1
|
Qi M, Su X, Li Z, Huang H, Wang J, Lin N, Kong X. Bibliometric analysis of research progress on tetramethylpyrazine and its effects on ischemia-reperfusion injury. Pharmacol Ther 2024; 259:108656. [PMID: 38735486 DOI: 10.1016/j.pharmthera.2024.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
In recent decades, natural products have attracted worldwide attention and become one of the most important resources for pharmacological industries and medical sciences to identify novel drug candidates for disease treatment. Tetramethylpyrazine (TMP) is an alkaloid extracted from Ligusticum chuanxiong Hort., which has shown great therapeutic potential in cardiovascular and cerebrovascular diseases, liver and renal injury, as well as cancer. In this review, we analyzed 1270 papers published on the Web of Science Core Collection from 2002 to 2022 and found that TMP exerted significant protective effects on ischemia-reperfusion (I/R) injury that is the cause of pathological damages in a variety of conditions, such as ischemic stroke, myocardial infarction, acute kidney injury, and liver transplantation. TMP is limited in clinical applications to some extent due to its rapid metabolism, a short biological half-life and poor bioavailability. Obviously, the structural modification, administration methods and dosage forms of TMP need to be further investigated in order to improve its bioavailability. This review summarizes the clinical applications of TMP, elucidates its potential mechanisms in protecting I/R injury, provides strategies to improve bioavailability, which presents a comprehensive understanding of the important compound. Hopefully, the information and knowledge from this review can help researchers and physicians to better improve the applications of TMP in the clinic.
Collapse
Affiliation(s)
- Mingzhu Qi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhuohang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Helan Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingbo Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Li D, Long Y, Yu S, Shi A, Wan J, Wen J, Li X, Liu S, Zhang Y, Li N, Zheng C, Yang M, Shen L. Research Advances in Cardio-Cerebrovascular Diseases of Ligusticum chuanxiong Hort. Front Pharmacol 2022; 12:832673. [PMID: 35173614 PMCID: PMC8841966 DOI: 10.3389/fphar.2021.832673] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Cardio-cerebrovascular diseases (CVDs) are a serious threat to human health and account for 31% of global mortality. Ligusticum chuanxiong Hort. (CX) is derived from umbellifer plants. Its rhizome, leaves, and fibrous roots are similar in composition but have different contents. It has been used in Japanese, Korean, and other traditional medicine for over 2000 years. Currently, it is mostly cultivated and has high safety and low side effects. Due to the lack of a systematic summary of the efficacy of CX in the treatment of CVDs, this article describes the material basis, molecular mechanism, and clinical efficacy of CX, as well as its combined application in the treatment of CVDs, and has been summarized from the perspective of safety. In particular, the pharmacological effect of CX in the treatment of CVDs is highlighted from the point of view of its mechanism, and the complex mechanism network has been determined to improve the understanding of CX's multi-link and multi-target therapeutic effects, including anti-inflammatory, antioxidant, and endothelial cells. This article offers a new and modern perspective on the impact of CX on CVDs.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lin Shen
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Sun WT, Hou HT, Chen HX, Xue HM, Wang J, He GW, Yang Q. Calcium-activated potassium channel family in coronary artery bypass grafts. J Thorac Cardiovasc Surg 2019; 161:e399-e409. [PMID: 31928817 DOI: 10.1016/j.jtcvs.2019.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVES We examined the expression, distribution, and contribution to vasodilatation of the calcium-activated potassium (KCa) channel family in the commonly used coronary artery bypass graft internal thoracic artery (ITA) and saphenous vein (SV) to understand the role of large conductance KCa (BKCa), intermediate-conductance KCa (IKCa), and small-conductance KCa (SKCa) channel subtypes in graft dilating properties determined by endothelium-smooth muscle interaction that is essential to the postoperative performance of the graft. METHODS Real-time polymerase chain reaction and western blot were employed to detect the messenger RNA and protein level of KCa channel subtypes. Distribution of KCa channel subtypes was examined by immunohistochemistry. KCa subtype-mediated vasorelaxation was studied using wire myography. RESULTS Both ITA and SV express all KCa channel subtypes with each subtype distributed in both endothelium and smooth muscle. ITA and SV do not differ in the overall expression level of each KCa channel subtype, corresponding to comparable relaxant responses to respective subtype activators. In ITA, BKCa is more abundantly expressed in smooth muscle than in endothelium, whereas SKCa exhibits more abundance in the endothelium. In comparison, SV shows even distribution of KCa channel subtypes in the 2 layers. The BKCa subtype in the KCa family plays a significant role in vasodilatation of ITA, whereas its contribution in SV is quite limited. CONCLUSIONS KCa family is abundantly expressed in ITA and SV. There are differences between these 2 grafts in the abundance of KCa channel subtypes in the endothelium and the smooth muscle. The significance of the BKCa subtype in vasodilatation of ITA may suggest the potential of development of BKCa modulators for the prevention and treatment of ITA spasm during/after coronary artery bypass graft surgery.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hai-Tao Hou
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huan-Xin Chen
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hong-Mei Xue
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jun Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China; Department of Surgery, Oregon Health and Science University, Portland, Ore
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
4
|
Michel HE, Menze ET. Tetramethylpyrazine guards against cisplatin-induced nephrotoxicity in rats through inhibiting HMGB1/TLR4/NF-κB and activating Nrf2 and PPAR-γ signaling pathways. Eur J Pharmacol 2019; 857:172422. [PMID: 31152701 DOI: 10.1016/j.ejphar.2019.172422] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
