1
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
2
|
Zheng X, Yang J, Hou Y, Fang Y, Wu K, Song Y, Liu K, Zhu J. Current non-invasive strategies for brain drug delivery: overcoming blood-brain barrier transport. Mol Biol Rep 2023; 51:25. [PMID: 38127178 DOI: 10.1007/s11033-023-08968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/23/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The blood-brain barrier (BBB) is a complex and dynamic structure that serves as a gatekeeper, restricting the migrations of most compounds and molecules from blood into the central nervous system (CNS). The BBB plays a crucial role in maintaining CNS physiological function and brain homeostasis. It can protect the CNS from the entrance of toxic and infectious agents, however, it also restricts the drug permeation into brain to play a therapeutic role. The BBB has been the biggest limiting hurdle to medications entering the brain excluding from the brain about 100% of large-molecule and more than 98% of all small-molecule neurotherapeutics. As a result, it is of inability for drug molecule to reach requisite concentrations within the brain. OBJECTIVE With the aim of enhancing drug permeability and efficacy, a variety of strategies have been developed: invasive approaches, such as intraarterial delivery, intrathecal delivery, or administrating directly the drug intraventricularly and intracerebrally; non-invasive approaches that take advantage of innate BBB functions, using prodrugs, focused ultrasound, intranasal administration or nanotechnology. CONCLUSIONS Here we mainly review recent developments and challenges related to non-invasive BBB-crossing techniques, whose benefits include higher efficacy, easier application, less treatment burden, better patient acceptability, and adherence. Additionally, we also analyze the potential of non-invasive methods in the treatment of CNS disorders and render them as a most suitable platform for the management of neurological diseases.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- Department of Neurology, Neuroscience Center, First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Jingyao Yang
- School of Basic Medical Sciences, Institute of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yiwei Hou
- Department of Neurology, Neuroscience Center, First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yong Fang
- Department of Neurology, Neuroscience Center, First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Kaiyu Wu
- Department of Neurology, Neuroscience Center, First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yanna Song
- Department of Neurology, Neuroscience Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kangding Liu
- Department of Neurology, Neuroscience Center, First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital, Solna, Stockholm, Sweden.
| |
Collapse
|
3
|
Butranova OI, Ushkalova EA, Zyryanov SK, Chenkurov MS, Baybulatova EA. Pharmacokinetics of Antibacterial Agents in the Elderly: The Body of Evidence. Biomedicines 2023; 11:1633. [PMID: 37371728 DOI: 10.3390/biomedicines11061633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Infections are important factors contributing to the morbidity and mortality among elderly patients. High rates of consumption of antimicrobial agents by the elderly may result in increased risk of toxic reactions, deteriorating functions of various organs and systems and leading to the prolongation of hospital stay, admission to the intensive care unit, disability, and lethal outcome. Both safety and efficacy of antibiotics are determined by the values of their plasma concentrations, widely affected by physiologic and pathologic age-related changes specific for the elderly population. Drug absorption, distribution, metabolism, and excretion are altered in different extents depending on functional and morphological changes in the cardiovascular system, gastrointestinal tract, liver, and kidneys. Water and fat content, skeletal muscle mass, nutritional status, use of concomitant drugs are other determinants of pharmacokinetics changes observed in the elderly. The choice of a proper dosing regimen is essential to provide effective and safe antibiotic therapy in terms of attainment of certain pharmacodynamic targets. The objective of this review is to perform a structure of evidence on the age-related changes contributing to the alteration of pharmacokinetic parameters in the elderly.
Collapse
Affiliation(s)
- Olga I Butranova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Ushkalova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sergey K Zyryanov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- State Budgetary Institution of Healthcare of the City of Moscow "City Clinical Hospital No. 24 of the Moscow City Health Department", Pistzovaya Srt. 10, 127015 Moscow, Russia
| | - Mikhail S Chenkurov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Baybulatova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| |
Collapse
|
4
|
Salem F, Small BG, Johnson TN. Development and application of a pediatric mechanistic kidney model. CPT Pharmacometrics Syst Pharmacol 2022; 11:854-866. [PMID: 35506351 PMCID: PMC9286721 DOI: 10.1002/psp4.12798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
Pediatric physiologically‐based pharmacokinetic (P‐PBPK) models have been used to predict age related changes in the pharmacokinetics (PKs) of renally cleared drugs mainly in relation to changes in glomerular filtration rate. With emerging data on ontogeny of renal transporters, mechanistic models of renal clearance accounting for the role of active and passive secretion should be developed and evaluated. Data on age‐related physiological changes and ontogeny of renal transporters were applied into a mechanistic kidney within a P‐PBPK model. Plasma concentration–time profile and PK parameters of cimetidine, ciprofloxacin, metformin, tenofovir, and zidovudine were predicted in subjects aged 1 day to 18 years. The predicted and observed plasma concentration–time profiles and PK parameters were compared. The predicted concentration–time profile means and 5th and 95th percent intervals generally captured the observed data and variability in various studies. Overall, based on drugs and age bands, predicted to observed clearance were all within two‐fold and in 11 of 16 cases within 1.5‐fold. Predicted to observed area under the curve (AUC) and maximum plasma concentration (Cmax) were within two‐fold in 12 of 14 and 12 of 15 cases, respectively. Predictions in neonates and early infants (up to 14 weeks postnatal age) were reasonable with 15–20 predicted PK parameters within two‐fold of the observed. ciprofloxacin but not zidovudine PK predictions were sensitive to basal kidney uptake transporter ontogeny. The results indicate that a mechanistic kidney model accounting for physiology and ontogeny of renal processes and transporters can predict the PK of renally excreted drugs in children. Further data especially in neonates are required to verify the model and ontogeny profiles.
Collapse
Affiliation(s)
- Farzaneh Salem
- Drug Metabolism and Pharmacokinetics GlaxoSmithKline R&D Ware UK
| | | | | |
Collapse
|
5
|
Jin L, Pan Y, Tran NLL, Polychronopoulos LN, Warrier A, Brouwer KLR, Nicolazzo JA. Intestinal Permeability and Oral Absorption of Selected Drugs Are Reduced in a Mouse Model of Familial Alzheimer's Disease. Mol Pharm 2020; 17:1527-1537. [PMID: 32212738 DOI: 10.1021/acs.molpharmaceut.9b01227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Compared with the significant number of studies reporting altered abundance and function of drug transporters at the blood-brain barrier (BBB) in Alzheimer's disease (AD), the impact of AD on the abundance of intestinal drug transporters and the subsequent effects on oral drug absorption have received little attention. We have reported the altered abundance of some small intestinal drug transporters in a familial mouse model of AD; however, whether this leads to altered oral drug absorption is unknown. The current study examined plasma concentrations of caffeine and diazepam (markers for transcellular passive transport), digoxin (P-glycoprotein substrate), and valsartan (multidrug resistance-associated protein 2 substrate) following oral administration to 8-10 month old female wild-type (WT) and APPswe/PSEN1dE9 (APP/PS1) transgenic mice, a commonly used mouse model of familial AD. The plasma exposure of valsartan and digoxin was significantly (p < 0.05) lower in APP/PS1 animals compared with WT mice, whereas the plasma concentrations of the passive transcellular markers caffeine and diazepam did not significantly differ between the two genotypes. To assess whether the reduced oral absorption of valsartan and digoxin was due to decreased intestinal transport, the ex vivo transport of the previously mentioned drugs and mannitol (a marker of paracellular transport) across the jejunum of WT and APP/PS1 mice was assessed over 120 min. In line with the in vivo absorption studies, the permeability of caffeine and diazepam did not significantly differ between WT and APP/PS1 mice. The permeability of 3H-digoxin through the APP/PS1 mouse jejunum was lower than that measured through the WT jejunum; the average amount (relative to dose applied) permeating the tissue over 120 min was 0.22 ± 0.11% (mean ± SD) for the APP/PS1 jejunum and 0.85 ± 0.3% for the WT jejunum. A 1.9-fold reduction in the average amount of valsartan permeating the jejunum of APP/PS1 mice relative to that of WT mice was also detected. Although no apparent morphological alterations were observed in the jejunal tissue of APP/PS1 mice, the permeability of 14C-mannitol across the jejunum from APP/PS1 mice was lower than that across the WT jejunum (Papp= 10.7 ± 3.7 × 10-6 and 6.0 ± 3.4 × 10-6 cm/s, respectively), suggesting tightened paracellular junctions in APP/PS1 mice. These studies are the first to demonstrate, in APP/PS1 mice, reduced intestinal permeability and the absorption of drugs commonly prescribed to people with AD for their comorbidities. If these findings translate to people with AD, then modified dosing regimens may be necessary for selected drugs to ensure that their plasma concentrations remain in the effective range.
