1
|
Chung GHC, Domart MC, Peddie C, Mantell J, Mclaverty K, Arabiotorre A, Hodgson L, Byrne RD, Verkade P, Arkill K, Collinson LM, Larijani B. Acute depletion of diacylglycerol from the cis-Golgi affects localized nuclear envelope morphology during mitosis. J Lipid Res 2018; 59:1402-1413. [PMID: 29895700 PMCID: PMC6071775 DOI: 10.1194/jlr.m083899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/12/2018] [Indexed: 12/28/2022] Open
Abstract
Dysregulation of nuclear envelope (NE) assembly results in various cancers; for example, renal and some lung carcinomas ensue due to NE malformation. The NE is a dynamic membrane compartment and its completion during mitosis is a highly regulated process, but the detailed mechanism still remains incompletely understood. Previous studies have found that isolated diacylglycerol (DAG)-containing vesicles are essential for completing the fusion of the NE in nonsomatic cells. We investigated the impact of DAG depletion from the cis-Golgi in mammalian cells on NE reassembly. Using advanced electron microscopy, we observed an enriched DAG population of vesicles at the vicinity of the NE gaps of telophase mammalian cells. We applied a mini singlet oxygen generator-C1-domain tag that localized DAG-enriched vesicles at the perinuclear region, which suggested the existence of NE fusogenic vesicles. We quantified the impact of Golgi-DAG depletion by measuring the in situ NE rim curvature of the reforming NE. The rim curvature in these cells was significantly reduced compared with controls, which indicated a localized defect in NE morphology. Our novel results demonstrate the significance of the role of DAG from the cis-Golgi for the regulation of NE assembly.
Collapse
Affiliation(s)
- Gary Hong Chun Chung
- Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Research Centre for Experimental Marine Biology and Biotechnology (PiE) and Biofísika Institute (UPV/EHU, CSIC), University of the Basque Country, Barrio Sarriena s/n 48940, Leioa, Spain
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, Francis Crick Institute, London, United Kingdom
| | - Christopher Peddie
- Electron Microscopy Science Technology Platform, Francis Crick Institute, London, United Kingdom
| | - Judith Mantell
- School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Kieran Mclaverty
- Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Research Centre for Experimental Marine Biology and Biotechnology (PiE) and Biofísika Institute (UPV/EHU, CSIC), University of the Basque Country, Barrio Sarriena s/n 48940, Leioa, Spain
- School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Angela Arabiotorre
- Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Research Centre for Experimental Marine Biology and Biotechnology (PiE) and Biofísika Institute (UPV/EHU, CSIC), University of the Basque Country, Barrio Sarriena s/n 48940, Leioa, Spain
| | - Lorna Hodgson
- School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Richard D Byrne
- Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Research Centre for Experimental Marine Biology and Biotechnology (PiE) and Biofísika Institute (UPV/EHU, CSIC), University of the Basque Country, Barrio Sarriena s/n 48940, Leioa, Spain
| | - Paul Verkade
- School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| | - Kenton Arkill
- Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Research Centre for Experimental Marine Biology and Biotechnology (PiE) and Biofísika Institute (UPV/EHU, CSIC), University of the Basque Country, Barrio Sarriena s/n 48940, Leioa, Spain
- Division of Cancer and Stem Cells, The Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, Francis Crick Institute, London, United Kingdom
| | - Banafshé Larijani
- Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Research Centre for Experimental Marine Biology and Biotechnology (PiE) and Biofísika Institute (UPV/EHU, CSIC), University of the Basque Country, Barrio Sarriena s/n 48940, Leioa, Spain
| |
Collapse
|
2
|
Abstract
The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm-egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Raphaëlle Dubruille
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Béatrice Horard
