1
|
Wang Y, Madhusudan S, Cotellessa L, Kvist J, Eskici N, Yellapragada V, Pulli K, Lund C, Vaaralahti K, Tuuri T, Giacobini P, Raivio T. Deciphering the Transcriptional Landscape of Human Pluripotent Stem Cell-Derived GnRH Neurons: The Role of Wnt Signaling in Patterning the Neural Fate. Stem Cells 2022; 40:1107-1121. [PMID: 36153707 PMCID: PMC9806769 DOI: 10.1093/stmcls/sxac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/14/2022] [Indexed: 01/05/2023]
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons lay the foundation for human development and reproduction; however, the critical cell populations and the entangled mechanisms underlying the development of human GnRH neurons remain poorly understood. Here, by using our established human pluripotent stem cell-derived GnRH neuron model, we decoded the cellular heterogeneity and differentiation trajectories at the single-cell level. We found that a glutamatergic neuron population, which generated together with GnRH neurons, showed similar transcriptomic properties with olfactory sensory neuron and provided the migratory path for GnRH neurons. Through trajectory analysis, we identified a specific gene module activated along the GnRH neuron differentiation lineage, and we examined one of the transcription factors, DLX5, expression in human fetal GnRH neurons. Furthermore, we found that Wnt inhibition could increase DLX5 expression and improve the GnRH neuron differentiation efficiency through promoting neurogenesis and switching the differentiation fates of neural progenitors into glutamatergic neurons/GnRH neurons. Our research comprehensively reveals the dynamic cell population transition and gene regulatory network during GnRH neuron differentiation.
Collapse
Affiliation(s)
- Yafei Wang
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ludovica Cotellessa
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Venkatram Yellapragada
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristiina Pulli
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carina Lund
- Folkhälsan Research Center, Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland,New Children’s Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | | | - Taneli Raivio
- Corresponding author: Taneli Raivio, Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Messi E, Pimpinelli F, Andrè V, Rigobello C, Gotti C, Maggi R. The alpha-7 nicotinic acetylcholine receptor is involved in a direct inhibitory effect of nicotine on GnRH release: In vitro studies. Mol Cell Endocrinol 2018; 460:209-218. [PMID: 28754351 DOI: 10.1016/j.mce.2017.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/04/2017] [Accepted: 07/24/2017] [Indexed: 12/28/2022]
Abstract
The activation of nicotinic cholinergic receptors (nAChR) inhibits the reproductive axis; however, it is not clear whether nicotine may directly modulate the release of hypothalamic gonadotropin-releasing hormone (GnRH). Experiments carried out in GT1-1 immortalized GnRH neurons reveal the presence of a single class of high affinity α4β2 and α7 nAchR subtypes. The exposure of GT1-1 cells to nicotine does not modify the basal accumulation of GnRH. However, nicotine was found to modify GnRH pulsatility in perifusion experiments and inhibits, the release of GnRH induced by prostaglandin E1 or by K+-induced cell depolarization; these effects were reversed by D-tubocurarine and α-bungarotoxin. In conclusion, the results reported here indicate that: functional nAChRs are present on GT1-1 cells, the activation of the α-bungarotoxin-sensitive subclass (α7) produces an inhibitory effect on the release of GnRH and that the direct action of nicotine on GnRH neurons may be involved in reducing fertility of smokers.
Collapse
Affiliation(s)
- Elio Messi
- Dept. of Pharmacological and Biomedical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Federica Pimpinelli
- Dept. of Pharmacological and Biomedical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Andrè
- Dept. of Pharmacological and Biomedical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Rigobello
- Dept. of Pharmacological and Biomedical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Roberto Maggi
- Dept. of Pharmacological and Biomedical Sciences, Università Degli Studi di Milano, Milan, Italy.