Collapse
Affiliation(s)
- Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Natalie Lan Linh Tran
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Leon N Polychronopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Aparna Warrier
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
6
|
Erdő F, Krajcsi P. Age-Related Functional and Expressional Changes in Efflux Pathways at the Blood-Brain Barrier. Front Aging Neurosci 2019; 11:196. [PMID: 31417399 PMCID: PMC6682691 DOI: 10.3389/fnagi.2019.00196] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
During the last decade, several articles have reported a relationship between advanced age and changes in the integrity of the blood-brain barrier (BBB). These changes were manifested not only in the morphology and structure of the cerebral microvessels but also in the expression and function of the transporter proteins in the luminal and basolateral surfaces of the capillary endothelial cells. Age-associated downregulation of the efflux pumps ATP-binding cassette transporters (ABC transporters) resulted in increased permeability and greater brain exposure to different xenobiotics and their possible toxicity. In age-related neurodegenerative pathologies like Alzheimer's disease (AD), the amyloid-β (Aβ) clearance decreased due to P-glycoprotein (P-gp) dysfunction, leading to higher brain exposure. In stroke, however, an enhanced P-gp function was reported in the cerebral capillaries, making it even more difficult to perform effective neuroprotective therapy in the infarcted brain area. This mini-review article focuses on the efflux functions of the transporters and receptors of the BBB in age-related brain pathologies and also in healthy aging.
Collapse
Affiliation(s)
- Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Péter Krajcsi
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,Solvo Biotechnology, A Charles River Company, Budapest, Hungary.,Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Han LW, Gao C, Mao Q. An update on expression and function of P-gp/ABCB1 and BCRP/ABCG2 in the placenta and fetus. Expert Opin Drug Metab Toxicol 2018; 14:817-829. [PMID: 30010462 DOI: 10.1080/17425255.2018.1499726] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION P-glycoprotein (P-gp)/ABCB1 and breast cancer resistance protein (BCRP)/ABCG2 are highly expressed in the placenta and fetus throughout gestation and can modulate exposure and toxicity of drugs and xenobiotics to the vulnerable fetus during the sensitive times of growth and development. We aim to provide an update on current knowledge on placental and fetal expressions of the two transporters in different species, and to provide insight on interpreting transporter expression and fetal exposure relative to the concept of fraction of drug transported. Areas covered: Comprehensive literature review through PubMed (primarily from July 2010 to February 2018) on P-gp and BCRP expression and function in the placenta and fetus of primarily human, mouse, rat, and guinea pig. Expert opinion: While there are many commonalities in the expression and function of P-gp and BCRP in the placenta and fetal tissues across species, there are distinct differences in expression levels and temporal changes. Further studies are needed to quantify protein abundance of these transporters and functionally assess their activities at various gestational stages. Combining the knowledge of interspecies differences and the concept of fraction of drug transported, we may better predict the magnitude of impact these transporters have on fetal drug exposure.
Collapse
Affiliation(s)
- Lyrialle W Han
- a Department of Pharmaceutics, School of Pharmacy , University of Washington , Seattle , WA , USA
| | - Chunying Gao
- a Department of Pharmaceutics, School of Pharmacy , University of Washington , Seattle , WA , USA
| | - Qingcheng Mao
- a Department of Pharmaceutics, School of Pharmacy , University of Washington , Seattle , WA , USA
| |
Collapse
|
8
|
Cellular Models and In Vitro Assays for the Screening of modulators of P-gp, MRP1 and BCRP. Molecules 2017; 22:molecules22040600. [PMID: 28397762 PMCID: PMC6153761 DOI: 10.3390/molecules22040600] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are highly expressed in tumor cells, as well as in organs involved in absorption and secretion processes, mediating the ATP-dependent efflux of compounds, both endogenous substances and xenobiotics, including drugs. Their expression and activity levels are modulated by the presence of inhibitors, inducers and/or activators. In vitro, ex vivo and in vivo studies with both known and newly synthesized P-glycoprotein (P-gp) inducers and/or activators have shown the usefulness of these transport mechanisms in reducing the systemic exposure and specific tissue access of potentially harmful compounds. This article focuses on the main ABC transporters involved in multidrug resistance [P-gp, multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP)] expressed in tissues of toxicological relevance, such as the blood-brain barrier, cardiovascular system, liver, kidney and intestine. Moreover, it provides a review of the available cellular models, in vitro and ex vivo assays for the screening and selection of safe and specific inducers and activators of these membrane transporters. The available cellular models and in vitro assays have been proposed as high throughput and low-cost alternatives to excessive animal testing, allowing the evaluation of a large number of compounds.
Collapse
|
9
|
Desaulniers D, Cooke GM, Leingartner K, Soumano K, Cole J, Yang J, Wade M, Yagminas A. Effects of Postnatal Exposure to a Mixture of Polychlorinated Biphenyls, p,p′-dichlorodiphenyltrichloroethane, and p-p′-dichlorodiphenyldichloroethene in Prepubertal and Adult Female Sprague-Dawley Rats. Int J Toxicol 2016; 24:111-27. [PMID: 16036770 DOI: 10.1080/10915810590936382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The postnatal period is a critical phase of development and a time during which humans are exposed to higher levels of persistent organic pollutants (POPs), than during subsequent periods of life. There is a paucity of information describing effects of postnatal exposure to environmentally relevant mixtures of POPs, such as polychlorinated biphenyls (PCBs), p,p′-dichlorodiphenyltrichloroethane (DDT), and p,p′-dichlorodiphenyldichloroethene (DDE). To provide data useful for the risk assessment of postnatal exposure to POPs, mixtures containing 19 PCBs, DDT, and DDE were prepared according to their concentrations previously measured in the milk of Canadian women, and dose-response effects were tested on the proliferation of MCF7-E3 cells in vitro, and in vivo experiments. Female neonates were exposed by gavage at postnatal days (PNDs) 1, 5, 10, 15, and 20 with dosages equivalent to 10, 100, and 1000 times the estimated human exposure level over the first 24 days of life. The MCF7-E3 cells showed a 227% increase in the AlamarBlue proliferation index, suggesting estrogen-like properties of the mixture, but this was not confirmed in vivo, given the absence of uterotrophic effects at PND21. An increase (511%) in hepatic ethoxyresorufin- o-deethylase activity at the dose 100 × was the most sensitive endpoint among those measured at PND21 (organ weight, mammary gland and ovarian morphometry, hepatic enzyme inductions, serum thyroxine and pituitary hormones). In liver samples from older female rats (previously involved in a mammary tumor study [Desaulniers et al., Toxicol. Sci. 75:468–480, 2001]), hepatic metabolism of 14C-estradiol-17 β (E2) at PND55 to PND62 was significantly higher in the 1000 × compared to the control group, but hepatic detoxification enzyme activities had already returned to control values. The production of hepatic 2-hydroxy-E2 decreased, whereas that of estrone increased with age. In conclusion, the smallest dose of the mixture to induce significant effects was 100×, and mixture-induced changes in the hepatic metabolism of estrogens might be a sensitive indicator of persistent effects.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
P-glycoprotein in the developing human blood-brain barrier. Pediatr Res 2016; 79:806. [PMID: 26756782 DOI: 10.1038/pr.2016.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/21/2015] [Indexed: 11/08/2022]
|
11
|
Soares RV, Do TM, Mabondzo A, Pons G, Chhun S. Ontogeny of ABC and SLC transporters in the microvessels of developing rat brain. Fundam Clin Pharmacol 2016; 30:107-16. [PMID: 26662930 DOI: 10.1111/fcp.12175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 01/01/2023]
Abstract
The blood-brain barrier (BBB) is responsible for the control of solutes' concentration in the brain. Tight junctions and multiple ATP-binding cassette (ABC) and SoLute Carrier (SLC) efflux transporters protect brain cells from xenobiotics, therefore reducing brain exposure to intentionally administered drugs. In epilepsy, polymorphisms and overexpression of efflux transporters genes could be associated with pharmacoresistance. The ontogeny of these efflux transporters should also be addressed because their expression during development may be related to different brain exposure to antiepileptic drugs in the immature brain. We detected statistically significant higher expression of Abcb1b and Slc16a1 genes, and lower expression of Abcb1a and Abcg2 genes between the post-natal day 14 (P14) and the adult rat microvessels. P-gP efflux activity was also shown to be lower in P14 rats when compared with the adults. The P-gP proteins coded by rodent genes Abcb1a and Abcb1b are known to have different substrate affinities. The role of the Abcg2 gene is less clear in pharmacoresistance in epilepsy, nonetheless the coded protein Bcrp is frequently associated with drug resistance. Finally, we observed a higher expression of the Mct1 transporter gene in the P14 rat brain microvessels. Accordingly to our results, we suppose that age may be another factor influencing brain exposure to antiepileptics as a consequence of different expression patterns of efflux transporters between the adult and immature BBB.
