1
|
Gharios R, Francis RM, DeForest CA. Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials. MATTER 2023; 6:4195-4244. [PMID: 38313360 PMCID: PMC10836217 DOI: 10.1016/j.matt.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ryan M. Francis
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
2
|
Balke J, Díaz Gutiérrez P, Rafaluk-Mohr T, Proksch J, Koksch B, Alexiev U. Osmolytes Modulate Photoactivation of Phytochrome: Probing Protein Hydration. Molecules 2023; 28:6121. [PMID: 37630372 PMCID: PMC10457786 DOI: 10.3390/molecules28166121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Phytochromes are bistable red/far-red light-responsive photoreceptor proteins found in plants, fungi, and bacteria. Light-activation of the prototypical phytochrome Cph1 from the cyanobacterium Synechocystis sp. PCC 6803 allows photoisomerization of the bilin chromophore in the photosensory module and a subsequent series of intermediate states leading from the red absorbing Pr to the far-red-absorbing Pfr state. We show here via osmotic and hydrostatic pressure-based measurements that hydration of the photoreceptor modulates the photoconversion kinetics in a controlled manner. While small osmolytes like sucrose accelerate Pfr formation, large polymer osmolytes like PEG 4000 delay the formation of Pfr. Thus, we hypothesize that an influx of mobile water into the photosensory domain is necessary for proceeding to the Pfr state. We suggest that protein hydration changes are a molecular event that occurs during photoconversion to Pfr, in addition to light activation, ultrafast electric field changes, photoisomerization, proton release and uptake, and the major conformational change leading to signal transmission, or simultaneously with one of these events. Moreover, we discuss this finding in light of the use of Cph1-PGP as a hydration sensor, e.g., for the characterization of novel hydrogel biomaterials.
Collapse
Affiliation(s)
- Jens Balke
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Paula Díaz Gutiérrez
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Timm Rafaluk-Mohr
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jonas Proksch
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry–Organic Chemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany; (J.P.); (B.K.)
| | - Beate Koksch
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry–Organic Chemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany; (J.P.); (B.K.)
| | - Ulrike Alexiev
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
3
|
Sadeghi M, Balke J, Rafaluk-Mohr T, Alexiev U. Long-Distance Protonation-Conformation Coupling in Phytochrome Species. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238395. [PMID: 36500486 PMCID: PMC9737838 DOI: 10.3390/molecules27238395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
Phytochromes are biological red/far-red light sensors found in many organisms. The connection between photoconversion and the cellular output signal involves light-mediated global structural changes in the interaction between the photosensory module (PAS-GAF-PHY, PGP) and the C-terminal transmitter (output) module. We recently showed a direct correlation of chromophore deprotonation with pH-dependent conformational changes in the various domains of the prototypical phytochrome Cph1 PGP. These results suggested that the transient phycocyanobilin (PCB) chromophore deprotonation is closely associated with a higher protein mobility both in proximal and distal protein sites, implying a causal relationship that might be important for the global large-scale protein rearrangements. Here, we investigate the prototypical biliverdin (BV)-binding phytochrome Agp1. The structural changes at various positions in Agp1 PGP were investigated as a function of pH using picosecond time-resolved fluorescence anisotropy and site-directed fluorescence labeling of cysteine variants of Agp1 PGP. We show that the direct correlation of chromophore deprotonation with pH-dependent conformational changes does not occur in Agp1. Together with the absence of long-range effects between the PHY domain and chromophore pKa, in contrast to the findings in Cph1, our results imply phytochrome species-specific correlations between transient chromophore deprotonation and intramolecular signal transduction.
Collapse
|
4
|
Garzella F, Bianchini P, Diaspro A, Losi A, Gärtner W, Abbruzzetti S, Viappiani C. A red-green photochromic bacterial protein as a new contrast agent for improved photoacoustic imaging. PHOTOACOUSTICS 2022; 26:100358. [PMID: 35656384 PMCID: PMC9152790 DOI: 10.1016/j.pacs.2022.100358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The GAF3 domain of the cyanobacteriochrome Slr1393 from Synechocystis sp. PCC6803, binding phycocyanobilin as a chromophore, shows photochromicity between two stable, green- and red-absorbing states, characterized by relatively high photoconversion yields. Using nanosecond-pulsed excitation by red or green light, respectively, and suitable cw photoconversion beams, we demonstrate that the light-modulatable photoacoustic waveforms arising from GAF3 can be easily distinguished from background signals originating from non-modulatable competitive absorbers and scattering media. It is demonstrated that this effect can be exploited to identify the position of the photochromic molecule by using as a phantom a cylindrical capillary tube filled with either a GAF3 solution or with an E.coli suspension overexpressing GAF3. These properties identify the high potential of GAF3 to be included in the palette of genetically encoded photochromic probes for photoacoustic imaging.
Collapse
Affiliation(s)
- Francesco Garzella
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
- Nanoscopy @ Istituto Italiano di Tecnologia, Genova, Italy
| | - Paolo Bianchini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
- Nanoscopy @ Istituto Italiano di Tecnologia, Genova, Italy
- DIFILAB, Dipartimento di Fisica, Università di Genova, Genova, Italy
| | - Alberto Diaspro
- Nanoscopy @ Istituto Italiano di Tecnologia, Genova, Italy
- DIFILAB, Dipartimento di Fisica, Università di Genova, Genova, Italy
| | - Aba Losi
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
| | - Wolfgang Gärtner
- Institut für Analytische Chemie - Universität Leipzig, Leipzig, Germany
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
| |
Collapse
|
5
|
Lamparter T, Babian J, Fröhlich K, Mielke M, Weber N, Wunsch N, Zais F, Schulz K, Aschmann V, Spohrer N, Krauß N. The involvement of type IV pili and the phytochrome CphA in gliding motility, lateral motility and photophobotaxis of the cyanobacterium Phormidium lacuna. PLoS One 2022; 17:e0249509. [PMID: 35085243 PMCID: PMC8794177 DOI: 10.1371/journal.pone.0249509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/25/2021] [Indexed: 11/29/2022] Open
Abstract
Phormidium lacuna is a naturally competent, filamentous cyanobacterium that belongs to the order Oscillatoriales. The filaments are motile on agar and other surfaces and display rapid lateral movements in liquid culture. Furthermore, they exhibit a photophobotactic response, a phototactic response towards light that is projected vertically onto the area covered by the culture. However, the molecular mechanisms underlying these phenomena are unclear. We performed the first molecular studies on the motility of an Oscillatoriales member. We generated mutants in which a kanamycin resistance cassette (KanR) was integrated in the phytochrome gene cphA and in various genes of the type IV pilin apparatus. pilM, pilN, pilQ and pilT mutants were defective in gliding motility, lateral movements and photophobotaxis, indicating that type IV pili are involved in all three kinds of motility. pilB mutants were only partially blocked in terms of their responses. pilB is the proposed ATPase for expelling of the filament in type IV pili. The genome reveals proteins sharing weak pilB homology in the ATPase region, these might explain the incomplete phenotype. The cphA mutant revealed a significantly reduced photophobotactic response towards red light. Therefore, our results imply that CphA acts as one of several photophobotaxis photoreceptors or that it could modulate the photophobotaxis response.