| |
Collapse
|
3
|
Zhu J, Xu XH, Knight GE, He C, Burnstock G, Xiang Z. A subpopulation of gonadotropin-releasing hormone neurons in the adult mouse forebrain is γ-Aminobutyric acidergic. J Neurosci Res 2015; 93:1611-21. [DOI: 10.1002/jnr.23610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Jiao Zhu
- Department of Neurobiology; Key Laboratory of Molecular Neurobiology; Ministry of Education; Second Military Medical University; Shanghai People's Republic of China
| | - Xiao-hui Xu
- School of Life Science; Shanghai University; Shanghai People's Republic of China
| | - Gillian E. Knight
- Autonomic Neuroscience Centre; University College Medical School; London United Kingdom
| | - Cheng He
- Department of Neurobiology; Key Laboratory of Molecular Neurobiology; Ministry of Education; Second Military Medical University; Shanghai People's Republic of China
| | - Geoffrey Burnstock
- Autonomic Neuroscience Centre; University College Medical School; London United Kingdom
- Department of Pharmacology and Therapeutics; The University of Melbourne; Melbourne Australia
| | - Zhenghua Xiang
- Department of Neurobiology; Key Laboratory of Molecular Neurobiology; Ministry of Education; Second Military Medical University; Shanghai People's Republic of China
| |
Collapse
|
4
|
Watanabe M, Fukuda A, Nabekura J. The role of GABA in the regulation of GnRH neurons. Front Neurosci 2014; 8:387. [PMID: 25506316 PMCID: PMC4246667 DOI: 10.3389/fnins.2014.00387] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/12/2014] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons form the final common pathway for the central regulation of reproduction. Gamma-amino butyric acid (GABA) has long been implicated as one of the major players in the regulation of GnRH neurons. Although GABA is typically an inhibitory neurotransmitter in the mature adult central nervous system, most mature GnRH neurons show the unusual characteristic of being excited by GABA. While many reports have provided much insight into the contribution of GABA to the activity of GnRH neurons, the precise physiological role of the excitatory action of GABA on GnRH neurons remains elusive. This brief review presents the current knowledge of the role of GABA signaling in GnRH neuronal activity. We also discuss the modulation of GABA signaling by neurotransmitters and neuromodulators and the functional consequence of GABAergic inputs to GnRH neurons in both the physiology and pathology of reproduction.
Collapse
Affiliation(s)
- Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Junichi Nabekura
- Department of Developmental Physiology, National Institute for Physiological Sciences Okazaki, Japan ; Core Research for Evolutionary Science and Technology, Japan Science and Technology Corporation Saitama, Japan ; Department of Physiological Sciences, The Graduate School for Advanced Study Hayama, Japan
| |
Collapse
|
5
|
Watanabe M, Sakuma Y, Kato M. GABAA receptors mediate excitation in adult rat GnRH neurons. Biol Reprod 2009; 81:327-32. [PMID: 19357366 DOI: 10.1095/biolreprod.108.074583] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons form the final common pathway for the central regulation of reproduction. Gamma-amino butyric acid (GABA), the main inhibitory neurotransmitter in the adult brain, has long been implicated in playing key roles in the regulation of GnRH neurons. Two groups reported recently that GABA depolarizes GnRH neurons, although one group reported a hyperpolarizing action of GABA. In this study, we investigated the GABA-induced changes in [Ca(2+)](i) of GnRH neurons from GnRH-enhanced green fluorescent protein (GnRH-EGFP) rats both to confirm the depolarizing action of GABA and to further examine the developmental and estrous cycle-dependent modulations of GABA action. GABA increased [Ca(2+)](i) in GnRH neurons at all developmental stages of both sexes. GABA also increased [Ca(2+)](i) in adult female GnRH neurons prepared in the afternoon at each estrous cycle stage. The percentages of neurons with increased [Ca(2+)](i) were 90% in proestrus, 59% in estrus, 84% in diestrus I, and 89% in diestrus II. In GnRH neurons prepared from adult females in the morning, however, the percentage was significantly lower than in those prepared in the afternoon, except in estrus. The percentage was also lower in adult males than in adult females. GABA responses were mimicked by muscimol and blocked by bicuculline. In addition, removal of extracellular Ca(2+) completely suppressed the GABA action, and bumetanide attenuated the response. These results indicate that GABA depolarizes GnRH neurons by activating GABA(A) receptors, thereby activating voltage-gated Ca(2+) channels and facilitating Ca(2+) influx. In addition, the response to GABA is modulated according to the estrous cycle stage, diurnal rhythm, and sex.