Collapse
Affiliation(s)
- Ricardo V Soares
- Inserm U1129, Paris, France.,University Paris Descartes, Faculty of Medicine, Paris, France.,CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Tuan M Do
- CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Aloïse Mabondzo
- CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Gérard Pons
- Inserm U1129, Paris, France.,University Paris Descartes, Faculty of Medicine, Paris, France
| | - Stéphanie Chhun
- University Paris Descartes, Faculty of Medicine, Paris, France.,Inserm U1151, INEM, Paris, France.,APHP, Hôpital Universitaire Necker-Enfants Malades, Laboratoire d'immunologie biologique, Paris, France
| |
Collapse
|
12
|
Cerveny L, Neumanova Z, Karbanova S, Havlova I, Staud F. Long-term administration of tenofovir or emtricitabine to pregnant rats; effect on Abcb1a, Abcb1b and Abcg2 expression in the placenta and in maternal and fetal organs. ACTA ACUST UNITED AC 2016; 68:84-92. [PMID: 26727197 DOI: 10.1111/jphp.12495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/17/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Tenofovir and emtricitabine are very effective and well-tolerated antiretrovirals representing current backbone of the antiretroviral combination regimens for the prevention of perinatal HIV transmission. The aim of our study was to determine whether tenofovir or emtricitabine administered in long-term fashion affect expression of two widely described pharmacokinetic determinants, P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2), in maternal or fetal biological tissues. METHODS For this purpose, pregnant Wistar rats were administered tenofovir (2.25 mg/kg/day), emtricitabine (3.5 mg/kg/day) or saline i.m. for 10 days (from the 12th to 21st gestation day). On the 22nd day, the placenta and maternal/fetal intestine, brain, kidneys and liver were sampled and analysed for Abcb1a, Abcb1b and Abcg2 expression; placental and newborns' weights were also monitored. KEY FINDINGS We found that long-term application of tenofovir or emtricitabine did not significantly affect expression of Abcb1a, Abcb1b and Abcg2 in either maternal or fetal organs. However, tenofovir administration significantly increased placenta-to-birthweight ratio, a strong indicator of various diseases occurring later in life. CONCLUSIONS Our data broaden current knowledge on safety profile of tenofovir and emtricitabine use in pregnancy. Nevertheless, further research in other mammal species, including humans, is important to fully elucidate this issue.
Collapse
Affiliation(s)
- Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Zuzana Neumanova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Sara Karbanova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Ivana Havlova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
P-glycoprotein in the developing human brain: a review of the effects of ontogeny on the safety of opioids in neonates. Ther Drug Monit 2015; 36:699-705. [PMID: 24819966 DOI: 10.1097/ftd.0000000000000087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human blood brain barrier is responsible for maintaining brain homeostasis and protecting against potentially toxic substances. The ATP-binding cassette drug efflux protein, P-glycoprotein (P-gp) is a key player in actively extruding a wide range of xenobiotics such as opioids from the brain. Because the blood brain barrier is structurally and functionally immature in neonates, opioids may have a greater penetration to the central nervous system. This may influence the efficacy and safety of opioids in the newborn. Understanding the extent of P-gp's expression in the brain in the embryo, fetus, and newborn will facilitate rational opioid use during pregnancy and the neonatal period. This review aims to summarize the current evidence that associates the ontogeny of P-gp and the susceptibility to opioid-induced adverse respiratory effects in neonates. To date, evidence suggests that the expression of P-gp in the human brain is low at birth, contributing to increased susceptibility.
Collapse
|
14
|
Emich-Widera E, Likus W, Kazek B, Sieroń AL, Urbanek K. Polymorphism of ABCB1/MDR1 C3435T in children and adolescents with partial epilepsy is due to different criteria for drug resistance - preliminary results. Med Sci Monit 2014; 20:1654-61. [PMID: 25223475 PMCID: PMC4173802 DOI: 10.12659/msm.890633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background The diagnosis of “drug resistance” in epilepsy can be defined and interpreted in various ways. This may be due to discrepant definitions of drug resistance to pharmacotherapy. The aim of our study was to investigate the relationship between C3435T polymorphism of the MDR1 gene and drug resistance in epilepsy with the consideration of 4 different criteria for qualification to groups sensitive and resistant to applied pharmacotherapy. Material/Methods Evaluation of C3435T polymorphism of MDR1/ABCB1 gene was conducted on a group of 82 white children and young adolescents up to 18 years old. While qualifying the patients to the group of sensitive or drug resistant, the following 4 definitions of drug resistance were applied: the ILAE’s, Appleton’s, Siddiqui’s, and Berg’s. Results A detailed analysis of genotypes of the MDR1 gene did not show any significant discrepancies between the groups of patients resistant and sensitive to antiepileptic drugs (AEDs) in 4 consecutive comparisons taking into consideration various criteria of sensitivity and resistance to pharmacotherapy. Conclusions The obtained results clearly confirm the lack of a connection between the occurrence of drug-resistant epilepsy and C435T polymorphism of the MDR1 gene irrespective of the definition of drug resistance applied to the patient.
Collapse
Affiliation(s)
- Ewa Emich-Widera
- Department of Neuropediatrics, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Wirginia Likus
- Department of Human Anatomy, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Beata Kazek
- Department of Neuropediatrics, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Aleksander L Sieroń
- Department of General and Molecular Biology and Genetics, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Ksymena Urbanek
- Department of General and Molecular Biology and Genetics, School of Medicine, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
15
|
Abstract
Background Venous thromboembolism has been increasingly recognised as a clinical problem in the paediatric population. Guideline recommendations for antithrombotic therapy in paediatric patients are based mainly on extrapolation from adult clinical trial data, owing to the limited number of clinical trials in paediatric populations. The oral, direct Factor Xa inhibitor rivaroxaban has been approved in adult patients for several thromboembolic disorders, and its well-defined pharmacokinetic and pharmacodynamic characteristics and efficacy and safety profiles in adults warrant further investigation of this agent in the paediatric population. Objective The objective of this study was to develop and qualify a physiologically based pharmacokinetic (PBPK) model for rivaroxaban doses of 10 and 20 mg in adults and to scale this model to the paediatric population (0–18 years) to inform the dosing regimen for a clinical study of rivaroxaban in paediatric patients. Methods Experimental data sets from phase I studies supported the development and qualification of an adult PBPK model. This adult PBPK model was then scaled to the paediatric population by including anthropometric and physiological information, age-dependent clearance and age-dependent protein binding. The pharmacokinetic properties of rivaroxaban in virtual populations of children were simulated for two body weight-related dosing regimens equivalent to 10 and 20 mg once daily in adults. The quality of the model was judged by means of a visual predictive check. Subsequently, paediatric simulations of the area under the plasma concentration–time curve (AUC), maximum (peak) plasma drug concentration (Cmax) and concentration in plasma after 24 h (C24h) were compared with the adult reference simulations. Results Simulations for AUC, Cmax and C24h throughout the investigated age range largely overlapped with values obtained for the corresponding dose in the adult reference simulation for both body weight-related dosing regimens. However, pharmacokinetic values in infants and preschool children (body weight <40 kg) were lower than the 90 % confidence interval threshold of the adult reference model and, therefore, indicated that doses in these groups may need to be increased to achieve the same plasma levels as in adults. For children with body weight between 40 and 70 kg, simulated plasma pharmacokinetic parameters (Cmax, C24h and AUC) overlapped with the values obtained in the corresponding adult reference simulation, indicating that body weight-related exposure was similar between these children and adults. In adolescents of >70 kg body weight, the simulated 90 % prediction interval values of AUC and C24h were much higher than the 90 % confidence interval of the adult reference population, owing to the weight-based simulation approach, but for these patients rivaroxaban would be administered at adult fixed doses of 10 and 20 mg. Conclusion The paediatric PBPK model developed here allowed an exploratory analysis of the pharmacokinetics of rivaroxaban in children to inform the dosing regimen for a clinical study in paediatric patients. Electronic supplementary material The online version of this article (doi:10.1007/s40262-013-0090-5) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Wlcek K, Stieger B. ATP-binding cassette transporters in liver. Biofactors 2014; 40:188-98. [PMID: 24105869 DOI: 10.1002/biof.1136] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/13/2023]
Abstract
The human ATP-binding cassette (ABC) superfamily consists of 48 members with 14 of them identified in normal human liver at the protein level. Most of the ABC members act as ATP dependent efflux transport systems. In the liver, ABC transporters are involved in diverse physiological processes including export of cholesterol, bile salts, and metabolic endproducts. Consequently, impaired ABC transporter function is involved in inherited diseases like sitosterolemia, hyperbilirubinemia, or cholestasis. Furthermore, altered expression of some of the hepatic ABCs have been associated with primary liver tumors. This review gives a short overview about the function of hepatic ABCs. Special focus is addressed on the localization and ontogenesis of ABC transporters in the human liver. In addition, their expression pattern in primary liver tumors is discussed.