Collapse
Affiliation(s)
- Tilman Lamparter
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
- * E-mail:
| | - Jennifer Babian
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Katrin Fröhlich
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Marion Mielke
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nora Weber
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nadja Wunsch
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Finn Zais
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Kevin Schulz
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Vera Aschmann
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nina Spohrer
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| |
Collapse
|
6
|
Multamäki E, Nanekar R, Morozov D, Lievonen T, Golonka D, Wahlgren WY, Stucki-Buchli B, Rossi J, Hytönen VP, Westenhoff S, Ihalainen JA, Möglich A, Takala H. Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling. Nat Commun 2021; 12:4394. [PMID: 34285211 PMCID: PMC8292422 DOI: 10.1038/s41467-021-24676-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics.
Collapse
Affiliation(s)
- Elina Multamäki
- grid.7737.40000 0004 0410 2071Faculty of Medicine, Anatomy, University of Helsinki, Helsinki, Finland
| | - Rahul Nanekar
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Dmitry Morozov
- grid.9681.60000 0001 1013 7965Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Topias Lievonen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - David Golonka
- grid.7384.80000 0004 0467 6972Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Weixiao Yuan Wahlgren
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Brigitte Stucki-Buchli
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jari Rossi
- grid.7737.40000 0004 0410 2071Faculty of Medicine, Anatomy, University of Helsinki, Helsinki, Finland
| | - Vesa P. Hytönen
- grid.502801.e0000 0001 2314 6254Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland ,grid.511163.10000 0004 0518 4910Fimlab Laboratories, Tampere, Finland
| | - Sebastian Westenhoff
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Janne A. Ihalainen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Andreas Möglich
- grid.7384.80000 0004 0467 6972Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Heikki Takala
- grid.7737.40000 0004 0410 2071Faculty of Medicine, Anatomy, University of Helsinki, Helsinki, Finland ,grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
7
|
Takala H, Edlund P, Ihalainen JA, Westenhoff S. Tips and turns of bacteriophytochrome photoactivation. Photochem Photobiol Sci 2021; 19:1488-1510. [PMID: 33107538 DOI: 10.1039/d0pp00117a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland. and Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland.
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
8
|
Kamo T, Eki T, Hirose Y. Pressurized Liquid Extraction of a Phycocyanobilin Chromophore and Its Reconstitution with a Cyanobacteriochrome Photosensor for Efficient Isotopic Labeling. PLANT & CELL PHYSIOLOGY 2021; 62:334-347. [PMID: 33386854 PMCID: PMC8112840 DOI: 10.1093/pcp/pcaa164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Linear tetrapyrrole compounds (bilins) are chromophores of the phytochrome and cyanobacteriochrome classes of photosensors and light-harvesting phycobiliproteins. Various spectroscopic techniques, such as resonance Raman, Fourier transform-infrared and nuclear magnetic resonance, have been used to elucidate the structures underlying their remarkable spectral diversity, in which the signals are experimentally assigned to specific structures using isotopically labeled bilin. However, current methods for isotopic labeling of bilins require specialized expertise, time-consuming procedures and/or expensive reagents. To address these shortcomings, we established a method for pressurized liquid extraction of phycocyanobilin (PCB) from the phycobiliprotein powder Lina Blue and also the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). PCB was efficiently cleaved in ethanol with three extractions (5 min each) under nitrogen at 125�C and 100 bars. A prewash at 75�C was effective for removing cellular pigments of Synechocystis without PCB cleavage. Liquid chromatography and mass spectrometry suggested that PCB was cleaved in the C3-E (majority) and C3-Z (partial) configurations. 15N- and 13C/15N-labeled PCBs were prepared from Synechocystis cells grown with NaH13CO3 and/or Na15NO3, the concentrations of which were optimized based on cell growth and pigmentation. Extracted PCB was reconstituted with a recombinant apoprotein of the cyanobacteriochrome-class photosensor RcaE. Yield of the photoactive holoprotein was improved by optimization of the expression conditions and cell disruption in the presence of Tween 20. Our method can be applied for the isotopic labeling of other PCB-binding proteins and for the commercial production of non-labeled PCB for food, cosmetic and medical applications.
Collapse
Affiliation(s)
- Takanari Kamo
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| |
Collapse
|
9
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light‐Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2020; 96:750-767. [DOI: https:/doi.org/10.1111/php.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2023]
Abstract
AbstractThe evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain — bilins and cyclic — chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions—light‐harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D‐ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D. Bekasova
- Bach Institute of Biochemistry Fundamentals of Biotechnology Federal Research Centre Russian Academy of Sciences Moscow Russia
| |
Collapse
|
10
|
Velazquez Escobar F, Kneip C, Michael N, Hildebrandt T, Tavraz N, Gärtner W, Hughes J, Friedrich T, Scheerer P, Mroginski MA, Hildebrandt P. The Lumi-R Intermediates of Prototypical Phytochromes. J Phys Chem B 2020; 124:4044-4055. [PMID: 32330037 DOI: 10.1021/acs.jpcb.0c01059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phytochromes are photoreceptors that upon light absorption initiate a physiological reaction cascade. The starting point is the photoisomerization of the tetrapyrrole cofactor in the parent Pr state, followed by thermal relaxation steps culminating in activation of the physiological signal. Here we have employed resonance Raman (RR) spectroscopy to study the chromophore structure in the primary photoproduct Lumi-R, trapped between 130 and 200 K. The investigations covered phytochromes from plants (phyA) and prokaryotes (Cph1, Agp1, CphB, and RpBphP2) including phytochromobilin (PΦB), phycocyanobilin (PCB), and biliverdin (BV). In PΦB- and PCB-binding phyA and Cph1, two Lumi-R states (Lumi-R1, Lumi-R2) were identified and discussed in terms of sequential and parallel reaction models. In Lumi-R1, the chromophore structural changes are restricted to the C-D methine bridge isomerization site but extended throughout the chromophore in Lumi-R2. Formation and decay kinetics as well as photochemical activity depend on the specific protein-chromophore interactions and thus account for the different distribution between Lumi-R1 and Lumi-R2 in the photostationary mixtures of the various PΦB(PCB)-binding phytochromes. For BV-binding bacteriophytochromes, only a single Lumi-R(BV) state was found. In this state, which is similar for Agp1, CphB, and RpBphP2, the chromophore structural changes comprise major torsions of the C-D methine bridge but also perturbations at the A-B methine bridge remote from the isomerization site. The different structures of the photoproducts in PΦB(PCB)-binding phytochromes and BV-binding bacteriophytochromes are attributed to the different disposition of ring D upon isomerization, which leads to distinct protein-chromophore interactions in the Lumi-R states of these two classes of phytochromes.