Collapse
Affiliation(s)
- Miho Watanabe
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | | | | |
Collapse
|
6
|
Nordström E, Fisone G, Kristensson K. Opposing effects of ERK and p38-JNK MAP kinase pathways on formation of prions in GT1-1 cells. FASEB J 2008; 23:613-22. [PMID: 18824519 DOI: 10.1096/fj.08-115360] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Brain-derived neurotrophic factor, which activates the extracellular regulated kinase (ERK) pathway, increases formation of prions in scrapie-infected gonadotropin-releasing hormone (GT1-1) cells. This indicates that conversion of the cellular prion protein PrP(C) to its pathogenic isoform, PrP(Sc), can be regulated by physiological stimuli acting on specific signal transduction pathways. In the present study, we examined the involvement of different mitogen-activated protein (MAP) kinase cascades and the cAMP-PKA pathway in formation of proteinase K-resistant PrP(Sc) (rPrP(Sc)). Long-term depolarization of GT1-1 cells infected with the Rocky Mountain Laboratory strain of scrapie increased the formation of rPrP(Sc). This effect was associated to ERK activation and was blocked by the MAPK/ERK kinase (MEK) inhibitor U0126. Treatment with forskolin caused a similar increase in rPrP(Sc) formation that was prevented by the protein kinase A (PKA) inhibitor H89. Both depolarization and forskolin treatment were accompanied by increased phosphorylation of the S6 ribosomal protein, while phosphorylation of histone H3 occurred only after forskolin treatment. Inhibitors of p38- and c-Jun NH(2)-terminal kinase (JNK) promoted the formation of rPrP(Sc), in contrast to the clearance of rPrP(Sc) produced by inhibitors of the ERK pathway. Thus, the ERK and the p38-JNK MAP kinase pathways appear to exert opposing effects on rPrP(Sc) formation, suggesting that balances between these intracellular signaling cascades may regulate replication of prions.
Collapse
Affiliation(s)
- Elin Nordström
- Department of Neuroscience, Retzius väg 8, Karolinska Institutet, Stockholm, SE-171 77 Sweden.
| | | | | |
Collapse
|
7
|
Catalano PN, Bonaventura MM, Silveyra P, Bettler B, Libertun C, Lux-Lantos VA. GABA(B1) knockout mice reveal alterations in prolactin levels, gonadotropic axis, and reproductive function. Neuroendocrinology 2005; 82:294-305. [PMID: 16682806 DOI: 10.1159/000093128] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2005] [Indexed: 11/19/2022]
Abstract
gamma-Aminobutyric acid (GABA) has been implicated in the control of hypophyseal functions. We evaluated whether the constitutive loss of functional GABA(B) receptors in GABA(B1) knockout (GABA(B1)(-/-)) mice alters hormonal levels, under basal and stimulated conditions, and reproductive function. The serum hormone levels were measured by radioimmunoassay, the estrous cyclicity was evaluated by vaginal lavages, and the mating behavior was determined by the presence of vaginal plugs. A moderate hyperprolactinemic condition was observed, in which prolactin increase and thyroid-stimulating hormone decrease were similar between genotypes. Basal luteinizing hormone (LH), follicle-stimulating hormone, thyroid-stimulating hormone, and growth hormone levels were similar between genotypes in each sex. Analysis of the gonadotropin axis revealed no differences in puberty onset between female genotypes. In con trast, the estrous cyclicity was significantly disrupted in GABA(B1)(-/-) female mice, showing significantly extended periods in estrus and shortened periods in proestrus. Reproduction was significantly compromised in GABA(B1)(-/-) females, with a significantly lower proportion of mice (37.5%) getting pregnant during the first 30 days of mating as compared with wild-type controls (87.5%). Moreover, only 14% of vaginal plug positive GABA(B1)(-/-) females had successful pregnancies as compared with 75% in the controls. In addition, the postovariectomy LH rise was significantly advanced in GABA(B1)(-/-) mice, while the response to estradiol feedback was similar in both genotypes. In conclusion, our endocrine analysis of GABA(B1)(-/-) mice reveals that GABA(B) receptors are involved in the regulation of basal prolactin titers. Moreover, the hypothalamic-hypophyseal-ovarian axis is seriously disturbed, with alterations in cyclicity, postcastration LH increase, and fertility indexes. The molecular mechanism underlying these hormonal disturbances remains to be addressed.