Collapse
Affiliation(s)
- Katrin Wlcek
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
17
|
Hoffmann P, Beckman D, McLean LA, Yan JH. Aliskiren toxicity in juvenile rats is determined by ontogenic regulation of intestinal P-glycoprotein expression. Toxicol Appl Pharmacol 2014; 275:36-43. [PMID: 24388840 DOI: 10.1016/j.taap.2013.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 11/28/2022]
Abstract
Juvenile rat toxicity studies with the direct renin inhibitor aliskiren were initiated to support treatment in the pediatric population. In Study 1, aliskiren was administered orally to juvenile rats at doses of 0, 30, 100 or 300 mg/kg/day with repeated dosing from postpartum day (PPD) 8 to PPD 35/36. In-life, clinical pathology, anatomic pathology, and toxicokinetics evaluations were performed. In Study 2, single oral doses of aliskiren (0, 100 or 300 mg/kg) were given to 14-, 21-, 24-, 28-, 31- or 36-day-old rats; in-life data and toxicokinetics were evaluated. Study 3 was a single dose (3 mg/kg i.v.) pharmacokinetic study in juvenile rats on PPD 8, 14, 21 and 28. In Study 4, naïve rats were used to investigate ontogenic changes of the multidrug-resistant protein 1 (MDR1) and the organic anion transporting polypeptide (OATP) mRNA in several organs. Oral administration of aliskiren at 100 and 300 mg/kg caused unexpected mortality and severe morbidity in 8-day-old rats. Aliskiren plasma and tissue concentrations were increased in rats aged 21days and younger. Expression of MDR1 and OATP mRNA in the intestine, liver and brain was significantly lower in very young rats. In conclusion, severe toxicity and increased exposure in very young rats after oral administration of aliskiren are considered to be the result of immature drug transporter systems. Immaturity of MDR1 in enterocytes appears to be the most important mechanism responsible for the high exposure.
Collapse
Affiliation(s)
- Peter Hoffmann
- Preclinical Safety, Novartis Institutes for BioMedical Research, East Hanover, NJ, USA.
| | - David Beckman
- Preclinical Safety, Novartis Institutes for BioMedical Research, East Hanover, NJ, USA
| | - Lee Anne McLean
- Preclinical Safety, Novartis Institutes for BioMedical Research, East Hanover, NJ, USA
| | - Jing-He Yan
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research, East Hanover, NJ, USA
| |
Collapse
|
18
|
Establishment of metabolism and transport pathways in the rodent and human fetal liver. Int J Mol Sci 2013; 14:23801-27. [PMID: 24322441 PMCID: PMC3876079 DOI: 10.3390/ijms141223801] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/16/2022] Open
Abstract
The ultimate fate of drugs and chemicals in the body is largely regulated by hepatic uptake, metabolism, and excretion. The liver acquires the functional ability to metabolize and transport chemicals during the perinatal period of development. Research using livers from fetal and juvenile rodents and humans has begun to reveal the timing, key enzymes and transporters, and regulatory factors that are responsible for the establishment of hepatic phase I and II metabolism as well as transport. The majority of this research has been limited to relative mRNA and protein quantification. However, the recent utilization of novel technology, such as RNA-Sequencing, and the improved availability and refinement of functional activity assays, has begun to provide more definitive information regarding the extent of hepatic drug disposition in the developing fetus. The goals of this review are to provide an overview of the early regulation of the major phase I and II enzymes and transporters in rodent and human livers and to highlight potential mechanisms that control the ontogeny of chemical metabolism and excretion pathways.
Collapse
|
19
|
Guo M, Bughio S, Sun Y, Zhang Y, Dong L, Dai X, Wang L. Age-related P-glycoprotein expression in the intestine and affecting the pharmacokinetics of orally administered enrofloxacin in broilers. PLoS One 2013; 8:e74150. [PMID: 24066110 PMCID: PMC3774662 DOI: 10.1371/journal.pone.0074150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/27/2013] [Indexed: 01/02/2023] Open
Abstract
Bioavailability is the most important factor for the efficacy of any drug and it is determined by P- glycoprotein (P-gp) expression. Confirmation of P-gp expression during ontogeny is needed for understanding the differences in therapeutic efficacy of any drug in juvenile and adult animals. In this study, Abcb1 mRNA levels in the liver and intestine of broilers during ontogeny were analysed by RT qPCR. Cellular distribution of P-gp was detected by immunohistochemstry. Age-related differences of enrofloxacin pharmacokinetics were also studied. It was found that broilers aged 4 week-old expressed significantly (P<0.01) higher levels of P-gp mRNA in the liver, jejunum and ileum, than at other ages. However, there was no significant (P>0.05) age-related difference in the duodenum. Furthermore, the highest and lowest levels of Abcb1 mRNA expression were observed in the jejunum, and duodenum, respectively. P-gp immunoreactivity was detected on the apical surface of the enterocytes and in the bile canalicular membranes of the hepatocytes. Pharmacokinetic analysis revealed that the 8 week-old broilers, when orally administrated enrofloxacin, exhibited significantly higher Cmax (1.97 vs. 0.98 μg•ml-1, P=0.009), AUC(14.54 vs. 9.35 μg•ml-1•h, P=0.005) and Ka (1.38 vs. 0.43 h-1, P=0.032), as well as lower Tpeak (1.78 vs. 3.28 h, P=0.048) and T1/2ka (0.6 vs. 1.64 h, P=0.012) than the 4 week-old broilers. The bioavailability of enrofloxacin in 8 week-old broilers was increased by 15.9%, compared with that in 4 week-old birds. Interestingly, combining verapamil, a P-gp modulator, significantly improved pharmacokinetic behaviour of enrofloxacin in all birds. The results indicate juvenile broilers had a higher expression of P-gp in the intestine, affecting the pharmacokinetics and reducing the bioavailability of oral enrofloxacin in broilers. On the basis of our results, it is recommended that alternative dose regimes are necessary for different ages of broilers for effective therapy.
Collapse
Affiliation(s)
- Mengjie Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Shamsuddin Bughio
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Yong Sun
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Yu Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Lingling Dong
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Xiaohua Dai
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Liping Wang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
- * E-mail:
| |
Collapse
|
20
|
Funk RS, Brown JT, Abdel-Rahman SM. Pediatric pharmacokinetics: human development and drug disposition. Pediatr Clin North Am 2012; 59:1001-16. [PMID: 23036241 DOI: 10.1016/j.pcl.2012.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Human development is described by the various anatomic and physiologic changes that occur as the single-celled zygote matures into an adult human being. Concomitant with bodily maturation are changes in the complex interactions between pharmacologic agents and the biologic matrix that is the human body. Profound changes in the manner by which drugs traverse the body during development can have significant implications in drug efficacy and toxicity. Although not a replacement for well-conducted, pediatric, pharmacokinetic studies, an understanding of developmental biology and the mechanisms for drug disposition invariably assists the pediatric clinician with the judicious use of medications in children.
Collapse
Affiliation(s)
- Ryan S Funk
- Division of Clinical Pharmacology and Medical Toxicology, Children's Mercy Hospitals and Clinics, 2401 Gillham Road, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
21
|
Saghir SA, Khan SA, McCoy AT. Ontogeny of mammalian metabolizing enzymes in humans and animals used in toxicological studies. Crit Rev Toxicol 2012; 42:323-57. [PMID: 22512665 DOI: 10.3109/10408444.2012.674100] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It is well recognized that expression of enzymes varies during development and growth. However, an in-depth review of this acquired knowledge is needed to translate the understanding of enzyme expression and activity into the prediction of change in effects (e.g. kinetics and toxicity) of xenobiotics with age. Age-related changes in metabolic capacity are critical for understanding and predicting the potential differences resulting from exposure. Such information may be especially useful in the evaluation of the risk of exposure to very low (µg/kg/day or ng/kg/day) levels of environmental chemicals. This review is to better understand the ontogeny of metabolizing enzymes in converting chemicals to either less-toxic metabolite(s) or more toxic products (e.g. reactive intermediate[s]) during stages before birth and during early development (neonate/infant/child). In this review, we evaluated the ontogeny of major "phase I" and "phase II" metabolizing enzymes in humans and commonly used experimental animals (e.g. mouse, rat, and others) in order to fill the information gap.
Collapse
Affiliation(s)
- Shakil Ahmed Saghir
- Toxicology & Environmental Research & Consulting, The Dow Chemical Company, Midland, Michigan, USA.
| | | | | |
Collapse
|
22
|
Molinas A, Sicard G, Jakob I. Functional evidence of multidrug resistance transporters (MDR) in rodent olfactory epithelium. PLoS One 2012; 7:e36167. [PMID: 22563480 PMCID: PMC3341370 DOI: 10.1371/journal.pone.0036167] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 04/02/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP1) are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated. PRINCIPAL FINDINGS Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM) accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG). In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect. CONCLUSIONS The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and represent potential mechanisms for modulation of the olfactory response.