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
3
|
Shi Z, Zhao C, Yang Y, Teng H, Guo Y, Ma M, Guo X, Zhou Z, Huo R, Zhou Q. Maternal PCBP1 determines the normal timing of pronucleus formation in mouse eggs. Cell Mol Life Sci 2015; 72:3575-86. [PMID: 25894693 PMCID: PMC11113936 DOI: 10.1007/s00018-015-1905-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 03/12/2015] [Accepted: 04/07/2015] [Indexed: 11/26/2022]
Abstract
In mammals, pronucleus formation, a landmark event for egg activation and fertilization, is critical for embryonic development. However, the mechanisms underlying pronucleus formation remain unclear. Increasing evidence has shown that the transition from a mature egg to a developing embryo and the early steps of development are driven by the control of maternal cytoplasmic factors. Herein, a two-dimensional-electrophoresis-based proteomic approach was used in metaphase II and parthenogenetically activated mouse eggs to search for maternal proteins involved in egg activation, one of which was poly(rC)-binding protein 1 (PCBP1). Phosphoprotein staining indicated that PCBP1 displayed dephosphorylation in parthenogenetically activated egg, which possibly boosts its ability to bind to mRNAs. We identified 75 mRNAs expressed in mouse eggs that contained the characteristic PCBP1-binding CU-rich sequence in the 3'-UTR. Among them, we focused on H2a.x mRNA, as it was closely related to pronucleus formation in Xenopus oocytes. Further studies suggested that PCBP1 could bind to H2a.x mRNA and enhance its stability, thus promoting mouse pronucleus formation during parthenogenetic activation of murine eggs, while the inhibition of PCBP1 evidently retarded pronucleus formation. In summary, these data propose that PCBP1 may serve as a novel maternal factor that is required for determining the normal timing of pronucleus formation.
Collapse
Affiliation(s)
- Zhonghua Shi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210011 People’s Republic of China
| | - Chun Zhao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210011 People’s Republic of China
| | - Ye Yang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210011 People’s Republic of China
| | - Hui Teng
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Ying Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Minyue Ma
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| |
Collapse
|
4
|
Boija A, Mannervik M. A time of change: Dynamics of chromatin and transcriptional regulation during nuclear programming in earlyDrosophiladevelopment. Mol Reprod Dev 2015; 82:735-46. [DOI: 10.1002/mrd.22517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Ann Boija
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - Mattias Mannervik
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| |
Collapse
|
5
|
Dynamics of PLCγ and Src family kinase 1 interactions during nuclear envelope formation revealed by FRET-FLIM. PLoS One 2012; 7:e40669. [PMID: 22848394 PMCID: PMC3404105 DOI: 10.1371/journal.pone.0040669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/11/2012] [Indexed: 01/10/2023] Open
Abstract
The nuclear envelope (NE) breaks down and reforms during each mitotic cycle. A similar process happens to the sperm NE following fertilisation. The formation of the NE in both these circumstances involves endoplasmic reticulum membranes enveloping the chromatin, but PLCγ-dependent membrane fusion events are also essential. Here we demonstrate the activation of PLCγ by a Src family kinase (SFK1) during NE assembly. We show by time-resolved FRET for the first time the direct in vivo interaction and temporal regulation of PLCγ and SFK1 in sea urchins. As a prerequisite for protein activation, there is a rapid phosphorylation of PLCγ on its Y783 residue in response to GTP in vitro. This phosphorylation is dependent upon SFK activity; thus Y783 phosphorylation and NE assembly are susceptible to SFK inhibition. Y783 phosphorylation is also observed on the surface of the male pronucleus (MPN) in vivo during NE formation. Together the corroborative in vivo and in vitro data demonstrate the phosphorylation and activation of PLCγ by SFK1 during NE assembly. We discuss the potential generality of such a mechanism.