Cisplatin-induced acute renal injury is the most common and serious side effect, sometimes requiring discontinuation of the treatment. Thus, the development of new protective strategies is essential. The present study aimed to investigate the potential nephroprotective effect of tetramethylpyrazine (TMP) against acute renal damage induced by cisplatin in rats. Rats were administered 50 and 100 mg/kg TMP intraperitoneally before cisplatin (7 mg/kg). Acute nephrotoxicity was evident in cisplatin-treated rats where relative kidney weight, BUN and serum creatinine were markedly elevated. Cisplatin administration resulted in enhanced oxidative stress, evidenced by depleted GSH level as well as catalase and superoxide dismutase activities. Also, lipid peroxidation was boosted in comparison to the control. This was associated with inhibition of Nrf2 defense pathway. Moreover, cisplatin increased the expression of pro-inflammatory mediators in the kidney tissues. Cisplatin-induced apoptosis was depicted by elevated Bax mRNA expression and caspase-3 activity, as well as decreased Bcl2 mRNA expression. In addition, high mobility group box 1/toll-like receptor 4/nuclear factor-kappa B (HMGB1/TLR4/NF-κB) signaling pathway was significantly upregulated, while peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression was significantly diminished in cisplatin-treated rats. Cisplatin-induced nephrotoxicity, oxidative stress, inflammation, apoptosis and the effect on Nrf2 defense pathway and HMGB1/TLR4/NF-κB as well as PPAR-γ expression were markedly ameliorated by TMP administration. Given the major nephrotoxicity of cisplatin cancer chemotherapy, TMP might be a potential candidate for neoadjuvant chemotherapy due to its antioxidant, anti-inflammatory and anti-apoptotic effects, in addition to its effect on Nrf2, HMGB1/TLR4/NF-κB signaling pathway and PPAR-γ expression.
Collapse
Affiliation(s)
- Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Sun WT, Wang XC, Novakovic A, Wang J, He GW, Yang Q. Protection of dilator function of coronary arteries from homocysteine by tetramethylpyrazine: Role of ER stress in modulation of BK Ca channels. Vascul Pharmacol 2018; 113:27-37. [PMID: 30389615 DOI: 10.1016/j.vph.2018.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/10/2018] [Accepted: 10/27/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES We recently reported the involvement of ER stress-mediated BKCa channel inhibition in homocysteine-induced coronary dilator dysfunction. In another study, we demonstrated that tetramethylpyrazine (TMP), an active ingredient of the Chinese herb Chuanxiong, possesses potent anti-ER stress capacity. The present study investigated whether TMP protects BKCa channels from homocysteine-induced inhibition and whether suppression of ER stress is a mechanism contributing to the protection. Furthermore, we explored the signaling transduction involved in TMP-conferred protection on BKCa channels. METHODS BKCa channel-mediated relaxation was studied in porcine small coronary arteries. Expressions of BKCa channel subunits, ER stress molecules, and E3 ubiquitin ligases, as well as BKCa ubiquitination were determined in porcine coronary arterial smooth muscle cells (PCASMCs). Whole-cell BKCa currents were recorded. RESULTS Exposure of PCASMCs to homocysteine or the chemical ER stressor tunicamycin increased the expression of ER stress molecules, which was significantly inhibited by TMP. Suppression of ER stress by TMP preserved the BKCa β1 protein level and restored the BKCa current in PCASMCs, concomitant with an improved BKCa-mediated dilatation in coronary arteries. TMP attenuated homocysteine-induced BKCa β1 protein ubiquitination, in which inhibition of ER stress-mediated FoxO3a activation and FoxO3a-dependent atrogin-1 and Murf-1 was involved. CONCLUSIONS Reversal of BKCa channel inhibition via suppressing ER stress-mediated loss of β1 subunits contributes to the protective effect of TMP against homocysteine on coronary dilator function. Inhibition of FoxO3a-dependent ubiquitin ligases is involved in TMP-conferred normalization of BKCa β1 protein level. These results provide new mechanistic insights into the cardiovascular benefits of TMP.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiang-Chong Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jun Wang
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Qin Yang
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China.
| |
Collapse
|
6
|
Zhang X, Zhao R, Chen M, Ma T, Wu G, Xue N, Li G, Wang H, Fang K, Zhang W, Wang P, Lei H. Novel Neuroprotective Lead Compound Ligustrazine Derivative Mass Spectrometry Fragmentation Rule and Metabolites in Rats by LC/LTQ-Orbitrap MS. Molecules 2018; 23:molecules23051154. [PMID: 29751639 PMCID: PMC6100194 DOI: 10.3390/molecules23051154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022] Open
Abstract
The neuroprotective evaluation of ligustrazine derivatives has become a research focus all over the world. A novel ligustrazine derivative, (3,5,6-Trimethylpyrazin-2-yl)methyl(E)-3-(4-((3,5,6-trimethylpyrazin-2-l)methoxy)phenyl)acrylate (T-CA), has shown protective effects against CoCl₂-induced neurotoxicity in a differentiated PC12 cell model and middle cerebral artery occlusion (MCAO) model in our previous studies. However, nearly none of the parent drugs existed after rapid metabolism due to uncertain reasons. Thus, the fragmentation regularities of mass spectra, and metabolites, of T-CA in rats were examined using liquid chromatography-electrospray ionizationion trap mass spectrometry (LC/LTQ-Orbitrap MS) in this research. The main fragment ion, mass spectrum characteristics, and the structural information were elucidated. When compared with a blank sample, we identified five kinds of T-CA metabolites, including three phase I metabolites and two phase II metabolites. The results showed that the metabolic pathways of T-CA in rats via oral administration were hydrolysis (ether bond rupture, ester bond rupture), oxidation, reduction, glucose aldehyde acidification, etc. In addition, three main metabolites were synthesized and their structures were identified by superconducting high-resolution NMR and high-resolution mass spectroscopy (HR-MS). The neuroprotective activity of these metabolites was validated in a PC12 cell model. One of the metabolites (M2) showed significant activity (EC50 = 9.67 μM), which was comparable to the prototype drug T-CA (EC50 = 7.97 μM). The current study provides important information for ligustrazine derivatives, pertaining to the biological conversion process in vivo.