Collapse
Affiliation(s)
- Adrien Molinas
- Equipe Neurophysiologie de la Peripherie des Systèmes Chimiosensoriels, Centre des Sciences du Goût et de l'Alimentation, CNRS UMR 6265, INRA, Université de Bourgogne, Dijon, France
| | - Gilles Sicard
- Equipe Neurophysiologie de la Peripherie des Systèmes Chimiosensoriels, Centre des Sciences du Goût et de l'Alimentation, CNRS UMR 6265, INRA, Université de Bourgogne, Dijon, France
| | - Ingrid Jakob
- Equipe Neurophysiologie de la Peripherie des Systèmes Chimiosensoriels, Centre des Sciences du Goût et de l'Alimentation, CNRS UMR 6265, INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
23
|
Saljé K, Lederer K, Oswald S, Dazert E, Warzok R, Siegmund W. Effects of rifampicin, dexamethasone, St. John's Wort and Thyroxine on maternal and foetal expression of Abcb1 and organ distribution of talinolol in pregnant rats. Basic Clin Pharmacol Toxicol 2012; 111:99-105. [PMID: 22339773 DOI: 10.1111/j.1742-7843.2012.00866.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/16/2012] [Indexed: 11/27/2022]
Abstract
It is well accepted that ABCB1 plays a critical role in absorption, distribution and elimination of many xenobiotics and drugs. Only little is known about the regulation and function of ABCB1 during pregnancy. Thus, the aim of this study is to investigate maternal, placental and foetal Abcb1 expression and function in pregnant rats after induction with rifampicin, dexamethasone, St. John's wort (SJW) or thyroxine. Wistar rats were orally treated with rifampicin (250 mg/kg), SJW (1.0 g/kg), thyroxine (9 μg/kg), dexamethasone (1 mg/kg) or 0.5% methylcellulose suspension (control) for 9 days during late pregnancy (each N = 5). Afterwards, organ mRNA expression and protein content of Abcb1a were determined. Tissue concentrations of the ABCB1 probe drug talinolol were measured after repeated administration of the drug (100 mg/kg, 9 days) and after induction with oral rifampicin (250 mg/kg, 9 days, N = 5). Abcb1 expression was substantially lower in foetal than in maternal organs. Abcb1 was significantly induced by SJW in the maternal jejunum and placenta, by dexamethasone in foetal brain and liver and by thyroxine in the placenta and maternal and foetal brain. Rifampicin induced Abcb1 in all maternal and foetal organs. However, organ distribution of talinolol was not influenced by comedication of rifampicin. In conclusion, maternal and foetal Abcb1 organ expression in pregnant rats is inducible by nuclear receptor agonists. Although rifampicin regulates maternal and foetal Abcb1 expression, organ distribution of talinolol remains unchanged most likely caused by the known inhibitory effect of rifampicin on Abcb1 function.
Collapse
Affiliation(s)
- Karen Saljé
- Department of Clinical Pharmacology, Ernst Moritz Arndt University of Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Differential expression of ABC transporters (MDR1, MRP1, BCRP) in developing human embryos. J Mol Histol 2011; 42:567-74. [PMID: 22012127 DOI: 10.1007/s10735-011-9363-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/26/2011] [Indexed: 12/14/2022]
Abstract
Three ABC transporters (MDR1, MRP1, BCRP), belonging to the family of multidrug resistance (MDR) proteins, play a crucial role in the protection mechanisms during embryogenesis and mediate drug resistance in cancer cells. The distribution of these transporters in the series of human embryonal/fetal intestine, liver and kidneys of various stages of intrauterine development (IUD) by indirect two-step immunohistochemical method was investigated. The organ- and age-specific expression patterns of these transporters were depicted and compared with the expression in adult organs. The evaluation of intestine and liver samples demonstrate differences in expression pattern of ABC transporters during IUD. On the contrary, in kidneys the age-specific localization was not observed. However, the increasing positivity from the kidney surface towards deeper, more differentiated parts was found. Hopefully, our study may contribute to elucidation of the role of multidrug resistance (MDR) pathways during IUD in man.
Collapse
|
25
|
Renal Ontogeny of P-Glycoprotein/MDR1 in Rat. ACTA MEDICA MARTINIANA 2011. [DOI: 10.2478/v10201-011-0003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
von Stülpnagel C, Plischke H, Zill P, Bäumel C, Spiegel R, Gruber R, Kluger G. Letter: lack of association between MDR1 polymorphisms and pharmacoresistance to anticonvulsive drugs in patients with childhood-onset epilepsy. Epilepsia 2010; 50:1835-7. [PMID: 20831524 DOI: 10.1111/j.1528-1167.2009.02077.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Gu X, Manautou JE. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev 2010; 42:482-538. [PMID: 20233023 DOI: 10.3109/03602531003654915] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The subfamily of ABCC transporters consists of 13 members in mammals, including the multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and the cystic fibrosis transmembrane conductance regulator (CFTR). These proteins play roles in chemical detoxification, disposition, and normal cell physiology. ABCC transporters are expressed differentially in the liver and are regulated at the transcription and translation level. Their expression and function are also controlled by post-translational modification and membrane-trafficking events. These processes are tightly regulated. Information about alterations in the expression of hepatobiliary ABCC transporters could provide important insights into the pathogenesis of diseases and disposition of xenobiotics. In this review, we describe the regulation of hepatic ABCC transporters in humans and rodents by a variety of xenobiotics, under disease states and in genetically modified animal models deficient in transcription factors, transporters, and cell-signaling molecules.
Collapse
Affiliation(s)
- Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, 06269, USA
| | | |
Collapse
|
28
|
Myllynen P, Kummu M, Sieppi E. ABCB1 and ABCG2 expression in the placenta and fetus: an interspecies comparison. Expert Opin Drug Metab Toxicol 2010; 6:1385-98. [PMID: 20738225 DOI: 10.1517/17425255.2010.514264] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPORTANCE OF THE FIELD ABCB1 and ABCG2 are efflux transporters which have a major impact on the pharmacological behavior of numerous drugs. They are expressed, for example, in the intestine, liver, kidney, BBB and placenta. It has become evident that ABCB1 and ABCG2 modify the pharmaco/toxicokinetics in the placenta and fetus and may consequently affect the outcome of pregnancy. AREAS COVERED IN THIS REVIEW Comprehensive literature searches were done using PubMed (until June 2010) to identify publications on ABCB1 and ABCG2 expression in placenta and fetal tissues in human, mouse, rat, guinea-pig and rabbit. WHAT THE READER WILL GAIN In this review, we aim to provide an overview of the current knowledge on the ABCB1 and ABCG2 transporter expression profiles in the placenta and fetal tissues in humans relative to other species. TAKE HOME MESSAGE The available information on ABCB1 and ABCG2 temporal expression profiles in placenta and fetus indicates rather good correlation among human, mouse and rat although some specific differences have been reported. However, at this point no detailed comparisons or comparative functional data are available. Detailed knowledge on the expression patterns and functional activity of ABCB1 and ABCG2 transporters placenta and developing embryo/fetus in different species could possibly help the interspecies extrapolation.
Collapse
Affiliation(s)
- Päivi Myllynen
- University of Oulu, Institute of Biomedicine, Department of Pharmacology and Toxicology, PO Box 5000, FIN-90014 Oulu, Finland.
| | | | | |
Collapse
|
29
|
Ek CJ, Wong A, Liddelow SA, Johansson PA, Dziegielewska KM, Saunders NR. Efflux mechanisms at the developing brain barriers: ABC-transporters in the fetal and postnatal rat. Toxicol Lett 2010; 197:51-9. [PMID: 20466047 DOI: 10.1016/j.toxlet.2010.04.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 11/29/2022]
Abstract
Proteins of the ATP-binding cassette (ABC) family, present at the blood-brain barrier interfaces, have been shown to reduce the entry of compounds from blood into the brain by active efflux. Their substrates are diverse including many drugs and toxins and therefore provide an important mechanism for brain neuroprotection. However, knowledge of their presence and function in the developing brain is very limited. We have used qPCR and immunocytochemistry to determine gene expression and localisation of four main barrier ABC-transporters (pgp/ABCB1, MRP1/ABCC1, MRP4/ABCC4 and BCRP/ABCG2) in the fetal and neonatal rat brain cerebral blood vessels (site of blood-brain barrier) and choroid plexus (site of blood-CSF barrier). The study shows that ABC-transporters localise to the brain barriers even at early fetal stages and although pgp expression was lower in the fetus, the other transporters were expressed at comparable levels in fetal and adult brains suggesting direct neuroprotection of the brain in addition to that provided by the placenta. BCRP was expressed at higher levels in developing choroid plexus and was only detected at fetal stages on the blood-facing side of epithelial cells indicating a particular role of this transporter for early brain efflux mechanisms.