Collapse
Affiliation(s)
- Paolo N Catalano
- Instituto de Biología y Medicina Experimental-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
8
|
Sandberg MK, Löw P. Altered interaction and expression of proteins involved in neurosecretion in scrapie-infected GT1-1 cells. J Biol Chem 2004; 280:1264-71. [PMID: 15528199 DOI: 10.1074/jbc.m411439200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prions cause transmissible and fatal diseases that are associated with spongiform degeneration, astrogliosis, and loss of axon terminals in the brains. To determine the expression of proteins involved in neurosecretion and synaptic functions after prion infection, gonadotropin-releasing hormone neuronal cell line subclone (GT1-1) was infected with the RML scrapie strain and analyzed by Western blotting, real time PCR, and immunohistochemistry. As revealed by Western blotting of lysates exposed to different temperatures, the levels of complexed SNAP-25, syntaxin 1A, and synaptophysin were decreased in scrapie-infected GT1-1 cells (ScGT1-1), whereas the level of monomeric forms of these proteins was increased and correlated to the level of scrapie prion protein (PrPSc). However, when complex formation was prevented by prolonged heating of samples in SDS, the levels of monomeric SNAP-25, syntaxin 1A and synaptophysin in ScGT1-1 cells were decreased in comparison to GT1-1 cells. The reduced level of SNAP-25 was observed as early as 32 days postinfection. Increased mRNA levels of both splice variants SNAP-25a and -b in ScGT1-1 cells were seen. No difference in the morphology, neuritic outgrowth or distribution of SNAP-25, syntaxin 1A, or synaptophysin could be observed in ScGT1-1 cells. Treatment with quinacrine or pentosan polysulfate cleared the PrPSc from the ScGT1-1 cell cultures, and the increase in levels of monomeric SNAP-25 and synaptophysin was reversible. These results indicate that a scrapie infection can cause changes in the expression of proteins involved in neuronal secretion, which may be of pathogenetic relevance for the axon terminal changes seen in prion-infected brains.
Collapse
Affiliation(s)
- Malin K Sandberg
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8 B2: 5, Stockholm, S-171 77, Sweden.