Collapse
Affiliation(s)
- Xinyu Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Rui Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Meng Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Tao Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Gaorong Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Nannan Xue
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Guoliang Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Hui Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Kang Fang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Wenxi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
7
|
Ashigai H, Ikeshima E, Koizumi K, Nakashima K, Mizutani M, Yajima H. 2-Ethylpyrazine Induces Vasodilatation by Releasing Nitric Oxide in the Endothelium. Biol Pharm Bull 2017; 40:2153-2157. [PMID: 28966226 DOI: 10.1248/bpb.b17-00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxygen transportation and regulation of some physiological processes are facilitated by blood flow. Furthermore, blood flow is regulated by various factors such as nitric oxide (NO) and the autonomic nerve system. In modern life, many people suffer from chilliness (hiesho) because of mental stress and an excessive use air-conditioning systems, which induces vasoconstriction in the peripheral skin. In this study, we focused on pyrazine derivatives, particularly compounds that are used as food flavoring materials, and investigated their effects on vascular function and blood flow. We examined the vasodilatory effect of pyrazine derivatives in the rat thoracic aorta and found 2-ethylpyrazine (2-EP) to be the most active pyrazine compound. Additionally, we found that 2-EP induces vasodilatation through the activities of endothelium-derived relaxing factors. 2-EP activates NO synthesis through the effect of endothelial NO synthase in the endothelium. As a result, cyclic GMP levels rise in smooth muscle cells and vasodilatation is induced. We also confirmed that 2-EP increases peripheral blood flow in rats. From these results, we concluded that 2-EP induces vasodilatation by inducing the release of NO and increasing peripheral blood flow.
Collapse
Affiliation(s)
- Hiroshi Ashigai
- Research Laboratories for Health Science & Food Technologies, Kirin Co., Ltd
| | - Emiko Ikeshima
- Research Laboratories for Health Science & Food Technologies, Kirin Co., Ltd
| | - Kumiko Koizumi
- Research Laboratories for Health Science & Food Technologies, Kirin Co., Ltd
| | - Keiko Nakashima
- Research Laboratories for Health Science & Food Technologies, Kirin Co., Ltd
| | - Mai Mizutani
- Research Laboratories for Health Science & Food Technologies, Kirin Co., Ltd
| | - Hiroaki Yajima
- Research & Development Planning Department, Research & Development Division, Kirin Co., Ltd
| |
Collapse
|
8
|
Fang YC, Chou CT, Liang WZ, Kuo CC, Hsu SS, Wang JL, Jan CR. Effect of tetramethylpyrazine (TMP) on Ca 2+ signal transduction and cell viability in a model of renal tubular cells. J Biochem Mol Toxicol 2017; 31. [PMID: 28658523 DOI: 10.1002/jbt.21952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/29/2017] [Accepted: 06/14/2017] [Indexed: 11/09/2022]
Abstract
Tetramethylpyrazine (TMP) is a compound purified from herb. Its effect on Ca2+ concentrations ([Ca2+ ]i ) in renal cells is unclear. This study examined whether TMP altered Ca2+ signaling in Madin-Darby canine kidney (MDCK) cells. TMP at 100-800 μM induced [Ca2+ ]i rises, which were reduced by Ca2+ removal. TMP induced Mn2+ influx implicating Ca2+ entry. TMP-induced Ca2+ entry was inhibited by 30% by modulators of protein kinase C (PKC) and store-operated Ca2+ channels. Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) inhibited 93% of TMP-evoked [Ca2+ ]i rises. Treatment with TMP abolished BHQ-evoked [Ca2+ ]i rises. Inhibition of phospholipase C (PLC) abolished TMP-induced responses. TMP at 200-1000 μM decreased viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester. Together, in MDCK cells, TMP induced [Ca2+ ]i rises by evoking PLC-dependent Ca2+ release from endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ entry. TMP also caused Ca2+ -independent cell death.