Collapse
Affiliation(s)
- Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Christa Kneip
- Grünenthal GmbH, Zieglerstraße 6, D-52078 Aachen, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Thomas Hildebrandt
- Universitätsklinikum Düsseldorf, Klinik für Neurologie, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Neslihan Tavraz
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Wolfgang Gärtner
- Universität Leipzig, Institut für Analytische Chemie, Linnéstr. 3, D-04103 Leipzig, Germany
| | - Jon Hughes
- Plant Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
11
|
Sadeghi M, Balke J, Schneider C, Nagano S, Stellmacher J, Lochnit G, Lang C, Weise C, Hughes J, Alexiev U. Transient Deprotonation of the Chromophore Affects Protein Dynamics Proximal and Distal to the Linear Tetrapyrrole Chromophore in Phytochrome Cph1. Biochemistry 2020; 59:1051-1062. [PMID: 32069394 DOI: 10.1021/acs.biochem.9b00967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phytochromes are biological red/far-red light sensors found in many organisms. Prototypical phytochromes, including Cph1 from the cyanobacterium Synechocystis 6803, act as photochemical switches that interconvert between stable red (Pr)- and metastable far-red (Pfr)-absorbing states induced by photoisomerization of the bilin chromophore. The connection between photoconversion and the cellular output signal involves light-mediated global structural changes in the interaction between the photosensory module (PAS-GAF-PHY) and the C-terminal transmitter (output) module, usually a histidine kinase, as in the case of Cph1. The chromophore deprotonates transiently during the Pr → Pfr photoconversion in association with extensive global structural changes required for signal transmission. Here, we performed equilibrium studies in the Pr state, involving pH titration of the linear tetrapyrrole chromophore in different Cph1 constructs, and measurement of pH-dependent structural changes at various positions in the protein using picosecond time-resolved fluorescence anisotropy. The fluorescent reporter group was attached at positions 371 (PHY domain), 305 (GAF domain), and 120 (PAS domain), as well as at sites in the PAS-GAF bidomain. We show direct correlation of chromophore deprotonation with pH-dependent conformational changes in the various domains. Our results suggest that chromophore deprotonation is closely associated with a higher protein mobility (conformational space) both in proximal and in distal protein sites, implying a causal relationship that might be important for the global large protein arrangements and thus intramolecular signal transduction.
Collapse
Affiliation(s)
- Maryam Sadeghi
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Jens Balke
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Constantin Schneider
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Soshichiro Nagano
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Johannes Stellmacher
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Günter Lochnit
- Justus-Liebig-Universität, Institut für Medizinische Biochemie, D-35390 Giessen, Germany
| | - Christina Lang
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Chris Weise
- Freie Universität Berlin, Institut für Chemie und Biochemie, D-14195 Berlin, Germany
| | - Jon Hughes
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Ulrike Alexiev
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| |
Collapse
|
12
|
Battocchio G, González R, Rao AG, Schapiro I, Mroginski MA. Dynamic Properties of the Photosensory Domain of Deinococcus radiodurans Bacteriophytochrome. J Phys Chem B 2020; 124:1740-1750. [PMID: 31999119 DOI: 10.1021/acs.jpcb.0c00612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phytochromes are biological photoreceptors found in all kingdoms of life. Numerous physicochemical and spectroscopic studies of phytochromes have been carried out for many decades, both experimentally and computationally, with the main focus on the photoconversion mechanism involving a tetrapyrrole chromophore. In this computational work, we concentrate on the long-scale dynamic motion of the photosensory domain of Deinococcus radiodurans by means of classical all-atom molecular dynamics (MD) simulations. Conventional and accelerated MD methods in combination with two different force fields, CHARMM27 and AMBER ff14SB, are tested in long atomistic simulations to confront the dynamics of monomer and dimer forms. These calculations highlight dissimilar equilibrium conformations in aqueous solutions and, in turn, different large-scale dynamic behaviors of the monomer form vs the dimer form. While the phytochrome in a monomer form tends to close the cavity entailed between the GAF and PHY domains, the opposite trend is predicted for the phytochrome dimer, which opens up as a consequence of the formation of strong salt bridges between the PHY domains of two molecules in water.
Collapse
Affiliation(s)
- Giovanni Battocchio
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Ronald González
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Aditya G Rao
- Fritz Haber Center for Molecular Dynamics Research Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
13
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light-Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2019; 96:750-767. [PMID: 31869438 DOI: 10.1111/php.13197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 01/29/2023]
Abstract
The evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain - bilins and cyclic - chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions-light-harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D-ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D Bekasova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Centre, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors. Commun Biol 2019; 2:448. [PMID: 31815202 PMCID: PMC6888877 DOI: 10.1038/s42003-019-0687-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/07/2019] [Indexed: 01/30/2023] Open
Abstract
Phytochrome photoreceptors mediate adaptive responses of plants to red and far-red light. These responses generally entail light-regulated association between phytochromes and other proteins, among them the phytochrome-interacting factors (PIF). The interaction with Arabidopsis thaliana phytochrome B (AtPhyB) localizes to the bipartite APB motif of the A. thaliana PIFs (AtPIF). To address a dearth of quantitative interaction data, we construct and analyze numerous AtPIF3/6 variants. Red-light-activated binding is predominantly mediated by the APB N-terminus, whereas the C-terminus modulates binding and underlies the differential affinity of AtPIF3 and AtPIF6. We identify AtPIF variants of reduced size, monomeric or homodimeric state, and with AtPhyB affinities between 10 and 700 nM. Optogenetically deployed in mammalian cells, the AtPIF variants drive light-regulated gene expression and membrane recruitment, in certain cases reducing basal activity and enhancing regulatory response. Moreover, our results provide hitherto unavailable quantitative insight into the AtPhyB:AtPIF interaction underpinning vital light-dependent responses in plants. David Golonka et al. report the epitopes in Arabidopsis phytochrome-interacting factors (PIF) that underlie light-dependent interactions with phytochrome B. They identify compact PIF variants that enable light-activated gene expression and membrane recruitment with reduced basal activity and enhanced regulatory response.
Collapse
|
15
|
Bizimana LA, Epstein J, Turner DB. Inertial water response dominates protein solvation dynamics. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.04.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Sentürk OI, Chervyachkova E, Ji Y, Wegner SV. Independent Blue and Red Light Triggered Narcissistic Self-Sorting Self-Assembly of Colloidal Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901801. [PMID: 31111634 DOI: 10.1002/smll.201901801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/07/2019] [Indexed: 06/09/2023]
Abstract
The ability of living systems to self-sort different cells into separate assemblies and the ability to independently regulate different structures are one ingredient that gives rise to their spatiotemporal complexity. Here, this self-sorting behavior is replicated in a synthetic system with two types of colloidal particles; where each particle type independently self-assembles either under blue or red light into distinct clusters, known as narcissistic self-sorting. For this purpose, each particle type is functionalized either with the light-switchable protein VVDHigh or Cph1, which homodimerize under blue and red light, respectively. The response to different wavelengths of light and the high specificity of the protein interactions allows for the independent self-assembly of each particle type with blue or red light and narcissistic self-sorting. Moreover, as both of the photoswitchable protein interactions are reversible in the dark; also, the self-sorting is reversible and dynamic. Overall, the independent blue and red light controlled self-sorting in a synthetic system opens new possibilities to assemble adaptable, smart, and advanced materials similar to the complexity observed in tissues.