Collapse
Affiliation(s)
- C Joakim Ek
- Department of Pharmacology, University of Melbourne, Parkville, Australia.
| | | | | | | | | | | |
Collapse
|
30
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 568] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
31
|
Tegethoff M, Pryce C, Meinlschmidt G. Effects of intrauterine exposure to synthetic glucocorticoids on fetal, newborn, and infant hypothalamic-pituitary-adrenal axis function in humans: a systematic review. Endocr Rev 2009; 30:753-89. [PMID: 19837868 DOI: 10.1210/er.2008-0014] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Synthetic glucocorticoids are commonly used in reproductive medicine. Fetal organ systems are highly sensitive to changes in the intrauterine environment, including overexposure to glucocorticoids. Structural and functional alterations resulting from such changes may persist throughout life and have been associated with diverse diseases. One system that could be particularly sensitive to fetal glucocorticoid overexposure is the hypothalamic-pituitary-adrenal (hpa) axis. Many human studies have investigated this possibility, but a systematic review to identify consistent, emergent findings is lacking. METHODS We systematically review 49 human studies, assessing the effects of intrauterine exposure to synthetic glucocorticoids on fetal, neonate, and infant hpa function. RESULTS Study quality varied considerably, but the main findings held true after restricting the analyses to higher-quality studies: intrauterine exposure to synthetic glucocorticoids reduces offspring hpa activity under unstimulated conditions after pain but not pharmacological challenge. Although reduced unstimulated hpa function appears to recover within the first 2 wk postpartum, blunted hpa reactivity to pain is likely to persist throughout the first 4 months of life. There is some evidence that the magnitude of the effects is correlated with the total amount of glucocorticoids administered and varies with the time interval between glucocorticoid exposure and hpa assessment. CONCLUSIONS This systematic review has allowed the demonstration of the way in which intrauterine exposure to various regimens of synthetic glucocorticoids affects various forms of hpa function. As such, it guides future studies in terms of which variables need to be focused on in order to further strengthen the understanding of such therapy, whilst continuing to profit from its clinical benefits.
Collapse
Affiliation(s)
- Marion Tegethoff
- National Centre of Competence in Research, Swiss Etiological Study of Adjustment and Mental Health (sesam), University of Basel, Birmannsgasse 8, CH-4055 Basel, Switzerland
| | | | | |
Collapse
|
32
|
Blood–brain barrier P-glycoprotein function decreases in specific brain regions with aging: A possible role in progressive neurodegeneration. Neurobiol Aging 2009; 30:1818-24. [DOI: 10.1016/j.neurobiolaging.2008.02.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/11/2008] [Accepted: 02/05/2008] [Indexed: 11/22/2022]
|
33
|
Pekcec A, Schneider EL, Baumgärtner W, Stein VM, Tipold A, Potschka H. Age-dependent decline of blood-brain barrier P-glycoprotein expression in the canine brain. Neurobiol Aging 2009; 32:1477-85. [PMID: 19836857 DOI: 10.1016/j.neurobiolaging.2009.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/12/2009] [Accepted: 08/25/2009] [Indexed: 11/18/2022]
Abstract
The efflux transporter P-glycoprotein serves as a major molecular gatekeeper at the blood-brain barrier. It has been suggested that a reduction of P-glycoprotein activity with aging might enhance exposure of brain tissue to exogenous and endogenous compounds thereby contributing to the development of neurodegenerative diseases. Brain tissue from owner-kept dogs renders an excellent tool to study the impact of aging on the background of variable environmental and genetic influencing factors. Therefore, we determined expression rates of P-glycoprotein in canine post-mortem tissue from 23 non-laboratory dogs. P-glycoprotein expression in the parahippocampal cortex exhibited a negative correlation with age. Analysis of the area labeled for P-glycoprotein in dogs aged >100 months revealed a 72% drop in P-glycoprotein expression as compared to young adults aged 23-36 months. Respective data from the dentate hilus and dentate gyrus indicated an earlier drop with a reduction by 77 and 80% in dogs aged 37-99 months in comparison with younger individuals. In contrast to the decline observed with aging in dogs without plaques, P-glycoprotein expression rates rather tended to increase with further aging in dogs with plaque formation. In conclusion, the thorough analysis of P-glycoprotein expression rates in non-laboratory dogs revealed a significant decline with aging. The data strongly support the concept that age-dependent changes might predispose to neurodegenerative diseases. In the early pathogenesis of Alzheimer's disease which is modelled by diffuse plaques in the canine brain, an up-regulation of P-glycoprotein might act as a compensatory mechanism to enhance Abeta efflux from the brain. Future studies are necessary to further evaluate the correlation between Abeta deposits and P-glycoprotein expression in different phases of the disease.
Collapse
Affiliation(s)
- A Pekcec
- Inst. of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstr. 16, 80539 Munich, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Suzuki M. Children's toxicology from bench to bed - Drug-induced Renal Injury (4): Effects of nephrotoxic compounds on fetal and developing kidney. J Toxicol Sci 2009; 34 Suppl 2:SP267-71. [DOI: 10.2131/jts.34.sp267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Masami Suzuki
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd
| |
Collapse
|
35
|
de Zwart L, Scholten M, Monbaliu JG, Annaert PP, Van Houdt JM, Van den Wyngaert I, De Schaepdrijver LM, Bailey GP, Coogan TP, Coussement WC, Mannens GS. The ontogeny of drug metabolizing enzymes and transporters in the rat. Reprod Toxicol 2008; 26:220-30. [DOI: 10.1016/j.reprotox.2008.09.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 09/15/2008] [Accepted: 09/24/2008] [Indexed: 01/08/2023]
|
36
|
Daood MJ, Tsai C, Ahdab-Barmada M, Watchko JF. ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics 2008; 39:211-8. [PMID: 19165709 PMCID: PMC2821654 DOI: 10.1055/s-0028-1103272] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
P-glycoprotein (P-gp/ABCB1), multidrug resistance associated protein 1 (MRP1/ABCC1), and breast cancer resistance protein (BCRP/ABCG2) are plasma membrane efflux pumps that limit the intracellular uptake and retention of numerous lipophilic, amphipathic xeno- and endobiotics. Little is known about the neonatal and developmental expression of P-gp/ABCB1, MRP1/ABCC1, and BCRP/ABCG2 in the human central nervous system (CNS), therefore post-mortem CNS tissue from infants born at 22 (0/7)-42 (0/7) weeks of gestation and adults was immunostained to determine their ontogeny and cellular localization. P-gp/ABCB1 immunostaining was observed in microvessel endothelial cells as early as 22 (0/7) weeks, increasing in prevalence and intensity with maturation, and later in gestation in large pyramidal neurons. MRP1/ABCC1 immunostaining was prominent early in the choroid plexus and ventricular ependyma, and noted later in large pyramidal neurons. BCRP/ABCG2 expression was limited to microvessel endothelial cells. P-gp/ABCB1, MRP1/ABCC1 and BCRP/ABCG2 in adult brain matched term newborn CNS but with more intense immunostaining. We conclude that P-gp/ABCB1, MRP1/ABCC1, and BCRP/ABCG2 are expressed in a developmental, cell specific, fashion in the human CNS. The complementary pattern of P-gp/ABCB1 and BCRP/ABCG2 at the blood-brain with MRP1/ABCC1 at the blood-CSF barriers may limit CNS uptake and retention of drugs and toxins in neonates.
Collapse
Affiliation(s)
- Monica J. Daood
- Division of Newborn Medicine Department of Pediatrics University of Pittsburgh School of Medicine Magee-Womens Research Institute Pittsburgh, Pennsylvania USA
| | - Cathy Tsai
- Division of Newborn Medicine Department of Pediatrics University of Pittsburgh School of Medicine Magee-Womens Research Institute Pittsburgh, Pennsylvania USA
| | | | - Jon F. Watchko
- Division of Newborn Medicine Department of Pediatrics University of Pittsburgh School of Medicine Magee-Womens Research Institute Pittsburgh, Pennsylvania USA
| |
Collapse
|
37
|
Implications of ABC transporters on the disposition of typical veterinary medicinal products. Eur J Pharmacol 2008; 585:510-9. [PMID: 18417119 DOI: 10.1016/j.ejphar.2008.03.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 02/21/2008] [Accepted: 03/03/2008] [Indexed: 01/16/2023]
Abstract
The ATP-Binding Cassette (ABC) transporters ABCB1, ABCC2 and ABCG2 are efflux transporters that facilitate the excretion of drugs, contribute to the function of biological barriers and maintain low cytoplasmic substrate concentrations in cells. ABC transporters modulate drug absorption, distribution and elimination according to the level of expression in the intestine, liver, kidney, and at biological barriers such as the blood-brain barrier. Moreover individual transporters are known to convey multi-drug resistance to tumour cells. While these diverse functions have been described in laboratory animal studies and in humans, the available information is very limited in animal species that are typical veterinary patients. This brief review summarizes the available data on organ distribution and expression levels in animals, genetic defects in dogs resulting in a non-functional P-gp expression, and describes examples of kinetic investigations directed to assess the clinical relevance of species differences in ABC-transporter expression.