Collapse
Affiliation(s)
- Yi-Chien Fang
- Department of Laboratory Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, 81345, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, 61363, Taiwan.,Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, 61363, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung, 92641, Taiwan
| | - Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Jue-Long Wang
- Department of Rehabilitation, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, 71051, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| |
Collapse
|
9
|
Ligustrazine for the Treatment of Unstable Angina: A Meta-Analysis of 16 Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8617062. [PMID: 27213001 PMCID: PMC4861787 DOI: 10.1155/2016/8617062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/07/2016] [Accepted: 02/22/2016] [Indexed: 01/18/2023]
Abstract
Ligustrazine is a principal ingredient of chuanxiong. Concerns regarding the evaluation of the effectiveness of ligustrazine in the treatment of UA have resulted in a meta-analysis combined with recent clinical evidence. Seven computer databases that included the China hospital knowledge database (CHKD), Wanfang Med Online, the Chinese medical journal database (CMJD), PubMed, Cochrane, Embase (Ovid), and Medline (Ovid) were systematically searched. We included randomized controlled trials and quasi-randomized controlled trials. Our systematic review identified 16 RCTs that met our eligibility criteria. Ligustrazine combined with conventional medicine was associated with an increased rate of marked improvement in symptoms and an increased rate of marked improvement of ECG compared with conventional Western medicine alone. Additionally, the use of ligustrazine was associated with significant trends in the reduction of the consumption of nitroglycerin and the level of fibrinogen when compared with conventional Western medicine alone. No firm results were found between the intervention and the control method groups in the reduction of the time of onset or the frequency of acute attack angina due to the high level of heterogeneity. In conclusion, our meta-analysis found that ligustrazine was associated with some benefits for people with unstable angina.
Collapse
|
10
|
Abstract
Based on the genetic relationship, single-channel conductance, and gating mechanisms, calcium-activated potassium (KCa) channels identified in vasculature can be divided into 3 groups including large-conductance KCa, small, and intermediate conductance KCa. KCa channels in smooth muscle and endothelial cells are essential for the regulation of vascular tone. Vascular dysfunction under ischemia-reperfusion (I-R) or hypoxia-reoxygenation (H-R) conditions is associated with modulations of KCa channels that are attributable to multiple mechanisms. Most studies in this regard relied on the change of relaxation components sensitive to certain channel blockers to indicate the alteration of KCa channels under I-R conditions, which however provided conflicting results for the effect of I-R. The possible mechanisms involved in KCa channel modulation under I-R/H-R include overproduction of reactive oxygen species such as superoxide anion, hydrogen peroxide, and peroxynitrite, increase of intracellular H ion, and lactate accumulation, etc. However, more studies are necessary to further understand the discrepancies in the sensitivity of KCa channels to I-R injury in different vascular beds.
Collapse
|
11
|
Han JZ, Sun J, Zhu QG, Liu JY, Hu JH, Chen F. A modified LC-MS/MS method for determination of tetramethylpyrazine in microdialysis samples and calibration of home-made linear probes. Biomed Chromatogr 2012; 26:1276-81. [PMID: 22334234 DOI: 10.1002/bmc.2689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Jin-Zhao Han
- Department of Pharmacy, Changhai Hospital; Second Military Medical University; Chang Hai Road 168; Shanghai; 200433; People's Republic of China
| | - Jun Sun
- Department of Pharmacy, Changhai Hospital; Second Military Medical University; Chang Hai Road 168; Shanghai; 200433; People's Republic of China
| | - Quan-Gang Zhu
- Department of Pharmacy, Changhai Hospital; Second Military Medical University; Chang Hai Road 168; Shanghai; 200433; People's Republic of China
| | - Ji-Yong Liu
- Department of Pharmacy, Changhai Hospital; Second Military Medical University; Chang Hai Road 168; Shanghai; 200433; People's Republic of China
| | - Jin-Hong Hu
- Department of Pharmacy, Changhai Hospital; Second Military Medical University; Chang Hai Road 168; Shanghai; 200433; People's Republic of China
| | - Fang Chen
- Department of Pharmacy, Changhai Hospital; Second Military Medical University; Chang Hai Road 168; Shanghai; 200433; People's Republic of China
| |
Collapse
|
12
|
Ran X, Ma L, Peng C, Zhang H, Qin LP. Ligusticum chuanxiong Hort: a review of chemistry and pharmacology. PHARMACEUTICAL BIOLOGY 2011; 49:1180-9. [PMID: 22014266 DOI: 10.3109/13880209.2011.576346] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
CONTEXT Ligusticum chuanxiong Hort (LC; Umbelliferae) is an effective medical plant, which has been extensively applied for many years to treat various diseases with other Chinese herbal medicines. Although a considerable amount of scientific research was reported on LC in the last decade, it is currently scattered across various publications. The present review comprises the chemical and pharmacological research on LC in the last decade. OBJECTIVE The objective of this review is to bring together most of the scientific research available on LC and evaluate its effects and mechanisms. METHODS The information for 82 cases included in this review was compiled using major databases such as Medline, Elsevier, Springer, Pubmed, and Scholar. RESULTS The compounds contained in LC can be divided into five kinds, essential oil (EO), alkaloids, phenolic acids, phthalide lactones, and other constituents. A great deal of pharmacological research has been done, which mainly focuses on cardiovascular and cerebrovascular effects, antioxidation, neuroprotection, antifibrosis, antinociception, antiinflammation, and antineoplastic activity. CONCLUSION A large number of pharmacological and chemical studies during the last 10 years have demonstrated the vast medicinal potential of LC. It is still very clear that LC is a plant with widespread use now and also with extraordinary potential for the future. The documents strongly support the view that LC has beneficial therapeutic properties and indicates its potential as an effective adaptogenic herbal remedy.