Collapse
|
6
|
Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update 2008; 14:431-46. [DOI: 10.1093/humupd/dmn025] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
7
|
Larijani B, Poccia D. Protein and lipid signaling in membrane fusion: nuclear envelope assembly. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Sullivan EJ, Kasinathan S, Kasinathan P, Robl JM, Collas P. Cloned Calves from Chromatin Remodeled In Vitro1. Biol Reprod 2004; 70:146-53. [PMID: 13679310 DOI: 10.1095/biolreprod.103.021220] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have developed a novel system for remodeling mammalian somatic nuclei in vitro prior to cloning by nuclear transplantation. The system involves permeabilization of the donor cell and chromatin condensation in a mitotic cell extract to promote removal of nuclear factors solubilized during chromosome condensation. The condensed chromosomes are transferred into enucleated oocytes prior to activation. Unlike nuclei of nuclear transplant embryos, nuclei of chromatin transplant embryos exhibit a pattern of markers closely resembling that of normal embryos. Healthy calves were produced by chromatin transfer. Compared with nuclear transfer, chromatin transfer shows a trend toward greater survival of cloned calves up to at least 1 mo after birth. This is the first successful demonstration of a method for directly manipulating the somatic donor chromatin prior to transplantation. This procedure should be useful for investigating mechanisms of nuclear reprogramming and for making improvements in the efficiency of mammalian cloning.
Collapse
|
9
|
Harris HL, Braig HR. Sperm chromatin remodelling and Wolbachia-induced cytoplasmic incompatibility in Drosophila. Biochem Cell Biol 2003; 81:229-40. [PMID: 12897857 DOI: 10.1139/o03-053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Wolbachia pipientis is an obligate bacterial endosymbiont, which has successfully invaded approximately 20% of all insect species by manipulating their normal developmental patterns. Wolbachia-induced phenotypes include parthenogenesis, male killing, and, most notably, cytoplasmic incompatibility. In the future these phenotypes might be useful in controlling or modifying insect populations but this will depend on our understanding of the basic molecular processes underlying insect fertilization and development. Wolbachia-infected Drosophila simulans express high levels of cytoplasmic incompatibility in which the sperm nucleus is modified and does not form a normal male pronucleus when fertilizing eggs from uninfected females. The sperm modification is somehow rescued in eggs infected with the same strain of Wolbachia. Thus, D. simulans has become an excellent model organism for investigating the manner in which endosymbionts can alter reproductive programs in insect hosts. This paper reviews the current knowledge of Drosophila early development and particularly sperm function. Developmental mutations in Drosophila that are known to affect sperm function will also be discussed.incompatibility.
Collapse
Affiliation(s)
- Harriet L Harris
- School of Biological Sciences, University of Wales, Bangor, Gwyneed, United Kingdom.
| | | |
Collapse
|
10
|
Lénárt P, Ellenberg J. Nuclear envelope dynamics in oocytes: from germinal vesicle breakdown to mitosis. Curr Opin Cell Biol 2003; 15:88-95. [PMID: 12517709 DOI: 10.1016/s0955-0674(02)00011-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have recently gained new insight into the mechanisms involved in nuclear envelope breakdown, the irreversible step that commits a cell to the M phase. Results from mammalian cell and starfish oocyte studies suggest that mechanical forces of the cytoskeleton, as well as biochemical disassembly of nuclear envelope protein complexes, play important roles in this process.
Collapse
Affiliation(s)
- Péter Lénárt
- Gene Expression and Cell Biology/Biophysics Programmes, European Molecular Biology Laboratory, D-69117, Heidelberg, Germany
| | | |
Collapse
|
11
|
Hetzer M, Gruss OJ, Mattaj IW. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat Cell Biol 2002; 4:E177-84. [PMID: 12105431 DOI: 10.1038/ncb0702-e177] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The small GTPase Ran is a key regulator of nucleocytoplasmic transport during interphase. The asymmetric distribution of the GTP-bound form of Ran across the nuclear envelope--that is, large quantities in the nucleus compared with small quantities in the cytoplasm--determines the directionality of many nuclear transport processes. Recent findings that Ran also functions in spindle formation and nuclear envelope assembly during mitosis suggest that Ran has a general role in chromatin-centred processes. Ran functions in these events as a signal for chromosome position.