Collapse
Affiliation(s)
- Oya Ilke Sentürk
- Max Planck Institute of Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| | | | - Yuhao Ji
- Max Planck Institute of Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| | - Seraphine V Wegner
- Max Planck Institute of Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
17
|
Takeda K, Terazima M. Dynamics of Conformational Changes in Full-Length Phytochrome from Cyanobacterium Synechocystis sp. PCC6803 (Cph1) Monitored by Time-Resolved Translational Diffusion Detection. Biochemistry 2019; 58:2720-2729. [DOI: 10.1021/acs.biochem.9b00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kimitoshi Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
18
|
Velazquez Escobar F, Lang C, Takiden A, Schneider C, Balke J, Hughes J, Alexiev U, Hildebrandt P, Mroginski MA. Protonation-Dependent Structural Heterogeneity in the Chromophore Binding Site of Cyanobacterial Phytochrome Cph1. J Phys Chem B 2016; 121:47-57. [DOI: 10.1021/acs.jpcb.6b09600] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francisco Velazquez Escobar
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Christina Lang
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Aref Takiden
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Constantin Schneider
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jens Balke
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jon Hughes
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Ulrike Alexiev
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
19
|
Abstract
Photoreceptors are found in all kingdoms of life and mediate crucial responses to environmental challenges. Nature has evolved various types of photoresponsive protein structures with different chromophores and signaling concepts for their given purpose. The abundance of these signaling proteins as found nowadays by (meta-)genomic screens enriched the palette of optogenetic tools significantly. In addition, molecular insights into signal transduction mechanisms and design principles from biophysical studies and from structural and mechanistic comparison of homologous proteins opened seemingly unlimited possibilities for customizing the naturally occurring proteins for a given optogenetic task. Here, a brief overview on the photoreceptor concepts already established as optogenetic tools in natural or engineered form, their photochemistry and their signaling/design principles is given. Finally, so far not regarded photosensitive modules and protein architectures with potential for optogenetic application are described.
Collapse
|
20
|
Chau RMW, Ursell T, Wang S, Huang KC, Bhaya D. Maintenance of motility bias during cyanobacterial phototaxis. Biophys J 2016; 108:1623-1632. [PMID: 25863054 DOI: 10.1016/j.bpj.2015.01.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/23/2014] [Accepted: 01/02/2015] [Indexed: 11/20/2022] Open
Abstract
Signal transduction in bacteria is complex, ranging across scales from molecular signal detectors and effectors to cellular and community responses to stimuli. The unicellular, photosynthetic cyanobacterium Synechocystis sp. PCC6803 transduces a light stimulus into directional movement known as phototaxis. This response occurs via a biased random walk toward or away from a directional light source, which is sensed by intracellular photoreceptors and mediated by Type IV pili. It is unknown how quickly cells can respond to changes in the presence or directionality of light, or how photoreceptors affect single-cell motility behavior. In this study, we use time-lapse microscopy coupled with quantitative single-cell tracking to investigate the timescale of the cellular response to various light conditions and to characterize the contribution of the photoreceptor TaxD1 (PixJ1) to phototaxis. We first demonstrate that a community of cells exhibits both spatial and population heterogeneity in its phototactic response. We then show that individual cells respond within minutes to changes in light conditions, and that movement directionality is conferred only by the current light directionality, rather than by a long-term memory of previous conditions. Our measurements indicate that motility bias likely results from the polarization of pilus activity, yielding variable levels of movement in different directions. Experiments with a photoreceptor (taxD1) mutant suggest a supplementary role of TaxD1 in enhancing movement directionality, in addition to its previously identified role in promoting positive phototaxis. Motivated by the behavior of the taxD1 mutant, we demonstrate using a reaction-diffusion model that diffusion anisotropy is sufficient to produce the observed changes in the pattern of collective motility. Taken together, our results establish that single-cell tracking can be used to determine the factors that affect motility bias, which can then be coupled with biophysical simulations to connect changes in motility behaviors at the cellular scale with group dynamics.
Collapse
Affiliation(s)
| | - Tristan Ursell
- Department of Bioengineering, Stanford University, Stanford, California
| | - Shuo Wang
- Department of Bioengineering, Stanford University, Stanford, California
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California.
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California.
| |
Collapse
|
21
|
Gottlieb SM, Kim PW, Chang CW, Hanke SJ, Hayer RJ, Rockwell NC, Martin SS, Lagarias JC, Larsen DS. Conservation and Diversity in the Primary Forward Photodynamics of Red/Green Cyanobacteriochromes. Biochemistry 2015; 54:1028-42. [DOI: 10.1021/bi5012755] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sean M. Gottlieb
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Peter W. Kim
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Che-Wei Chang
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Samuel J. Hanke
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Randeep J. Hayer
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Nathan C. Rockwell
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Shelley S. Martin
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - J. Clark Lagarias
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Delmar S. Larsen
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
22
|
Overkamp KE, Langklotz S, Aras M, Helling S, Marcus K, Bandow JE, Hoef-Emden K, Frankenberg-Dinkel N. Chromophore composition of the phycobiliprotein Cr-PC577 from the cryptophyte Hemiselmis pacifica. PHOTOSYNTHESIS RESEARCH 2014; 122:293-304. [PMID: 25134685 DOI: 10.1007/s11120-014-0029-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/19/2014] [Indexed: 06/03/2023]
Abstract
The cryptophyte phycocyanin Cr-PC577 from Hemiselmis pacifica is a close relative of Cr-PC612 found in Hemiselmis virescens and Hemiselmis tepida. The two biliproteins differ in that Cr-PC577 lacks the major peak at around 612 nm in the absorption spectrum. Cr-PC577 was thus purified and characterized with respect to its bilin chromophore composition. Like other cryptophyte phycobiliproteins, Cr-PC577 is an (αβ)(α'β) heterodimer with phycocyanobilin (PCB) bound to the α-subunits. While one chromophore of the β-subunit is also PCB, mass spectrometry identified an additional chromophore with a mass of 585 Da at position β-Cys-158. This mass can be attributed to either a dihydrobiliverdin (DHBV), mesobiliverdin (MBV), or bilin584 chromophore. The doubly linked bilin at position β-Cys-50 and β-Cys-61 could not be identified unequivocally but shares spectral features with DHBV. We found that Cr-PC577 possesses a novel chromophore composition with at least two different chromophores bound to the β-subunit. Overall, our data contribute to a better understanding of cryptophyte phycobiliproteins and furthermore raise the question on the biosynthetic pathway of cryptophyte chromophores.
Collapse
Affiliation(s)
- Kristina E Overkamp
- Physiology of Microorganisms, Faculty for Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Takala H, Lehtivuori H, Hammarén H, Hytönen VP, Ihalainen JA. Connection between Absorption Properties and Conformational Changes in Deinococcus radiodurans Phytochrome. Biochemistry 2014; 53:7076-85. [DOI: 10.1021/bi501180s] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Heikki Takala
- Nanoscience
Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
- Department
of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Heli Lehtivuori
- Nanoscience
Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
- Nanoscience
Center, Department of Physics, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Henrik Hammarén
- School
of Medicine, University of Tampere and Tampere University Hospital, 33520 Tampere, Finland
| | - Vesa P. Hytönen
- BioMediTech, University of Tampere, 33520 Tampere, Finland
- Fimlab Laboratories, 33520 Tampere, Finland
| | - Janne A. Ihalainen
- Nanoscience
Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| |
Collapse
|
24
|
Njimona I, Yang R, Lamparter T. Temperature effects on bacterial phytochrome. PLoS One 2014; 9:e109794. [PMID: 25289638 PMCID: PMC4188573 DOI: 10.1371/journal.pone.0109794] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/12/2014] [Indexed: 02/01/2023] Open
Abstract
Bacteriophytochromes (BphPs) are light-sensing regulatory proteins encoded in photosynthetic and non-photosynthetic bacteria. This protein class incorporate bilin as their chromophore, with majority of them bearing a light- regulated His kinase or His kinase related module in the C-terminal. We studied the His kinase actives in the temperature range of 5°C to 40°C on two BphPs, Agp1 from Agrobacterium tumefaciens and Cph1 from cyanobacterium Synechocystis PCC 6803. As reported, the phosphorylation activities of the far red (FR) irradiated form of the holoprotein is stronger than that of the red (R) irradiated form in both phytochromes. We observed for the apoprotein and FR irradiated holoprotein of Agp1 an increase in the phosphorylation activities from 5°C to 25°C and a decrease from 25°C to 40°C. At 5°C the activities of the apoprotein were significantly lower than those of the FR irradiated holoprotein, which was opposite at 40°C. A similar temperature pattern was observed for Cph1, but the maximum of the apoprotein was at 20°C while the maximum of the FR irradiated holoprotein was at 10°C. At 40°C, prolonged R irradiation leads to an irreversible bleaching of Cph1, an effect which depends on the C-terminal His kinase module. A more prominent and reversible temperature effect on spectral properties of Agp1, mediated by the His kinase, has been reported before. His kinases in phytochromes could therefore share similar temperature characteristics. We also found that phytochrome B mutants of Arabidopsis have reduced hypocotyl growth at 37°C in darkness, suggesting that this phytochrome senses the temperature or mediates signal transduction of temperature effects.