Collapse
Affiliation(s)
- Xia Ran
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | |
Collapse
|
13
|
Jiang F, Qian J, Chen S, Zhang W, Liu C. Ligustrazine improves atherosclerosis in rat via attenuation of oxidative stress. PHARMACEUTICAL BIOLOGY 2011; 49:856-63. [PMID: 21554147 DOI: 10.3109/13880209.2010.551776] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
CONTEXT Ligustrazine (Lig) is a compound isolated from the rhizome of Ligusticum chuanxiong Hort. (Umbelliferae) and has been reported to be effective for the treatment of a variety of vascular diseases. OBJECTIVE The anti-atherosclerotic activities of Lig are evaluated in vivo for the first time in the present study. MATERIALS AND METHODS We gave rats a single injection of vitamin D3 and then fed them with an atherogenic diet for 6 weeks to induce atherosclerosis. Lig was simultaneously given to rats by gavage at the dose of 20 or 80 mg/kg in the therapy groups. Multiple approaches including spectrophotometry, hematoxylin and eosin (H&E) staining, and quantitative RT-PCR were applied to investigate the effects of Lig on blood parameters, aorta and liver histology, and gene expression. In addition, the solely effects of Lig on food intake, body weight gain, and taste preference were also evaluated. RESULTS We found that two doses of Lig treatment decreased the total cholesterol levels by 65.2 and 76.7%, respectively, in the plasma. Triglyceride (by 53.2 and 77.9%) and low-density lipoprotein (by 71.2 and 79.0%) levels were also decreased. However, high-density lipoprotein level was slightly increased. The circulating endothelial cells were decreased by 42.2 and 60.0% in Lig-treated rats, indicating the attenuation of endothelial injury. In contrast, Lig restored the total antioxidant capacity and superoxide dismutase 1 (SOD1) activity while decreasing the MDA generation. Furthermore, Lig improved liver dysfunction by decreasing ALT (by 13.0 and 49.7%) and AST (by 10.7 and 14.3%) levels. Histological examinations revealed that Lig suppressed atherosclerotic plaque progression in the thoracic aorta and lipid accumulation in the liver. At the transcriptional level, Lig inhibited the induction of antioxidant genes both in aorta and in liver. Lig also suppressed the mRNA expression of the genes involved in the hepatic fatty acid oxidation. Finally, Lig had a minimum effect on food intake, body weight gain, and taste preference. DISCUSSION AND CONCLUSION Our results suggest that Lig suppresses the development of atherosclerosis and hepatic lipid accumulation via the alleviation of oxidative stress and the improvement of dyslipidemia.
Collapse
Affiliation(s)
- Fengrong Jiang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | | | | | | | | |
Collapse
|
14
|
Chan P, Liu IM, Li YX, Yu WJ, Cheng JT. Antihypertension Induced by Tanshinone IIA Isolated from the Roots of Salvia miltiorrhiza. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:392627. [PMID: 19542183 PMCID: PMC3135424 DOI: 10.1093/ecam/nep056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 05/07/2009] [Indexed: 12/15/2022]
Abstract
Tanshinone IIA is one of the active principles in danshen (Salvia miltiorrhiza Bge) widely used in treatment of cardiovascular disorders. We investigated the effect of danshen or tanshinone IIA on blood pressure and its possible mechanisms. An i.p. injection of danshen at 10 mg kg(-1) significantly lowered systolic blood pressure (SBP) of spontaneously hypertensive rats (SHRs) but failed to modify the SBP in normotensive Wistar-Kyoto rats (WKY). Oral administration of tanshinone IIA also decreased SBP in SHR but not in WKY. Tanshinone IIA produced a concentration-dependent relaxation in isolated SHR aortic rings precontracted with phenylephrine (10 nmol l(-1)) or potassium chloride (KCl) (40 mmol l(-1)). The relaxing effect of tanshinone IIA on tonic contraction of phenylephrine in isolated aortic rings without endothelium remained produced. Glibenclamide at concentration sufficient to block adenosine triphosphatase (ATP)-sensitive potassium (K(+)) channel attenuated this tanshinone IIA-induced relaxation that was not influenced by other inhibitors. We further investigated the effect of tanshinone IIA on the changes of intracellular calcium concentration ([Ca(2+)](i)) in cultured aortic smooth muscle (A7r5) cells using fura-2 as indicator. Tanshinone IIA decreased [Ca(2+)](i) elicited by phenylephrine (10 nmol l(-1)) or KCl (40 mmol l(-1)) in a concentration-dependent manner; glibenclamide, but not other inhibitors for K(+) channel, abated this effect. Our results suggest that tanshinone IIA acts as an active principle of danshen showing vasodilation through ATP-sensitive K(+) channel to lower [Ca(2+)](i).
Collapse
Affiliation(s)
- Paul Chan
- Division of Cardiovascular Medicine, Taipei Medical University-Wan Fang Hospital, Taipei City 11601, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Kim EY, Kim JH, Rhyu MR. Endothelium-independent vasorelaxation by Ligusticum wallichii in isolated rat aorta: comparison of a butanolic fraction and tetramethylpyrazine, the main active component of Ligusticum wallichii. Biol Pharm Bull 2010; 33:1360-3. [PMID: 20686232 DOI: 10.1248/bpb.33.1360] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ligusticum wallichii is an herb widely used to treat vascular disorders in Asian countries, and tetramethylpyrazine (TMP) has been identified as one of its vasorelaxant active components. This study was performed to examine the endothelium-independent relaxation produced by the butanol-soluble fraction of L. wallichii extract (LwBt) and its possible mechanisms of action in isolated rat aortic rings. The effects were compared with those of TMP. LwBt produced vasorelaxation that increased gradually after 2-3 min of LwBt administration and reached a maximum within 30 min. LwBt-induced relaxation was significantly attenuated by pretreatment with 4-aminopyridine and apamin. Additionally, LwBt attenuated CaCl(2)-induced vasoconstriction in high-potassium depolarized medium. Thus, LwBt-induced vasorelaxation apparently involved inhibition of calcium influx, mediated by the opening of voltage-dependent and/or Ca(2+)-activated potassium channels. On the other hand, the effect of TMP was significantly attenuated by pretreatment with glibenclamide, and 4-aminopyridine had no effect. In conclusion, LwBt-induced endothelium-independent vasorelaxation was mediated by the opening of voltage-dependent potassium channels, while TMP-induced relaxation was mediated by the opening of ATP-dependent potassium channels. These effects of LwBt may be due to a substance other than TMP.