Collapse
|
38
|
Kyle-Cezar F, Echevarria-Lima J, Rumjanek VM. Independent Regulation of ABCB1 and ABCC Activities in Thymocytes and Bone Marrow Mononuclear Cells during Aging. Scand J Immunol 2007; 66:238-48. [PMID: 17635801 DOI: 10.1111/j.1365-3083.2007.01965.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aging modifies a number of functional and phenotypic parameters of cells from the immune system. In this study, the activities of two members of the superfamily of ATP-binding cassette (ABC) transport proteins, ABCB1 and ABCC (measured by rhodamine 123 efflux and Fluo-3 efflux respectively), were compared in murine bone marrow cells and thymocytes of young (3-4 weeks old), adult (2-3 months old) and old (18 months old) mice. ABCB1 activity was shown to be age regulated in murine bone marrow mononuclear cells and thymocytes. In the bone marrow, the increased amount of cells with ABCB1 activity observed in old mice was restricted to the c-kit(-)Sca-1(+) and c-kit(+)Sca-1(+) subpopulations. Only a small percentage of c-kit(+) cells in the thymus had ABCB1 activity, and this subpopulation increased with age. In the thymus, old age augmented this activity in the CD4(-) CD8(-) double-negative cells and in the CD4(+) and CD8(+) single-positive populations. The activity of another ABC transporter, the ABCC-related activity, was also modified by age in the bone marrow. However, the age-related increase was observed in the subpopulations were ABCB1 was not modified, namely the non-progenitor population (c-kit(-)Sca-1(-)cells) and c-kit(+)Sca-1(-) cells. Nearly, all thymocytes expressed the ABCC1 molecule in an active form and aging did not affect this pattern. This study demonstrates an independent upregulation of ABCB1 and ABCC activities during the aging process. The increases were observed in different subsets of cells but followed a developmentally regulated pattern. The functions played by these transporters and alterations in aging are discussed.
Collapse
Affiliation(s)
- F Kyle-Cezar
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
39
|
Vaidyanathan S, Reynolds C, Yeh CM, Bizot MN, Dieterich HA, Howard D, Dole WP. Pharmacokinetics, safety, and tolerability of the novel oral direct renin inhibitor aliskiren in elderly healthy subjects. J Clin Pharmacol 2007; 47:453-60. [PMID: 17389554 DOI: 10.1177/0091270006297921] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This open-label, multicenter study compared the pharmacokinetics and safety of the oral direct renin inhibitor aliskiren in 29 elderly (>or=65 years) and 28 young (18-45 years) healthy subjects. Plasma drug concentrations were determined for up to 168 hours following a single 300-mg oral dose of aliskiren. In elderly compared with young subjects, AUC(0-infinity) was 57% higher (ratio of geometric means 1.57, 90% confidence interval: 1.19, 2.06; P = .008) and C(max) was 28% higher (1.28, 90% confidence interval: 0.91, 1.79; P=.233). Other parameters, including t(max) and Vd/F, were similar between age groups. No differences in aliskiren exposure were observed between subjects ages 65 to 74 years (n=16) and >or=75 years (n=13). Aliskiren was well tolerated by all age groups, including the very elderly. In conclusion, aliskiren exposure is modestly increased in elderly subjects. Based on its wide therapeutic index and shallow dose response for blood pressure lowering, no initial dose adjustment should be needed for elderly patients.
Collapse
|
40
|
Mangoni AA. The impact of advancing age on P-glycoprotein expression and activity: current knowledge and future directions. Expert Opin Drug Metab Toxicol 2007; 3:315-20. [PMID: 17539740 DOI: 10.1517/17425255.3.3.315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
With the progressive ageing of the population, an increasing number of elderly patients are being exposed to multiple drugs because of co-existing morbidity states requiring pharmacological management. However, the knowledge of the effects of ageing on the pharmacokinetics and pharmacodynamics of individual drugs is far from being optimal as very few elderly subjects are studied in Phase I and II premarketing trials. The efflux transporter P-glycoprotein has recently emerged as a major determinant of drug disposition in humans. This review discusses the current knowledge about the effects of advancing age on P-glycoprotein expression and activity. A critical appraisal of the published literature and an overview on future research directions are also provided.
Collapse
|
41
|
Couture L, Nash JA, Turgeon J. The ATP-binding cassette transporters and their implication in drug disposition: a special look at the heart. Pharmacol Rev 2006; 58:244-58. [PMID: 16714487 DOI: 10.1124/pr.58.2.7] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The passage of drugs across cell membranes dictates their absorption, distribution, metabolism, and excretion. This process is determined by several factors including the molecular weight of the compounds, their shape, degree of ionization, and binding to proteins. Accumulation of xenobiotics into tissues does not depend only on their ability to enter cells, but also on their ability to leave them. For instance, the role of efflux transporters such as ATP-binding cassette (ABC) proteins in the disposition of drugs is now well recognized. Actually, ABC transporters act in synergy with drug-metabolizing enzymes to protect the organism from toxic compounds. The most studied transporter from the ABC transporter superfamily, P-glycoprotein, was found to be overexpressed in tumor cells and associated with an acquired resistance to several anticancer drugs. P-glycoprotein, thought at first to be confined to tumor cells, was subsequently recognized to be expressed in normal tissues such as the liver, kidney, intestine, and heart. Even though information remains rather limited on the functional role of ABC transporters in the myocardium, it is hypothesized that they may modulate efficacy and toxicity of cardioactive agents. This review addresses recent progress on knowledge about the ABC transporters in drug disposition and more precisely their role in drug distribution to the heart.
Collapse
Affiliation(s)
- Lucie Couture
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec, Canada, H3C 3J7
| | | | | |
Collapse
|
42
|
Liang DY, Liao G, Lighthall GK, Peltz G, Clark DJ. Genetic variants of the P-glycoprotein gene Abcb1b modulate opioid-induced hyperalgesia, tolerance and dependence. Pharmacogenet Genomics 2006; 16:825-35. [PMID: 17047491 DOI: 10.1097/01.fpc.0000236321.94271.f8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Opioid-induced hyperalgesia (OIH) is a state of paradoxically increased nociceptive sensitivity seen in both humans and rodents following the resolution of the acute opioid antinociceptive effects or during periods of chronic opioid administration. Using the power of genetic analysis, we hoped to discover novel mechanisms modulating this trait. BASIC METHODS The degree of opioid-induced hyperalgesia displayed in response to a thermal stimulus applied to the hind paw was measured in 16 strains of inbred mice after 4 days of morphine administration. The degree of thermal sensitization was then used in a recently developed in silico haplotypic mapping algorithm along with a haplotypic map constructed from a database containing 209,000 single nucleotide polymorphisms. MAIN RESULTS Analysis of the data resulted in the identification of several haplotype blocks strongly associated with the thermal opioid-induced hyperalgesia trait. The most strongly associated block was located within the Abcb1b P-glycoprotein drug transporter gene. Experiments using the P-glycoprotein inhibitor cyclosporine A and P-glycoprotein null mutant mice supported the hypothesis that a functional association exists between P-glycoprotein transporters and opioid-induced hyperalgesia. The observation of a correlation between morphine brain concentrations and the development of opioid-induced hyperalgesia was consistent with this hypothesis as well. In addition, P-glycoprotein gene deletion and pharmacological inhibition altered morphine ED50, tolerance and physical dependence. CONCLUSIONS We conclude that the use of haplotypic mapping to identify novel mechanisms controlling complex traits is a viable approach. Variants of the Abcb1b gene may explain some portion of the interstrain differences in OIH and perhaps other consequences of chronic opioid administration.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology
- Analgesics, Opioid/adverse effects
- Animals
- Brain Chemistry
- Chromosome Mapping
- Drug Tolerance/genetics
- Gene Deletion
- Genetic Variation
- Haplotypes
- Hyperalgesia/chemically induced
- Hyperalgesia/genetics
- Mice
- Mice, Inbred AKR
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred MRL lpr
- Mice, Inbred NZB
- Mice, Transgenic
- Morphine/administration & dosage
- Morphine/pharmacokinetics
- Pain Measurement
- Substance-Related Disorders/genetics
Collapse
Affiliation(s)
- De-Yong Liang
- Department of Anesthesiology, Stanford University, California, USA
| | | | | | | | | |
Collapse
|
43
|
Chen N, Aleksa K, Woodland C, Rieder M, Koren G. Ontogeny of drug elimination by the human kidney. Pediatr Nephrol 2006; 21:160-8. [PMID: 16331517 DOI: 10.1007/s00467-005-2105-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 08/15/2005] [Accepted: 08/18/2005] [Indexed: 01/20/2023]
Abstract
Renal clearance is an important route of drug elimination. While during the neonatal period there is minimal glomerular filtration and active tubular secretion of drugs, there is a well-described rapid development in these processes in the post-neonatal period. A less appreciated fact is that during toddlerhood, there is an "overshoot" of the glomerular filtration rate (GFR) well above the levels encountered in older children and adults, and there is an early achievement of adult levels in active drug secretion, which stays at a plateau throughout childhood and adulthood with an "overshoot" in toddlers due to specific transport mechanisms. This phenomenon leads to dose requirements for renally excreted drugs in this age group being, on a per-kilogram basis, much larger than in adults. This review discusses the mechanisms related to renal ontogeny in drug handling.