Collapse
Affiliation(s)
- Ibrahim Njimona
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Rui Yang
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Tilman Lamparter
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
25
|
Sineshchekov V, Mailliet J, Psakis G, Feilke K, Kopycki J, Zeidler M, Essen L, Hughes J. Tyrosine 263 in Cyanobacterial Phytochrome Cph1 Optimizes Photochemistry at the prelumi‐ R→lumi‐R Step. Photochem Photobiol 2014; 90:786-795. [DOI: https:/doi.org/10.1111/php.12263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
AbstractWe report a low‐temperature fluorescence spectroscopy study of the PAS‐GAF‐PHY sensory module of Cph1 phytochrome, its Y263F mutant (both with known 3D structures) as well as Y263H and Y263S to connect their photochemical parameters with intramolecular interactions. None of the holoproteins showed photochemical activity at low temperature, and the activation barriers for the Pr→lumi‐R photoreaction (2.5–3.1 kJ mol−1) and fluorescence quantum yields (0.29–0.42) were similar. The effect of the mutations on Pr→Pfr photoconversion efficiency (ΦPr→Pfr) was observed primarily at the prelumi‐R S0 bifurcation point corresponding to the conical intersection of the energy surfaces at which the molecule relaxes to form lumi‐R or Pr, lowering ΦPr→Pfr from 0.13 in the wild type to 0.05–0.07 in the mutants. We suggest that the Ea activation barrier in the Pr* S1 excited state might correspond to the D‐ring (C19) carbonyl – H290 hydrogen bond or possibly to the hindrance caused by the C131/C171 methyl groups of the C and D rings. The critical role of the tyrosine hydroxyl group can be at the prelumi‐R bifurcation point to optimize the yield of the photoprocess and energy storage in the form of lumi‐R for subsequent rearrangement processes culminating in Pfr formation.
Collapse
Affiliation(s)
- Vitaly Sineshchekov
- Chair of Physico‐Chemical Biology Department of Biology M. V. Lomonosov Moscow State University Moscow Russia
| | - Joel Mailliet
- Plant Physiology Faculty of Biology and Chemistry Justus Liebig University Giessen Germany
| | - Georgios Psakis
- Plant Physiology Faculty of Biology and Chemistry Justus Liebig University Giessen Germany
| | - Kathleen Feilke
- Plant Physiology Faculty of Biology and Chemistry Justus Liebig University Giessen Germany
| | - Jakub Kopycki
- Plant Physiology Faculty of Biology and Chemistry Justus Liebig University Giessen Germany
| | - Mathias Zeidler
- Plant Physiology Faculty of Biology and Chemistry Justus Liebig University Giessen Germany
| | - Lars‐Oliver Essen
- Structural Biochemistry Faculty of Chemistry Phillipps University Marburg Germany
| | - Jon Hughes
- Plant Physiology Faculty of Biology and Chemistry Justus Liebig University Giessen Germany
| |
Collapse
|
26
|
Sineshchekov V, Mailliet J, Psakis G, Feilke K, Kopycki J, Zeidler M, Essen LO, Hughes J. Tyrosine 263 in cyanobacterial phytochrome Cph1 optimizes photochemistry at the prelumi-R→lumi-R step. Photochem Photobiol 2014; 90:786-95. [PMID: 24571438 DOI: 10.1111/php.12263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 02/14/2014] [Indexed: 01/29/2023]
Abstract
We report a low-temperature fluorescence spectroscopy study of the PAS-GAF-PHY sensory module of Cph1 phytochrome, its Y263F mutant (both with known 3D structures) as well as Y263H and Y263S to connect their photochemical parameters with intramolecular interactions. None of the holoproteins showed photochemical activity at low temperature, and the activation barriers for the Pr→lumi-R photoreaction (2.5-3.1 kJ mol(-1)) and fluorescence quantum yields (0.29-0.42) were similar. The effect of the mutations on Pr→Pfr photoconversion efficiency (ΦPr→Pfr) was observed primarily at the prelumi-R S0 bifurcation point corresponding to the conical intersection of the energy surfaces at which the molecule relaxes to form lumi-R or Pr, lowering ΦPr→Pfr from 0.13 in the wild type to 0.05-0.07 in the mutants. We suggest that the Ea activation barrier in the Pr* S1 excited state might correspond to the D-ring (C19) carbonyl - H290 hydrogen bond or possibly to the hindrance caused by the C13(1) /C17(1) methyl groups of the C and D rings. The critical role of the tyrosine hydroxyl group can be at the prelumi-R bifurcation point to optimize the yield of the photoprocess and energy storage in the form of lumi-R for subsequent rearrangement processes culminating in Pfr formation.
Collapse
Affiliation(s)
- Vitaly Sineshchekov
- Chair of Physico-Chemical Biology, Department of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Song C, Psakis G, Kopycki J, Lang C, Matysik J, Hughes J. The D-ring, not the A-ring, rotates in Synechococcus OS-B' phytochrome. J Biol Chem 2013; 289:2552-62. [PMID: 24327657 DOI: 10.1074/jbc.m113.520031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Phytochrome photoreceptors in plants and microorganisms switch photochromically between two states, controlling numerous important biological processes. Although this phototransformation is generally considered to involve rotation of ring D of the tetrapyrrole chromophore, Ulijasz et al. (Ulijasz, A. T., Cornilescu, G., Cornilescu, C. C., Zhang, J., Rivera, M., Markley, J. L., and Vierstra, R. D. (2010) Nature 463, 250-254) proposed that the A-ring rotates instead. Here, we apply magic angle spinning NMR to the two parent states following studies of the 23-kDa GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domain fragment of phytochrome from Synechococcus OS-B'. Major changes occur at the A-ring covalent linkage to the protein as well as at the protein residue contact of ring D. Conserved contacts associated with the A-ring nitrogen rule out an A-ring photoflip, whereas loss of contact of the D-ring nitrogen to the protein implies movement of ring D. Although none of the methine bridges showed a chemical shift change comparable with those characteristic of the D-ring photoflip in canonical phytochromes, denaturation experiments showed conclusively that the same occurs in Synechococcus OS-B' phytochrome upon photoconversion. The results are consistent with the D-ring being strongly tilted in both states and the C15=C16 double bond undergoing a Z/E isomerization upon light absorption. More subtle changes are associated with the A-ring linkage to the protein. Our findings thus disprove A-ring rotation and are discussed in relation to the position of the D-ring, photoisomerization, and photochromicity in the phytochrome family.