Collapse
Affiliation(s)
- Eun-Young Kim
- Food Function Research Division, Korea Food Research Institute, Gyeonggido 463-746, Korea
| | | | | |
Collapse
|
16
|
Kim EY, Rhyu MR. Synergistic vasorelaxant and antihypertensive effects of Ligusticum wallichii and Angelica gigas. JOURNAL OF ETHNOPHARMACOLOGY 2010; 130:545-551. [PMID: 20669368 DOI: 10.1016/j.jep.2010.05.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY The synergistic vasorelaxant and antihypertensive effects of Ligusticum wallichii and Angelica gigas were examined in isolated rat aorta rings and spontaneously hypertensive rats (SHRs). MATERIALS AND METHODS The ethanol extract of Ligusticum wallichii (LwEx) or Angelica gigas (AgEx) or their combinations at ratios Ligusticum wallichii:Angelica gigas = 1:1 (MxEx11), 1:3 (MxEx13), and 3:1 (and MxEx31), and their successive water soluble (LwDw, AgDw, MxDw11, MxDw13 and MxDw31) or n-butanol soluble fractions (LwBt, AgBt, MxBt11, MxBt13, and MxBt31) were examined for their vasorelaxant effects. In an antihypertensive study, LwEx, AgEx, or MxEx11 (100 mg/kg) was orally administered to SHRs, and the systolic, diastolic, and mean blood pressure were measured using the tail-cuff method before and 1, 3, 5, 7, and 24 h after oral administration. RESULTS Each of the ethanol extracts caused long-term relaxation in endothelium-intact or endothelium-denuded rat aorta preconstricted with norepinephrine (NE, 300 nM). All of the water phases of the ethanol extracts elicited an endothelium-dependent acute relaxation, and the water phase of MxDw11 (EC50 values: 1.08 mg/mL, P < 0.05) had the highest activity. MxDw11-induced acute relaxation was abolished by pretreatment with N(G)-nitro-L-arginine (10 microM), methylene blue (1.0 microM), or atropine (0.1 microM), indicating that the response to MxDw involves the enhancement of the nitric oxide-cGMP system. On the other hand, all of the butanol phases showed an endothelium-independent long-term relaxation, and MxBt11 (85 +/- 7% relaxation of NE-preconstricted active tone at 20 min after the addition, P < 0.05) displayed the highest activity. MxBt11-induced gradual relaxation was significantly attenuated by an inward rectifier potassium-channel inhibitor, but not by an ATP-sensitive or a large conductance Ca2+-activated potassium-channel blocker. Calcium concentration-dependent contraction curves in high-potassium, depolarizing medium were shifted significantly to the right and downward after incubation with MxBt11 (0.03, 0.1, and 0.3 mg/mL), implying that MxBt11 is also involved in the inhibition of extracellular calcium influx to vascular smooth muscle. MxEx11 (100 mg/kg) significantly reduced systolic blood pressure of SHRs at 3, 5, and 7 h after oral administration, but this effect was not induced by Ligusticum wallichii or Angelica gigas alone. CONCLUSIONS The combination of Ligusticum wallichii and Angelica gigas elicits a synergistic effect on vasorelaxation in isolated rat aortas and antihypertension in SHRs. The ratio of Ligusticum wallichii: Angelica gigas = 1:1 was the most effective of all combinations tested.
Collapse
Affiliation(s)
- Eun-Young Kim
- Food Function Research Division, Korea Food Research Institute, Bundang-gu, Seongnam-si, Gyeonggi-do 463-746, Republic of Korea
| | | |
Collapse
|
17
|
Amelioration of Cisplatin-Induced Nephrotoxicity in Rats by Tetramethylpyrazine, a Major Constituent of the Chinese Herb Ligusticum wallichi. Exp Biol Med (Maywood) 2008; 233:891-6. [DOI: 10.3181/0711-rm-315] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nephrotoxicity of the anticancer drug, cisplatin (CP) involves enhanced renal generation of reactive oxygen metabolites and lipid peroxidation caused by decreased levels of antioxidants and antioxidant enzymes. Tetramethylpyrazine (TMP) is known to act as a strong antioxidant. Therefore, in the present work, we aimed at testing the possible protective or palliative effect of TMP on CP nephrotoxicity in rats. TMP was given orally at a dose of 80 mg · kg− 1 · day− 1 for 7 days. Some of these rats were given a single intraperitoneal injection of CP (or vehicle) at a dose of 6 mg/kg on Day 6 of treatment. Animals were sacrificed 6 days after CP (or vehicle) treatment, and blood, urine, and kidneys were obtained. Nephrotoxicity was assessed biochemically by measuring creatinine and urea in serum, reduced glutathione (GSH) concentration in renal cortex, by urinalysis, and histopathologically by light microscopy. CP significantly increased the concentration of urea and creatinine ( P < 0.05) by about 128% and 170%, respectively; increased urine volume and N-acetyl-β-D-glucosaminidase (NAG) activity; and significantly decreased osmolality and protein concentrations. CP treatment reduced GSH by about 34% ( P < 0.05) and superoxide dismutase (SOD) and total antioxidant activity (TOX) by about 28% and 21%, respectively ( P < 0.05). TMP pretreatment significantly mitigated all of these effects. Sections from saline- and TMP-treated rats showed apparently normal proximal tubules. However, kidneys of CP-treated rats had a moderate degree of necrosis. This was markedly reduced when CP was given after pretreatment with TMP. CP cortical concentration was not significantly altered by TMP treatment. The results suggest that TMP ameliorated the histological, physiological, and biochemical indices of nephrotoxicity in rats. Pending further pharmacological and toxicological studies, TMP may potentially be useful as a nephroprotective agent.