Collapse
Affiliation(s)
- Martin Hetzer
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
12
|
Yu J, Wolfner MF. The Drosophila nuclear lamina protein YA binds to DNA and histone H2B with four domains. Mol Biol Cell 2002; 13:558-69. [PMID: 11854412 PMCID: PMC65649 DOI: 10.1091/mbc.01-07-0336] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dramatic changes occur in nuclear organization and function during the critical developmental transition from meiosis to mitosis. The Drosophila nuclear lamina protein YA binds to chromatin and is uniquely required for this transition. In this study, we dissected YA's binding to chromatin. We found that YA can bind to chromatin directly and specifically. It binds to DNA but not RNA, with a preference for double-stranded DNA (linear or supercoiled) over single-stranded DNA. It also binds to histone H2B. YA's binding to DNA and histone H2B is mediated by four domains distributed along the length of the YA molecule. A model for YA function at the end of Drosophila female meiosis is proposed.
Collapse
Affiliation(s)
- Jing Yu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
13
|
Loppin B, Docquier M, Bonneton F, Couble P. The maternal effect mutation sésame affects the formation of the male pronucleus in Drosophila melanogaster. Dev Biol 2000; 222:392-404. [PMID: 10837127 DOI: 10.1006/dbio.2000.9718] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
After entering the oocyte and before the formation of the diploid zygote, the sperm nucleus is transformed into a male pronucleus, a process that involves a series of conserved steps in sexually reproducing animals. Notably, a major modification of the male gamete lies in the decondensation of the highly compact sperm chromatin. We present here the phenotype of sésame (ssm), a maternal effect mutation which affects the formation of the male pronucleus in Drosophila melanogaster. Homozygous ssm(185b) females produce haploid embryos which develop with only the maternally derived chromosomes. These haploid embryos die at the end of embryogenesis. Cytological analyses of the fertilization in eggs laid by ssm(185b) mutant females showed that both pronuclear migration and pronuclear apposition occurred normally. However, a dramatic alteration of the male pronucleus by which its chromatin failed to fully decondense was systematically observed. Consequently, the affected male pronucleus does not enter the first mitotic spindle, which is organized around only the maternally derived chromosomes. Immunodetection of lamina antigens indicates that a male pronuclear envelope is able to form around the partially decondensed paternal chromatin. This suggests that the maternally provided sésame(+) function is required for a late stage of sperm chromatin remodeling.
Collapse
Affiliation(s)
- B Loppin
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard-Lyon 1, 43, Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, France.
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- P Collas
- Institute of Medical Biochemistry, University of Oslo, Norway
| | | |
Collapse
|
15
|
Mori T, Amano T, Shimizu H. Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro. Biol Reprod 2000; 62:913-9. [PMID: 10727260 DOI: 10.1095/biolreprod62.4.913] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cumulus cells of the oocyte play important roles in in vitro maturation and subsequent development. One of the routes by which the factors are transmitted from cumulus cells to the oocyte is gap junctional communication (GJC). The function of cumulus cells in in vitro maturation of porcine oocytes was investigated by using a gap junction inhibitor, heptanol. Cumulus-oocyte complexes (COCs) were collected from the ovaries of slaughtered gilts by aspiration. After selection of COCs with intact cumulus cell layers and uniform cytoplasm, they were cultured in a medium with 0, 1, 5, or 10 mM of heptanol for 48 h. After culture in vitro, one group of oocytes was assessed for nuclear maturation and glutathione (GSH) content, and another group was assigned to in vitro fertilization and assessed for the penetrability of oocytes and the degree of progression to male pronuclei (MPN) of penetrated spermatozoa. At the end of in vitro maturation, the oocytes reached metaphase II at a high rate (about 80%) regardless of the presence of heptanol at various concentrations. Cumulus cell expansion and the morphology of oocytes cultured in the medium with heptanol were similar to those of control COCs matured without heptanol. The amount of GSH in cultured oocytes tended to decrease as the concentration of heptanol in the medium was increased. Although there was no difference in the rates of penetrated oocytes cultured in media with different concentrations of heptanol, the proportion of oocytes forming MPN after insemination decreased significantly (P < 0.01) at all concentrations tested. A higher rate of sperm (P < 0.01) failed to degrade their nuclear envelopes after penetration into the oocytes that were treated with heptanol. GJC between the oocyte and cumulus cells might play an important role in regulating the cytoplasmic factor(s) responsible for the removal of sperm nuclear envelopes as well as GSH inflow from cumulus cells.