Collapse
Affiliation(s)
- Chen Song
- From the Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden, NL-2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Salewski J, Escobar FV, Kaminski S, von Stetten D, Keidel A, Rippers Y, Michael N, Scheerer P, Piwowarski P, Bartl F, Frankenberg-Dinkel N, Ringsdorf S, Gärtner W, Lamparter T, Mroginski MA, Hildebrandt P. Structure of the biliverdin cofactor in the Pfr state of bathy and prototypical phytochromes. J Biol Chem 2013; 288:16800-16814. [PMID: 23603902 DOI: 10.1074/jbc.m113.457531] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phytochromes act as photoswitches between the red- and far-red absorbing parent states of phytochromes (Pr and Pfr). Plant phytochromes display an additional thermal conversion route from the physiologically active Pfr to Pr. The same reaction pattern is found in prototypical biliverdin-binding bacteriophytochromes in contrast to the reverse thermal transformation in bathy bacteriophytochromes. However, the molecular origin of the different thermal stabilities of the Pfr states in prototypical and bathy bacteriophytochromes is not known. We analyzed the structures of the chromophore binding pockets in the Pfr states of various bathy and prototypical biliverdin-binding phytochromes using a combined spectroscopic-theoretical approach. For the Pfr state of the bathy phytochrome from Pseudomonas aeruginosa, the very good agreement between calculated and experimental Raman spectra of the biliverdin cofactor is in line with important conclusions of previous crystallographic analyses, particularly the ZZEssa configuration of the chromophore and its mode of covalent attachment to the protein. The highly homogeneous chromophore conformation seems to be a unique property of the Pfr states of bathy phytochromes. This is in sharp contrast to the Pfr states of prototypical phytochromes that display conformational equilibria between two sub-states exhibiting small structural differences at the terminal methine bridges A-B and C-D. These differences may mainly root in the interactions of the cofactor with the highly conserved Asp-194 that occur via its carboxylate function in bathy phytochromes. The weaker interactions via the carbonyl function in prototypical phytochromes may lead to a higher structural flexibility of the chromophore pocket opening a reaction channel for the thermal (ZZE → ZZZ) Pfr to Pr back-conversion.
Collapse
Affiliation(s)
- Johannes Salewski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Francisco Velazquez Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Steve Kaminski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - David von Stetten
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany; Structural Biology Group, European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Anke Keidel
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Yvonne Rippers
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Norbert Michael
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Institute of Medical Physics and Biophysics (CCO), D-10117 Berlin, Germany; AG Protein X-ray Crystallography, D-10117 Berlin, Germany
| | - Patrick Piwowarski
- Institute of Medical Physics and Biophysics (CCO), D-10117 Berlin, Germany; AG Spectroscopy, Charité-University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Franz Bartl
- Institute of Medical Physics and Biophysics (CCO), D-10117 Berlin, Germany; AG Spectroscopy, Charité-University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Nicole Frankenberg-Dinkel
- AG Physiologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Simone Ringsdorf
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Tilman Lamparter
- Institut für Allgemeine Botanik, Karlsruher Institut für Technologie, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
29
|
Song C, Rohmer T, Tiersch M, Zaanen J, Hughes J, Matysik J. Solid-State NMR Spectroscopy to Probe Photoactivation in Canonical Phytochromes. Photochem Photobiol 2013; 89:259-73. [DOI: 10.1111/php.12029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/28/2012] [Indexed: 01/17/2023]
Affiliation(s)
| | - Thierry Rohmer
- Leids Instituut voor Chemisch Onderzoek; Universiteit Leiden; Leiden; The Netherlands
| | | | - Jan Zaanen
- Instituut-Lorentz for Theoretical Physics; Universiteit Leiden; Leiden; The Netherlands
| | - Jon Hughes
- Pflanzenphysiologie; Justus-Liebig-Universität; Giessen; Germany
| | | |
Collapse
|
30
|
van der Steen JB, Nakasone Y, Hendriks J, Hellingwerf KJ. Modeling the functioning of YtvA in the general stress response in Bacillus subtilis. MOLECULAR BIOSYSTEMS 2013; 9:2331-43. [DOI: 10.1039/c3mb70124g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Insights in small Heat Shock Protein/client interaction by combined protection analysis of two different client proteins. FEBS Lett 2012; 586:1772-7. [PMID: 22641032 DOI: 10.1016/j.febslet.2012.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/02/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
Abstract
sHSPs interact with clients under denaturing conditions. CPH1Δ2, a truncated version of cyanobacterial phytochrome CPH1, was introduced as a new reporter (client). Comparative analyses of At17.8 and At17.6B as cytosolic class I sHSP representatives demonstrated the advantages of a chromophore-bearing photoreversible protein as new client for analyzing sHSP holdase function in addition to malate dehydrogenase (MDH). The tested sHSPs protected both clients in similar ways but with different efficiencies. Bis-ANS binding studies with sHSPs suggested that the bis-ANS binding is dependent on interactions between different sHSPs and MDH under denaturing temperatures.
Collapse
|
32
|
Spillane KM, Dasgupta J, Mathies RA. Conformational homogeneity and excited-state isomerization dynamics of the bilin chromophore in phytochrome Cph1 from resonance Raman intensities. Biophys J 2012; 102:709-17. [PMID: 22325295 DOI: 10.1016/j.bpj.2011.11.4019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/23/2011] [Accepted: 11/28/2011] [Indexed: 11/30/2022] Open
Abstract
The ground-state structure and excited-state isomerization dynamics of the P(r) and P(fr) forms of phytochrome Cph1 are investigated using resonance Raman intensity analysis. Electronic absorption and stimulated resonance Raman spectra of P(r) and P(fr) are presented; vibronic analysis of the Raman intensities and absorption spectra reveals that both conformers exist as a single, homogeneous population of molecules in the ground state. The homogeneous and inhomogeneous contributions to the overall electronic broadening are determined, and it is found that the broadening is largely homogeneous in nature, pointing to fast excited-state decay. Franck-Condon displacements derived from the Raman intensity analysis reveal the initial atomic motions in the excited state, including the highly displaced, nontotally symmetric torsional and C(15)-H HOOP modes that appear because of symmetry-reducing distortions about the C(14)-C(15) and C(15)=C(16) bonds. P(fr) is especially well primed for ultrafast isomerization and torsional Franck-Condon analysis predicts a <200 fs P(fr) → P(r) isomerization. This time is significantly faster than the observed 700 fs reaction time, indicating that the P(fr) S(1) surface has a D-ring rotational barrier caused by steric interactions with the protein.