Collapse
|
18
|
Fu YS, Lin YY, Chou SC, Tsai TH, Kao LS, Hsu SY, Cheng FC, Shih YH, Cheng H, Fu YY, Wang JY. Tetramethylpyrazine inhibits activities of glioma cells and glutamate neuro-excitotoxicity: potential therapeutic application for treatment of gliomas. Neuro Oncol 2008; 10:139-52. [PMID: 18314418 DOI: 10.1215/15228517-2007-051] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We tested the herbal extract 2,3,5,6-tetramethylpyrazine (TMP) for possible therapeutic efficacy against a glioma cell line and against gliomas transplanted into rat brains. In the cultured glioma cells, 50 muM TMP significantly inhibited glutamate-induced increase in intracellular calcium. Significant cell damage (30%) and proliferation suppression (10%), however, occurred only at higher concentrations (200-400 microM). Gliomaneuronal co-culturing resulted in significant neuronal damage and higher proliferation of the glioma cells (140%) compared with single cultures. Low concentrations of TMP (< or =200 microM) attenuated the neuronal damage, suppressed glioma migration, and decreased glioma proliferation in the neuronal-glioma co-culture. Gliomas transplanted into the frontal cortical area exhibited high proliferation, with untreated rats dying 10-23 days later. TMP treatment inhibited tumor growth and significantly extended survival time. The results indicate that TMP can suppress glioma activity, including growth, and protect neurons against glioma-induced excitotoxicity, suggesting that TMP may have therapeutic potential in the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Yu-Show Fu
- Department of Anatomy, School of Medicine, National Yang-Ming University, 155 Sec. 2 Li-Nung Street, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee PY, Chen W, Liu IM, Cheng JT. VASODILATATION INDUCED BY SINOMENINE LOWERS BLOOD PRESSURE IN SPONTANEOUSLY HYPERTENSIVE RATS. Clin Exp Pharmacol Physiol 2007; 34:979-84. [PMID: 17714082 DOI: 10.1111/j.1440-1681.2007.04668.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Sinomenine is an alkaloid with a wide range of pharmacological actions. In the present study, we investigated the effect of sinomenine on blood pressure and its possible mechanisms of action. 2. Spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were given intraperitoneal injections of sinomenine. At 30 min, 2.5-10 mg/kg sinomenine decreased systolic blood pressure (SBP) in a dose-dependent manner in SHR, but had no effect on the SBP in WKY rats. 3. The vascular effect of sinomenine was then examined in aortic rings isolated from Wistar rats. Sinomenine (0.1-10 micromol/L) produced concentration-dependent relaxation in aortic rings precontracted with phenylephrine (10 nmol/L) or KCl (40 mmol/L). Glibenclamide (1-100 micromol/L), a specific inhibitor of ATP-sensitive K(+) channels attenuated the sinomenine-induced relaxation, but this effect was not observed when inhibitors of other types of K(+) channels were used. 4. We further investigated the effects of sinomenine on changes in intracellular Ca(2+) concentrations ([Ca(2+)](i)) in cultured aortic smooth muscle (A7r5) cells by using the Ca(2+)-sensitive dye fura-2 as an indicator. Sinomenine, over the concentration range 0.1-10 micromol/L, decreased the increases in [Ca(2+)](i) elicited by phenylephrine (1 micromol/L) or KCl (40 mmol/L) in a concentration-dependent manner. Glibenclamide (1-100 micromol/L) abolished the effects of sinomenine. 5. In conclusion, sinomenine causes vascular relaxation by opening ATP-sensitive K(+) channels, thus decreasing [Ca(2+)](i).