| | | |
Collapse
|
9
|
Xu C, Xu XZ, Nunemaker CS, Moenter SM. Dose-dependent switch in response of gonadotropin-releasing hormone (GnRH) neurons to GnRH mediated through the type I GnRH receptor. Endocrinology 2004; 145:728-35. [PMID: 14576189 DOI: 10.1210/en.2003-0562] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulsatile release of GnRH provides central control of reproduction. GnRH neuron activity is likely synchronized to produce hormone pulses, but the mechanisms are largely unknown. One candidate for communication among these neurons is GnRH itself. Cultured embryonic and immortalized GnRH neurons express GnRH receptor type I (GnRHR-1), but expression has not been shown in adult GnRH neurons. Using mice that express green fluorescent protein (GFP) in GnRH neurons, we tested whether adult GnRH neurons express GnRHR-1. GFP-positive (n = 42) and -negative neurons (n = 22) were harvested from brain slices, and single-cell RT-PCR was performed with cell contents. Fifty-two percent of the GnRH neurons tested expressed GnRHR-1, but only 9% of non-GnRH hypothalamic neurons expressed GnRHR-1; no false harvest controls (n = 13) were positive. GnRHR-1 expression within GnRH neurons suggested a physiological ultrashort loop feedback role for GnRH. Thus, we examined the effect of GnRH on the firing rate of GnRH neurons. Low-dose GnRH (20 nm) significantly decreased firing rate in 12 of 22 neurons (by 42 +/- 4%, P < 0.05), whereas higher doses increased firing rate (200 nm, five of 10 neurons, 72 +/- 26%; 2000 nm, nine of 13 neurons, 53 +/- 8%). Interestingly, the fraction of GnRH neurons responding was similar to the fraction in which GnRHR-1 was detected. Together, these data demonstrate that a subpopulation of GnRH neurons express GnRHR-1 and respond to GnRH with altered firing. The dose dependence suggests that this autocrine control of GnRH neurons may be not only a mechanism for generating and modulating pulsatile release, but it may also be involved in the switch between pulse and surge modes of release.
Collapse
Affiliation(s)
- Chun Xu
- Department of Internal Medicine, P.O. Box 800578, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
10
|
Moenter SM, DeFazio AR, Pitts GR, Nunemaker CS. Mechanisms underlying episodic gonadotropin-releasing hormone secretion. Front Neuroendocrinol 2003; 24:79-93. [PMID: 12762999 DOI: 10.1016/s0091-3022(03)00013-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The episodic secretion of gonadotropin-releasing hormone (GnRH) is crucial for fertility, but the cellular mechanisms and network properties generating GnRH pulses are not well understood. We will explore three primary aspects of this intermittent hormonal signal: the source of rhythm(s), the possible mechanisms comprising oscillator(s), and how GnRH neurons are synchronized to produce a pulse of hormone release into the pituitary portal blood. Current knowledge will be reviewed, and hypotheses and working models proposed for future studies.
Collapse
Affiliation(s)
- Suzanne M Moenter
- Departments of Internal Medicine and Cell Biology, University of Virginia, PO BOX 800578, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
11
|
Nunemaker CS, DeFazio RA, Moenter SM. Estradiol-sensitive afferents modulate long-term episodic firing patterns of GnRH neurons. Endocrinology 2002; 143:2284-92. [PMID: 12021193 DOI: 10.1210/endo.143.6.8869] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH neurons comprise the final common pathway of an estrogen-sensitive pattern generator controlling fertility. To determine estradiol effects on GnRH neuron firing patterns, adult transgenic mice were ovariectomized (OVX), and half were treated with estradiol (OVX+E). One week later targeted single-unit extracellular recordings were made from GnRH neurons identified by green fluorescent protein expression. Estradiol markedly affected GnRH neuron firing patterns, increasing the percentage and duration of time these cells were quiescent (< or = 1 action current/min). Estradiol increased the interval between episodes of increased firing rate determined by Cluster analysis of recordings more than 45 min (OVX+E 38.8 +/- 7.2 min, OVX 16.7 +/- 2.1 min, n = 6 each). Possible mechanisms of estradiol modulation were examined by simultaneously blocking ionotropic secretion of gamma-aminobutyric acid and glutamatergic receptors. This treatment had no effect on cells from OVX mice (n = 10), indicating episodic firing of GnRH neurons is not driven by activation of these receptors. Receptor blockade eliminated estradiol effects on GnRH neurons in the midventral preoptic area (n = 7) but not elsewhere (n = 7). Individual GnRH neurons thus display episodic firing patterns at intervals previously reported for secretory pulses. Estradiol modulates episode frequency to exert feedback control; in a substantial subset of GnRH neurons, estradiol feedback is enforced via GABAergic and/or glutamatergic afferents.