Collapse
Affiliation(s)
- Nancy Chen
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
44
|
Goralski KB, Acott PD, Fraser AD, Worth D, Sinal CJ. Brain cyclosporin A levels are determined by ontogenic regulation of mdr1a expression. Drug Metab Dispos 2006; 34:288-95. [PMID: 16303871 DOI: 10.1124/dmd.105.007427] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cyclosporin A (CyA) toxicity is a common occurrence in pediatric organ transplant patients. We hypothesized that reduced mdr1a expression in newborn and developing mice would affect CyA accumulation within organs and/or toxicity. For functional studies, CyA was administered (5 mg kg(-1) i.p.) to 1-, 12-, and 19-day, and adult male and female mdr1a+/+ and mdr1a-/- mice. Peak blood CyA was lower in 1-, 12-, and 19-day-old (1000 ng ml(-1)) versus adult (1500 ng ml(-1)) mice but was similar in mdr1a+/+ and mdr1a-/- mice. Kidney mdr1a expression (measured by quantitative polymerase chain reaction) increased 2.5-fold in 19-day-old male and female mice and increased another 4-fold in adult females compared with adult males. Liver mdr1a expression increased 6-fold by day 12 compared with neonatal mice. Thereafter, maintenance of hepatic mdr1a expression in females and a reduction to neonatal levels in males was observed. Kidney/blood (8- to 9-fold) and liver/blood (12- to 15-fold) CyA levels were highest on days 12 and 19 and were not dependent on maturational changes in mdr1a mRNA levels. Adults had higher brain expression of mdr1a mRNA (3-fold), a corresponding 5-fold increase in immunodetectable P-glycoprotein, and 80% lower brain accumulation of CyA compared with 1-day-old mice. Conversely, in mdr1a-null mice, brain/blood CyA was similar in newborn and adult mice. A similar pattern was observed for the brain accumulation of the mdr1a substrate 3H-digoxin. We conclude that the risk for central nervous system drug toxicity could be higher in neonates or young children as a consequence of underdeveloped P-glycoprotein.
Collapse
Affiliation(s)
- Kerry B Goralski
- Department of Pharmacology, Dalhousie University, Room 5E Sir Charles Tupper Building, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | | | | | |
Collapse
|
45
|
Gidal BE. Drug absorption in the elderly: biopharmaceutical considerations for the antiepileptic drugs. Epilepsy Res 2006; 68 Suppl 1:S65-9. [PMID: 16413756 DOI: 10.1016/j.eplepsyres.2005.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/27/2005] [Accepted: 07/27/2005] [Indexed: 11/22/2022]
Abstract
The management of antiepileptic drug (AED) pharmacokinetics remains a challenge in the treatment of patients with epilepsy. Drug characteristics, such as protein binding, mechanisms of drug elimination, and the potential for pharmacokinetic/pharmacodynamic interactions, are important considerations for drug selection and may help determine overall effectiveness. In elderly patients with epilepsy, the likelihood of polytherapy, along with physiological changes associated with aging, can make pharmacokinetic issues even more significant. One aspect of pharmacokinetics that has received less attention is the process of oral drug absorption. Aging can have variable effects on the gastrointestinal system. Some of these physiological changes have the potential to impact absorption patterns of some medications, including AEDs. Altered oral protective reflexes, xerostomia, and delayed esophageal emptying in elderly patients may complicate oral administration of some medications. Altered gastric pH could modify drug absorption, and modified gastric emptying rates can influence the bioavailability of some AEDs. Finally, intestinal transit times may be slower in elderly patients compared to younger patients, possibly altering the absorption of some AEDs. These age-related physiological changes that may affect AED pharmacokinetics should be considered when treating elderly patients with epilepsy.
Collapse
Affiliation(s)
- Barry E Gidal
- School of Pharmacy and Department of Neurology, University of Wisconsin, 1032 Rennebohn Hall, 777 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
46
|
Garrovo C, Rosati A, Bartoli F, Decorti G. St John's wort modulation and developmental expression of multidrug transporters in the rat. Phytother Res 2006; 20:468-73. [PMID: 16619352 DOI: 10.1002/ptr.1880] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Extracts of St John's wort (SJW) (Hypericum perforatum) are a potent inducer of enzymes of the cytochrome P450 system and of the transport protein P-glycoprotein, and interactions with a range of commonly prescribed medications have been described. In addition, recent experimental data suggest that, this otherwise safe treatment, could have some side effects when consumed during pregnancy and lactation. The aim of this study was to investigate, in Wistar rats, the effect of a treatment with high doses of SJW extract (100 and 1000 mg/kg/day) administered prenatally and during breastfeeding, on the level of transcripts of mdr1a, mdr1b, mrp1, mrp2 and cyp3A2 genes. All transcripts were detected in the liver, and their level of expression increased from fetuses to adults. SJW administration, at both dosages, caused a significant decrease of the levels of mdr1a, mdr1b, mrp1 and mrp2 in the livers of fetuses, and an increase in the levels of mdr1a, mdr1b, mrp2 and cyp3A2 in the mothers. In the other organs examined, a physiological regulation during ontogenesis was also evident, but SJW administration did not modify the expression level of the considered transcripts. These data suggest that the administration of the extract together with drugs that are substrates of transport proteins could be particularly hazardous during pregnancy.
Collapse
Affiliation(s)
- Chiara Garrovo
- Department of Biomedical Sciences, University of Trieste, 34127 Trieste, Italy
| | | | | | | |
Collapse
|
47
|
Pereira de Oliveira M, Garcion E, Venisse N, Benoit JP, Couet W, Olivier JC. Tissue distribution of indinavir administered as solid lipid nanocapsule formulation in mdr1a (+/+) and mdr1a (-/-) CF-1 mice. Pharm Res 2005; 22:1898-1905. [PMID: 16132350 DOI: 10.1007/s11095-005-7147-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2005] [Revised: 05/14/2006] [Accepted: 05/14/2005] [Indexed: 02/05/2023]
Abstract
PURPOSE Due to protease inhibitor (PI) efflux transport by P-glycoprotein (P-gp), insufficient PI concentrations result in low ongoing HIV replication in the so-called virus sanctuaries (brain and testes). The aim of the present study was to evaluate indinavir-loaded nanocapsules (Ind-LNC) including Solutol HS15, an excipient reported to possess in vitro P-gp inhibiting properties, as a means to improve indinavir distribution into brain and testes of mice. METHODS Normal mdr1a (+/+) or P-gp-deficient mdr1a (-/-) CF-1 mice were dosed with Ind-LNC (10 mg indinavir/kg, i.v.). At 30 min post-administration, indinavir was determined in plasma, brain, testes, as well as in kidneys, liver, and heart by LC-MS/MS, and tissue/plasma concentration ratios were calculated. Results were compared with those of control groups that received an indinavir solution (Ind-Sol). RESULTS Using Ind-Sol, ratios were 21.3- and 3.3-fold higher in brains and testes of mdr1a (-/-) mice than of mdr1a (+/+) mice, respectively, whereas in the other organs ratios were not significantly different between the two substrains. When Ind-LNC was used, a similar [mdr1a(-/-) vs. mdr1a (+/+) mice] trend was observed. Moreover, ratios were found to be significantly increased (1.9-fold increase in average) in most organs (brain and testes in particular) with Ind-LNC compared to Ind-Sol, regardless of the substrain used. CONCLUSIONS In agreement with previous works, P-gp governs at least in part indinavir uptake into brain and testes. LNC formulation increased indinavir uptake in brain and testes by mechanisms other than, or additional to, P-gp inhibition.
Collapse
Affiliation(s)
- Manuela Pereira de Oliveira
- Faculté de Médecine & Pharmacie, EA3809 Pharmacologie des Médicaments Anti-Infectieux, Pôle Biologie-Santé, 40 av. du Recteur Pineau, 86022 Poitiers CEDEX, France
| | | | | | | | | | | |
Collapse
|
48
|
Pinto N, Halachmi N, Verjee Z, Woodland C, Klein J, Koren G. Ontogeny of renal P-glycoprotein expression in mice: correlation with digoxin renal clearance. Pediatr Res 2005; 58:1284-9. [PMID: 16306209 DOI: 10.1203/01.pdr.0000188697.99079.27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Digoxin is eliminated mainly by the kidney through glomerular filtration and P-glycoprotein (P-gp) mediated tubular secretion. Toddlers and young children require higher doses of digoxin per kilogram of bodyweight than adults, although the reasons for this have not been elucidated. We hypothesized there is an age-dependant increase in P-gp expression in young children. The objectives of this study were to elucidate age-dependant expression of renal P-gp and its correlation with changes in the clearance rate of digoxin. FVB mice were killed at different ages to prepare total RNA for P-gp expression studies. Semi-quantitative RT-PCR was conducted to analyze mdr1a and mdr1b ontogeny in the kidney at: birth, 7, 14, 21, 28 and 45-d old adults. The pharmacokinetics of digoxin (7 microg/kg) was studied in mice of the same age groups. Newborn and Day 7 levels of both mdr1a and mdr1b were marginal. Day 21 mdr1b levels were significantly higher than both Day 14 and Day 28 levels. Digoxin clearance rates were the highest at Day 21, with significant correlation between P-gp expression and clearance values. Increases in digoxin clearance rates after weaning may be attributed, at least in part, to similar increases in P-gp expression.
Collapse
Affiliation(s)
- Natasha Pinto
- Division of Clinical Pharmacology, The Hospital for Sick Children, and Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|