Collapse
Affiliation(s)
- Ping-Ying Lee
- Division of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | | | | | | |
Collapse
|
20
|
Brueggemann LI, Moran CJ, Barakat JA, Yeh JZ, Cribbs LL, Byron KL. Vasopressin stimulates action potential firing by protein kinase C-dependent inhibition of KCNQ5 in A7r5 rat aortic smooth muscle cells. Am J Physiol Heart Circ Physiol 2006; 292:H1352-63. [PMID: 17071736 PMCID: PMC2577603 DOI: 10.1152/ajpheart.00065.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
[Arg(8)]-vasopressin (AVP), at low concentrations (10-500 pM), stimulates oscillations in intracellular Ca(2+) concentration (Ca(2+) spikes) in A7r5 rat aortic smooth muscle cells. Our previous studies provided biochemical evidence that protein kinase C (PKC) activation and phosphorylation of voltage-sensitive K(+) (K(v)) channels are crucial steps in this process. In the present study, K(v) currents (I(Kv)) and membrane potential were measured using patch clamp techniques. Treatment of A7r5 cells with 100 pM AVP resulted in significant inhibition of I(Kv). This effect was associated with gradual membrane depolarization, increased membrane resistance, and action potential (AP) generation in the same cells. The AVP-sensitive I(Kv) was resistant to 4-aminopyridine, iberiotoxin, and glibenclamide but was fully inhibited by the selective KCNQ channel blockers linopirdine (10 microM) and XE-991 (10 microM) and enhanced by the KCNQ channel activator flupirtine (10 microM). BaCl(2) (100 microM) or linopirdine (5 microM) mimicked the effects of AVP on K(+) currents, AP generation, and Ca(2+) spiking. Expression of KCNQ5 was detected by RT-PCR in A7r5 cells and freshly isolated rat aortic smooth muscle. RNA interference directed toward KCNQ5 reduced KCNQ5 protein expression and resulted in a significant decrease in I(Kv) in A7r5 cells. I(Kv) was also inhibited in response to the PKC activator 4beta-phorbol 12-myristate 13-acetate (10 nM), and the inhibition of I(Kv) by AVP was prevented by the PKC inhibitor calphostin C (250 nM). These results suggest that the stimulation of Ca(2+) spiking by physiological concentrations of AVP involves PKC-dependent inhibition of KCNQ5 channels and increased AP firing in A7r5 cells.
Collapse
|
21
|
Lim LS, Shen P, Gong YH, Lee LS, Yong EL. Dynamics of progestogenic activity in serum following administration of Ligusticum chuanxiong. Life Sci 2006; 79:1274-80. [PMID: 16650443 DOI: 10.1016/j.lfs.2006.03.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 03/09/2006] [Accepted: 03/28/2006] [Indexed: 11/23/2022]
Abstract
Many women are using botanical alternatives for menopausal hormone replacement therapy (HRT) because current progestins, compounds with progesterone activity, have adverse risk profiles. However the development of phyto-progestins for HRT is hampered by the absence of basic pharmacokinetic/pharmacodynamic (PK/PD) data due to the lack of methods to capture summated effects of the numerous compounds that contribute to bioactivity in vivo. In this study, we explored the utility of progesterone receptor (PR)-driven bioassays to track changes in serum progestogenic activity following administration of traditional Chinese medicinal herb, Ligusticum chuanxiong, with potent progestogenic activity. Sensitive and specific (>300-fold) increases in progestogenic activity were observed when HeLa cells transfected with PR and a PR-driven promoter were exposed to the progestogenic drug, medroxy-progesterone acetate (MPA), suggesting the utility of the bioassay to measure progestogenic effects for PK/PD studies. Progestogens were administered to male Sprague-Dawley rats and serum extracted for measurement of progestogenic activity. Effect-time studies indicate that injection of MPA and L. chuanxiong extract raised area-under-curve of progestogenic activity in sera by 8.2-fold (p<0.001) and 4.5-fold (p<0.01) respectively, compared to sera from rats administered vehicle only. Administration of MPA and L. chuanxiong extract by the oral route resulted in a 5.4 (p<0.001) and 2.3-fold (p=0.07) increase respectively. Our data suggest that PR-responsive reporter gene bioassays can measure bioavailability of compounds, known and unknown, of complex botanicals for hormone replacement therapy. L. chuanxiong extracts exert progestogenic activity in vivo, and may have utility for progesterone-replacement therapy.
Collapse
Affiliation(s)
- L S Lim
- Department of Obstetrics and Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Lower Kent Ridge Road, Republic of Singapore 119074
| | | | | | | | | |
Collapse
|
22
|
Chen SY, Hsiao G, Hwang HR, Cheng PY, Lee YM. Tetramethylpyrazine induces heme oxygenase-1 expression and attenuates myocardial ischemia/reperfusion injury in rats. J Biomed Sci 2006; 13:731-40. [PMID: 16847723 DOI: 10.1007/s11373-006-9098-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022] Open
Abstract
The accumulation of oxygen free radicals and activation of neutrophils are strongly implicated as pathophysiological mechanisms mediating myocardial ischemia/reperfusion injury. Heme oxygenase-1 (HO-1) has been reported to play a protective role in oxidative tissue injuries. In this study, the cardioprotective activity of tetramethylpyrazine (TMP), an active ingredient of Chinese medicinal herb Ligusticum wallichii Franchat, was evaluated in an open-chest anesthetized rat model of myocardial ischemia/reperfusion injury. Pretreatment with TMP (5 and 10 mg/kg, i.v.) before left coronary artery occlusion significantly suppressed the occurrence of ventricular fibrillation. After 45 min of ischemia and 1 h of reperfusion, TMP (5 and 10 mg/kg) caused a significant reduction in infarct size and induced HO-1 expression in ischemic myocardium. The HO inhibitor ZnPP (50 microg/rat) markedly reversed the anti-infarct action of TMP. Superoxide anion production in ischemic myocardium after 10 min reperfusion was inhibited by TMP. Furthermore, TMP (200 and 500 microM) significantly suppressed fMLP (800 nM)-activated human neutrophil migration and respiratory burst. In conclusion, TMP suppresses ischemia-induced ventricular arrhythmias and reduces the infarct size resulting from ischemia/reperfusion injury in vivo. This cardioprotective activity of TMP may be associated with its antioxidant activity via induction of HO-1 and with its capacity for neutrophil inhibition.
Collapse
Affiliation(s)
- Shu-Ying Chen
- Department of Nursing, HungKuang University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|