Collapse
Affiliation(s)
- Craig S Nunemaker
- Department of Internal Medicine and National Science Foundation Center for Biological Timing, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
12
|
Martínez de la Escalera G, Clapp C. Regulation of gonadotropin-releasing hormone secretion: insights from GT1 immortal GnRH neurons. Arch Med Res 2001; 32:486-98. [PMID: 11750724 DOI: 10.1016/s0188-4409(01)00320-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The study of the mammalian GnRH system has been greatly advanced by the development of immortalized cell lines. Of particular relevance are the so-called GT1 cells. Not only do they exhibit many of the known physiologic characteristics of GnRH neurons in situ, but in approximately one decade have yielded new insights regarding the intrinsic physiology of individual cells and networks of GnRH neurons, as well as the nature of central and peripheral signals that directly modulate their function. For instance, valuable information has been generated concerning intrinsic properties of the system such as the inherent pulsatile pattern of secretion displayed by networks of GT1 cells. Concepts regarding feedback regulation and autocrine feedback of GnRH neurons have been dramatically expanded. Likewise, the nature of the receptors and of the proximal and distal signal transduction mechanisms involved in the actions of multiple afferent signals has been identified. Understanding this neuronal system allows a better comprehension of the hypothalamic-pituitary-gonadal axis and of the regulatory influences that ultimately control reproductive competence.
Collapse
Affiliation(s)
- G Martínez de la Escalera
- Centro de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico.
| | | |
Collapse
|
13
|
Simonian SX, Skynner MJ, Sieghart W, Essrich C, Luscher B, Herbison AE. Role of the GABA(A) receptor gamma2 subunit in the development of gonadotropin-releasing hormone neurons in vivo. Eur J Neurosci 2000; 12:3488-96. [PMID: 11029618 DOI: 10.1046/j.1460-9568.2000.00225.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have employed transgenic mouse models to examine the functional significance of the gamma2 subunit of the GABA(A) (gamma-aminobutyric acid) receptor to the correct development of gonadotropin-releasing hormone (GnRH) neurons in vivo. In the first experiment, the expression of gamma2 subunit protein by the GnRH phenotype was determined using transgenic mice in which GnRH gene sequences direct the expression of the LacZ reporter to the nucleus of the GnRH neurons. This greatly facilitates the immunocytochemical identification of non-nuclear-located antigens within GnRH neurons and revealed that approximately 25% of juvenile GnRH neurons were immunoreactive for the gamma2 subunit and that this increased to 40% in pubertal mice. In the second experiment, GnRH mRNA expression was examined in the brains of gamma2 subunit knockout mice (gamma2(0/0)) and their wild-type (gamma2+/+) littermates at embryonic day 15 and postnatal days (P) 0 and 11-16 using in situ hybridization. The distribution and numbers of cells expressing GnRH mRNA in gamma2+/+ and gamma2(0/0) mice were not found to differ at any age. However, the GnRH mRNA content of medial septal cells was significantly lower in gamma2(0/0) compared with gamma2+/+ mice at P11-16 (P<0.05) and the same trend was observed for preoptic area neurons. These results demonstrate that while the gamma2 subunit of the GABA(A) receptor is expressed by postnatal GnRH neurons, their embryonic development does not require a functional gamma2 subunit. In contrast, postnatal GnRH mRNA expression was found to be dependent upon signalling through the GABA(A) receptor.