Collapse
Affiliation(s)
- T Mori
- Animal Breeding and Reproduction, Division of Bioresources and Product Science, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | | | | |
Collapse
|
16
|
Haraguchi T, Koujin T, Hayakawa T, Kaneda T, Tsutsumi C, Imamoto N, Akazawa C, Sukegawa J, Yoneda Y, Hiraoka Y. Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes. J Cell Sci 2000; 113 ( Pt 5):779-94. [PMID: 10671368 DOI: 10.1242/jcs.113.5.779] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the times when the nuclear membrane, nuclear pore complex (NPC) components, and nuclear import function were recovered during telophase in living HeLa cells. Simultaneous observation of fluorescently-labeled NLS-bearing proteins, lamin B receptor (LBR)-GFP, and Hoechst33342-stained chromosomes revealed that nuclear membranes reassembled around chromosomes by 5 minutes after the onset of anaphase (early telophase) whereas nuclear import function was recovered later, at 8 minutes. GFP-tagged emerin also accumulated on chromosomes 5 minutes after the onset of anaphase. Interestingly, emerin and LBR initially accumulated at distinct, separate locations, but then became uniform 8 minutes after the onset of anaphase, concurrent with the recovery of nuclear import function. We further determined the timing of NPC assembly by immunofluorescence staining of cells fixed at precise times after the onset of anaphase. Taken together, these results showed that emerin, LBR, and several NPC components (RanBP2, Nup153, p62), but not Tpr, reconstitute around chromosomes very early in telophase prior to the recovery of nuclear import activity.
Collapse
Affiliation(s)
- T Haraguchi
- Kansai Advanced Research Center, Communications Research Laboratory, CREST Research Project, Japan Science and Technology Corporation, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Latham KE. Mechanisms and control of embryonic genome activation in mammalian embryos. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 193:71-124. [PMID: 10494621 DOI: 10.1016/s0074-7696(08)61779-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Activation of transcription within the embryonic genome (EGA) after fertilization is a complex process requiring a carefully coordinated series of nuclear and cytoplasmic events, which collectively ensure that the two parental genomes can be faithfully reprogrammed and restructured before transcription occurs. Available data indicate that inappropriate transcription of some genes during the period of nuclear reprogramming can have long-term detrimental effects on the embryo. Therefore, precise control over the time of EGA is essential for normal embryogenesis. In most mammals, genome activation occurs in a stepwise manner. In the mouse, for example, some transcription occurs during the second half of the one-cell stage, and then a much greater phase of genome activation occurs in two waves during the two-cell stage, with the second wave producing the largest onset of de novo gene expression. Changes in nuclear structure, chromatin structure, and cytoplasmic macromolecular content appear to regulate these periods of transcriptional activation. A model is presented in which a combination of cell cycle-dependent events and both translational and posttranslational regulatory mechanisms within the cytoplasm play key roles in mediating and regulating EGA.