Collapse
Affiliation(s)
- Katelyn M Spillane
- Department of Chemistry, University of California, Berkeley, California, USA
| | | | | |
Collapse
|
33
|
Song C, Lang C, Mailliet J, Hughes J, Gärtner W, Matysik J. Exploring Chromophore-Binding Pocket: High-Resolution Solid-State H-C Interfacial Correlation NMR Spectra with Windowed PMLG Scheme. APPLIED MAGNETIC RESONANCE 2012; 42:79-88. [PMID: 22303079 PMCID: PMC3260431 DOI: 10.1007/s00723-011-0196-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/21/2011] [Indexed: 05/26/2023]
Abstract
High-resolution two-dimensional (2D) (1)H-(13)C heteronuclear correlation spectra are recorded for selective observation of interfacial 3-5.5 Å contacts of the uniformly (13)C-labeled phycocyanobilin (PCB) chromophore with its unlabeled binding pocket. The experiment is based on a medium- and long-distance heteronuclear correlation (MELODI-HETCOR) method. For improving (1)H spectral resolution, a windowed phase-modulated Lee-Goldburg (wPMLG) decoupling scheme is applied during the t(1) evolution period. Our approach allows for identification of chromophore-protein interactions, in particular for elucidation of the hydrogen-bonding networks and charge distributions within the chromophore-binding pocket. The resulting pulse sequence is tested on the cyanobacterial (Cph1) phytochrome sensory module (residues 1-514, Cph1Δ2) containing uniformly (13)C- and (15)N-labeled PCB chromophore (u-[(13)C,(15)N]-PCB-Cph1Δ2) at 17.6 T.
Collapse
Affiliation(s)
- Chen Song
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Christina Lang
- Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstraße 3, 35390 Giessen, Germany
| | - Jo Mailliet
- Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstraße 3, 35390 Giessen, Germany
| | - Jon Hughes
- Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstraße 3, 35390 Giessen, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstraße 34–36, 45470 Mülheim an der Ruhr, Germany
| | - Jörg Matysik
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
34
|
Kim PW, Freer LH, Rockwell NC, Martin SS, Lagarias JC, Larsen DS. Femtosecond Photodynamics of the Red/Green Cyanobacteriochrome NpR6012g4 from Nostoc punctiforme. 1. Forward Dynamics. Biochemistry 2012; 51:608-18. [DOI: 10.1021/bi201507k] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter W. Kim
- Department
of Chemistry and ‡Department of Molecular and Cell Biology, University of California, One Shields Avenue, Davis,
California
95616, United States
| | - Lucy H. Freer
- Department
of Chemistry and ‡Department of Molecular and Cell Biology, University of California, One Shields Avenue, Davis,
California
95616, United States
| | - Nathan C. Rockwell
- Department
of Chemistry and ‡Department of Molecular and Cell Biology, University of California, One Shields Avenue, Davis,
California
95616, United States
| | - Shelley S. Martin
- Department
of Chemistry and ‡Department of Molecular and Cell Biology, University of California, One Shields Avenue, Davis,
California
95616, United States
| | - J. Clark Lagarias
- Department
of Chemistry and ‡Department of Molecular and Cell Biology, University of California, One Shields Avenue, Davis,
California
95616, United States
| | - Delmar S. Larsen
- Department
of Chemistry and ‡Department of Molecular and Cell Biology, University of California, One Shields Avenue, Davis,
California
95616, United States
| |
Collapse
|
35
|
Spectroscopy and a High-Resolution Crystal Structure of Tyr263 Mutants of Cyanobacterial Phytochrome Cph1. J Mol Biol 2011; 413:115-27. [DOI: 10.1016/j.jmb.2011.08.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 12/14/2022]
|
36
|
Mailliet J, Psakis G, Feilke K, Sineshchekov V, Essen LO, Hughes J. Spectroscopy and a High-Resolution Crystal Structure of Tyr263 Mutants of Cyanobacterial Phytochrome Cph1. J Mol Biol 2011; 413:115-127. [DOI: https:/doi.org/10.1016/j.jmb.2011.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
|
37
|
Psakis G, Mailliet J, Lang C, Teufel L, Essen LO, Hughes J. Signaling Kinetics of Cyanobacterial Phytochrome Cph1, a Light Regulated Histidine Kinase. Biochemistry 2011; 50:6178-88. [DOI: 10.1021/bi200612d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Georgios Psakis
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Jo Mailliet
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Christina Lang
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Lotte Teufel
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University, D35032 Marburg, Germany
| | - Jon Hughes
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| |
Collapse
|
38
|
Abstract
Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained.
Collapse
Affiliation(s)
- Michele E Auldridge
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
39
|
Anders K, von Stetten D, Mailliet J, Kiontke S, Sineshchekov VA, Hildebrandt P, Hughes J, Essen L. Spectroscopic and Photochemical Characterization of the Red‐Light Sensitive Photosensory Module of Cph2 from Synechocystis PCC 6803. Photochem Photobiol 2011; 87:160-173. [DOI: https:/doi.org/10.1111/j.1751-1097.2010.00845.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
AbstractCyanobacterial phytochromes are a diverse family of light receptors controlling various biological functions including phototaxis. In addition to canonical bona fide phytochromes of the well characterized Cph1/plant‐like clade, cyanobacteria also harbor phytochromes that absorb green, violet or blue light. The Synechocystis PCC 6803 Cph2 photoreceptor, a phototaxis inhibitor, is unconventional in bearing two distinct chromophore‐binding GAF domains. Whereas the C‐terminal GAF domain is most likely involved in blue‐light perception, the first two domains correspond to a Cph1‐like photosensory module lacking the PAS domain. Biochemical and spectroscopic studies show that this region switches between red (Pr) and far‐red (Pfr) absorbing states. Unlike Cph1, the Pfr state of Cph2 decays rapidly in darkness. Mutations close to the PCB chromophore further destabilize the Pfr state without drastically affecting the spectroscopic features such as the quantum efficiency of Pr→Pfr conversion, fluorescence, or the Resonance‐Raman signature of the chromophore. Overall, the PAS‐less photosensory module of Cph2 resembles Cph1 including its mode of isomerisation, but the Pfr state is unstable.
Collapse
|
40
|
Anders K, von Stetten D, Mailliet J, Kiontke S, Sineshchekov VA, Hildebrandt P, Hughes J, Essen LO. Spectroscopic and photochemical characterization of the red-light sensitive photosensory module of Cph2 from Synechocystis PCC 6803. Photochem Photobiol 2010; 87:160-73. [PMID: 21091956 DOI: 10.1111/j.1751-1097.2010.00845.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacterial phytochromes are a diverse family of light receptors controlling various biological functions including phototaxis. In addition to canonical bona fide phytochromes of the well characterized Cph1/plant-like clade, cyanobacteria also harbor phytochromes that absorb green, violet or blue light. The Synechocystis PCC 6803 Cph2 photoreceptor, a phototaxis inhibitor, is unconventional in bearing two distinct chromophore-binding GAF domains. Whereas the C-terminal GAF domain is most likely involved in blue-light perception, the first two domains correspond to a Cph1-like photosensory module lacking the PAS domain. Biochemical and spectroscopic studies show that this region switches between red (P(r) ) and far-red (P(fr) ) absorbing states. Unlike Cph1, the P(fr) state of Cph2 decays rapidly in darkness. Mutations close to the PCB chromophore further destabilize the P(fr) state without drastically affecting the spectroscopic features such as the quantum efficiency of P(r) →P(fr) conversion, fluorescence, or the Resonance-Raman signature of the chromophore. Overall, the PAS-less photosensory module of Cph2 resembles Cph1 including its mode of isomerisation, but the P(fr) state is unstable.
