly F, Bossis G, Ferrara P, Piechaczyk M, Jariel-Encontre I. Cellular and viral Fos proteins are degraded by different proteolytic systems. Oncogene 2001; 20:942-50. [PMID: 11314029 DOI: 10.1038/sj.onc.1204155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2000] [Revised: 11/24/2000] [Accepted: 12/07/2000] [Indexed: 01/23/2023]
Abstract
c-Fos proto-oncoprotein is a short-lived transcription factor degraded by the proteasome in vivo. Its mutated forms expressed by the mouse osteosarcomatogenic retroviruses, FBJ-MSV and FBR-MSV, are stabilized two- and threefold, respectively. To elucidate the mechanisms underlying v-Fos(FBJ) and v-Fos(FBR) protein stabilization, we conducted a genetic analysis in which the half-lives and the sensitivities to various cell-permeable protease inhibitors of a variety of cellular and viral protein mutants were measured. Our data showed that the decreased degradation of v-Fos(FBJ) and v-Fos(FBR) is not simply explained by the deletion of a c-Fos destabilizing C-terminal domain. Rather, it involves a complex balance between opposing destabilizing and stabilizing mutations which are distinct and which include virally-introduced peptide motifs in both cases. The mutations in viral Fos proteins conferred both total insensitivity to proteasomal degradation and sensitivity to another proteolytic system not naturally operating on c-Fos, explaining the limited stabilization of the two proteins. This observation is consistent with the idea that FBR-MSV and FBJ-MSV expression machineries have evolved to ensure controlled protein levels. Importantly, our data illustrate that the degradation of unstable proteins does not necessarily involve the proteasome and provide support to the notion that highly related proteins can be broken down by different proteolytic systems in living cells.
Collapse
Affiliation(s)
- C Acquaviva
- Institut de Génétique Moléculaire/UMR5535 /IFR24, CNRS, 1919, route de Mende, 34293-Montpellier Cedex 05-France
| | | | | | | | | | | | | |
Collapse
|