Collapse
Affiliation(s)
- K E Latham
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| |
Collapse
|
18
|
Carroll DJ, Albay DT, Terasaki M, Jaffe LA, Foltz KR. Identification of PLCgamma-dependent and -independent events during fertilization of sea urchin eggs. Dev Biol 1999; 206:232-47. [PMID: 9986735 DOI: 10.1006/dbio.1998.9145] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At fertilization, sea urchin eggs undergo a series of activation events, including a Ca2+ action potential, Ca2+ release from the endoplasmic reticulum, an increase in intracellular pH, sperm pronuclear formation, MAP kinase dephosphorylation, and DNA synthesis. To examine which of these events might be initiated by activation of phospholipase Cgamma (PLCgamma), which produces the second messengers inositol trisphosphate (IP3) and diacylglycerol, we used recombinant SH2 domains of PLCgamma as specific inhibitors. Sea urchin eggs were co-injected with a GST fusion protein composed of the two tandem SH2 domains of bovine PLCgamma and (1) Ca2+ green dextran to monitor intracellular free Ca2+, (2) BCECF dextran to monitor intracellular pH, (3) Oregon Green dUTP to monitor DNA synthesis, or (4) fluorescein 70-kDa dextran to monitor nuclear envelope formation. Microinjection of the tandem SH2 domains of PLCgamma produced a concentration-dependent inhibition of Ca2+ release and also inhibited cortical granule exocytosis, cytoplasmic alkalinization, MAP kinase dephosphorylation, DNA synthesis, and cleavage after fertilization. However, the Ca2+ action potential, sperm entry, and sperm pronuclear formation were not prevented by injection of the PLCgammaSH2 domain protein. Microinjection of a control protein, the tandem SH2 domains of the phosphatase SHP2, had no effect on Ca2+ release, cortical granule exocytosis, DNA synthesis, or cleavage. Specificity of the inhibitory action of the PLCgammaSH2 domains was further indicated by the finding that microinjection of PLCgammaSH2 domains that had been point mutated at a critical arginine did not inhibit Ca release at fertilization. Additionally, Ca2+ release in response to microinjection of IP3, cholera toxin, cADP ribose, or cGMP was not inhibited by the PLCgammaSH2 fusion protein. These results indicate that PLCgamma plays a key role in several fertilization events in sea urchin eggs, including Ca2+ release and DNA synthesis, but that the action potential, sperm entry, and male pronuclear formation can occur in the absence of PLCgamma activation or Ca2+ increase.
Collapse
Affiliation(s)
- D J Carroll
- Department of Molecular, Cellular and Developmental Biology and the Marine Science Institute, University of California at Santa Barbara, 93106-9610, USA
| | | | | | | | | |
Collapse
|
19
|
Alsheimer M, Fecher E, Benavente R. Nuclear envelope remodelling during rat spermiogenesis: distribution and expression pattern of LAP2/thymopoietins. J Cell Sci 1998; 111 ( Pt 15):2227-34. [PMID: 9664044 DOI: 10.1242/jcs.111.15.2227] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lamina-associated polypeptide 2 (LAP2) and the thymopoietins (TPs) are a family of proteins described in somatic cells of mammals, which are derived by alternative splicing from a single gene. For one of the members of the family (LAP2 = TPbeta) it has been shown that this integral membrane protein locates to the inner membrane of the nuclear envelope, and that it binds to chromatin and B-type lamins. In the present study, we observed that during the third phase of spermatogenesis (i.e. spermiogenesis), TP-labelling shifted progressively to one half of the nuclear periphery in round spermatids. In the elongating spermatid the signal then becomes restricted to one spot located at the posterior (centriolar) pole of the nucleus. Changes in localization are accompanied by the disappearance, first of TPgamma, and later on of LAP2/TPbeta. TPalpha is the only member of the family detectable in the mature sperm. Concomitantly, lamin B1, the only nuclear lamina protein known to be expressed in mammalian spermatids, showed a similar behaviour, i.e. shifted progressively to the centriolar pole of spermatid nuclei before it became undetectable in fully differentiated mature sperms. These results are the first demonstration that expression and localization patterns of TPs are coordinately and differentially regulated with lamins during a differentiation process.
Collapse
Affiliation(s)
- M Alsheimer
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute (Biocenter), University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | |
Collapse
|