Collapse
Affiliation(s)
- Katrin Anders
- Department of Chemistry, Philipps University, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zienicke B, Chen LY, Khawn H, Hammam MAS, Kinoshita H, Reichert J, Ulrich AS, Inomata K, Lamparter T. Fluorescence of phytochrome adducts with synthetic locked chromophores. J Biol Chem 2010; 286:1103-13. [PMID: 21071442 DOI: 10.1074/jbc.m110.155143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion.
Collapse
Affiliation(s)
- Benjamin Zienicke
- Botanical Institute, Karlsruhe Institute of Technology, Campus South, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Piwowarski P, Ritter E, Hofmann KP, Hildebrandt P, von Stetten D, Scheerer P, Michael N, Lamparter T, Bartl F. Light-induced activation of bacterial phytochrome Agp1 monitored by static and time-resolved FTIR spectroscopy. Chemphyschem 2010; 11:1207-14. [PMID: 20333618 DOI: 10.1002/cphc.200901008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phytochromes, which regulate many biological processes in plants, bacteria, and fungi, can exist in two stable states, Pr and Pfr, that can be interconverted by light, via a number of intermediates such as meta-Rc. Herein we employ FTIR spectroscopy to study the Pr-to-Pfr conversion of the bacteriophytochrome Agp1 from Agrobacterium tumefaciens. Static FTIR Pfr/Pr and meta-Rc/Pr difference spectra are disentangled in terms of cofactor and protein structural changes. Guided by DFT calculations on cofactor models, the chromophore conformational changes can be grouped into structural adjustments of the cofactor-protein interactions localized in the C-D dipyrrole moiety, that is, the photoisomerisation site, and in the A-B dipyrrole moiety including the protein attachment site. Whereas changes at the C and D rings appear to be largely completed in the meta-Rc state, the structural changes in the A-B unit occur during the transition from meta-Rc to Pfr, concomitant with the main protein structural changes, as demonstrated by static and time-resolved FTIR difference spectroscopy. We employ this technique to monitor, for the first time, the dynamics of the photocycle of phytochrome on the millisecond timescale. By extending the studies to genetically engineered protein variants of Agp1, we further demonstrate that H250 and D197 as well as the PHY domain are essential for formation of the Pfr state. Based on the IR spectroscopic and available crystallographic data we discuss the role of critical amino acid residues for the protein-cofactor interactions during the photoinduced reaction cycle.
Collapse
Affiliation(s)
- Patrick Piwowarski
- Institut für Medizinische Physik und Biophysik, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10098 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rohmer T, Lang C, Gärtner W, Hughes J, Matysik J. Role of the protein cavity in phytochrome chromoprotein assembly and double-bond isomerization: a comparison with model compounds. Photochem Photobiol 2010; 86:856-61. [PMID: 20492561 DOI: 10.1111/j.1751-1097.2010.00740.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Difference patterns of (13)C NMR chemicals shifts for the protonation of a free model compound in organic solution, as reported in the literature (M. Stanek, K. Grubmayr [1998] Chem. Eur. J.4, 1653-1659), were compared with changes in the protonation state occurring during holophytochrome assembly from phycocyanobilin (PCB) and the apoprotein. Both processes induce identical changes in the NMR signals, indicating that the assembly process is linked to protonation of the chromophore, yielding a cationic cofactor in a heterogeneous, quasi-liquid protein environment. The identity of both difference patterns implies that the protonation of a model compound in solution causes a partial stretching of the geometry of the macrocycle as found in the protein. In fact, the similarity of the difference pattern within the bilin family for identical chemical transformations represents a basis for future theoretical analysis. On the other hand, the change of the (13)C NMR chemical shift pattern upon the Pr --> Pfr photoisomerization is very different to that of the free model compound upon ZZZ --> ZZE photoisomerization. Hence, the character of the double-bond isomerization in phytochrome is essentially different from that of a classical photoinduced double-bond isomerization, emphasizing the role of the protein environment in the modulation of this light-induced process.
Collapse
Affiliation(s)
- Thierry Rohmer
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Röben M, Hahn J, Klein E, Lamparter T, Psakis G, Hughes J, Schmieder P. NMR Spectroscopic Investigation of Mobility and Hydrogen Bonding of the Chromophore in the Binding Pocket of Phytochrome Proteins. Chemphyschem 2010; 11:1248-57. [DOI: 10.1002/cphc.200900897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Scheerer P, Michael N, Park JH, Nagano S, Choe HW, Inomata K, Borucki B, Krauß N, Lamparter T. Light-Induced Conformational Changes of the Chromophore and the Protein in Phytochromes: Bacterial Phytochromes as Model Systems. Chemphyschem 2010; 11:1090-105. [DOI: 10.1002/cphc.200900913] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Rohmer T, Lang C, Bongards C, Gupta KBSS, Neugebauer J, Hughes J, Gärtner W, Matysik J. Phytochrome as Molecular Machine: Revealing Chromophore Action during the Pfr → Pr Photoconversion by Magic-Angle Spinning NMR Spectroscopy. J Am Chem Soc 2010; 132:4431-7. [DOI: 10.1021/ja9108616] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thierry Rohmer
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Christina Lang
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Christian Bongards
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Karthick Babu Sai Sankar Gupta
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Johannes Neugebauer
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Jon Hughes
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Gärtner
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Jörg Matysik
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany, and Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
47
|
Spillane KM, Dasgupta J, Lagarias JC, Mathies RA. Homogeneity of phytochrome Cph1 vibronic absorption revealed by resonance Raman intensity analysis. J Am Chem Soc 2009; 131:13946-8. [PMID: 19739629 PMCID: PMC2880177 DOI: 10.1021/ja905822m] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phytochromes are an important class of red/far-red responsive photoreceptors that act as light-activated biological switches, ultimately driving growth and development in plants, bacteria, and fungi. The composition of the red-absorbing ground-state has been widely debated due to the presence of a shoulder feature on the blue edge of electronic absorption spectra, which many have attributed to the presence of multiple ground-state conformers. Here we use resonance Raman intensity analysis to calculate the vibronic absorption profile of cyanobacterial phytochrome Cph1 and show that this shoulder feature is due simply to vibronic transitions from a single species, thus reflecting a homogeneous ground-state population.
Collapse
Affiliation(s)
- Katelyn M. Spillane
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Jyotishman Dasgupta
- Department of Chemistry, University of California, Berkeley, California 94720
| | - J. Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Richard A. Mathies
- Department of Chemistry, University of California, Berkeley, California 94720
| |
Collapse
|
48
|
Schwinté P, Gärtner W, Sharda S, Mroginski MA, Hildebrandt P, Siebert F. The Photoreactions of Recombinant Phytochrome CphA from the CyanobacteriumCalothrixPCC7601: A Low-Temperature UV-Vis and FTIR Study. Photochem Photobiol 2009; 85:239-49. [DOI: 10.1111/j.1751-1097.2008.00426.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
|
50
|
Matute RA, Contreras R, Pérez-Hernández G, González L. The Chromophore Structure of the Cyanobacterial Phytochrome Cph1 As Predicted by Time-Dependent Density Functional Theory. J Phys Chem B 2008; 112:16253-6. [DOI: 10.1021/jp807471e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|