Collapse
MESH Headings
- Animals
- Cell Count
- Female
- Fetus
- Genes, Reporter/genetics
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Hypothalamus, Anterior/cytology
- Hypothalamus, Anterior/metabolism
- Lac Operon/genetics
- Mice
- Mice, Knockout/genetics
- Mice, Knockout/metabolism
- Mice, Transgenic/genetics
- Mice, Transgenic/metabolism
- Neurons/cytology
- Neurons/metabolism
- Phenotype
- Preoptic Area/cytology
- Preoptic Area/metabolism
- Prosencephalon/cytology
- Prosencephalon/embryology
- Prosencephalon/metabolism
- RNA, Messenger/metabolism
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Septal Nuclei/cytology
- Septal Nuclei/metabolism
Collapse
Affiliation(s)
- S X Simonian
- Laboratory of Neuroendocrinology, The Babraham Institute, Babraham, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Monoamines such as noradrenaline and serotonin are stored in secretory vesicles and released by exocytosis. Two related monoamine transporters, VMAT1 and VMAT2, mediate vesicular transmitter uptake. Previously we have reported that in the rat pheochromocytoma cell line PC 12 VMAT1, localized to peptide-containing secretory granules, is controlled by the heterotrimeric G-protein Go(2). We now show that in BON cells, a human serotonergic neuroendocrine cell line derived from a pancreatic tumor expressing both transporters on large, dense-core vesicles, VMAT2 is even more sensitive to G-protein regulation than VMAT1. The activity of both transporters is only downregulated by Galphao(2), whereas comparable concentrations of Galphao(1) are without effect. In serotonergic raphe neurons in primary culture VMAT2 is also downregulated by pertussis toxin-sensitive Go(2). By electron microscopic analysis from prefrontal cortex we show that VMAT2 and Galphao(2) associate preferentially to locally recycling small synaptic vesicles in serotonergic terminals. In addition, Go(2)-dependent modulation of VMAT2 also works when using a crude synaptic vesicle preparation from this brain area. We conclude that regulation of monoamine uptake by the heterotrimeric G proteins is a general feature of monoaminergic neurons that controls the content of both large, dense-core and small synaptic vesicles.
Collapse
|
15
|
Becher A, Drenckhahn A, Pahner I, Ahnert-Hilger G. The synaptophysin-synaptobrevin complex is developmentally upregulated in cultivated neurons but is absent in neuroendocrine cells. Eur J Cell Biol 1999; 78:650-6. [PMID: 10535307 DOI: 10.1016/s0171-9335(99)80050-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Regulated secretion requires the formation of a fusion complex consisting of synaptobrevin, syntaxin and SNAP 25. One of these key proteins, synaptobrevin, also complexes with the vesicle protein synaptophysin. The fusion complex and the synaptophysin-synaptobrevin complex are mutually exclusive. Using a combination of immunoprecipitation and crosslinking experiments we report here that the synaptophysin-synaptobrevin interaction in mouse whole brain and defined brain areas is upregulated during neuronal development as previously reported for rat brain. Furthermore the synaptophysin-synaptobrevin complex is also upregulated within 10-12 days of cultivation in mouse hippocampal neurons in primary culture. Besides being constituents of small synaptic vesicles in neurons synaptophysin and synaptobrevin also occur on small synaptic vesicle analogues of neuroendocrine cells. However, the synaptophysin-synaptobrevin complex was not found in neuroendocrine cell lines and more importantly it was also absent in the adrenal gland, the adenohypophysis and the neurohypophysis although the individual proteins could be clearly detected. In the rat pheochromocytoma cell line PC 12 complex formation between synaptophysin and synaptobrevin could be initiated by adult rat brain cytosol. In conclusion, the synaptophysin-synaptobrevin complex is upregulated in neurons in primary culture but is absent in the neuroendocrine cell lines and tissues tested. The complex may provide a reserve pool of synaptobrevin during periods of high synaptic activity. Such a reserve pool probably is less important for more slowly secreting neuroendocrine cells and neurons. The synaptophysin on small synaptic vesicle analogues in these cells appears to resemble the synaptophysin of embryonic synaptic vesicles since complex formation can be induced by adult brain cytosol.
Collapse
Affiliation(s)
- A Becher
- Institut für Anatomie der Charité, Humboldt-Universität zu Berlin, Germany
| | | | | | | |
Collapse
|
16
|
GABA- and glutamate-activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. J Neurosci 1999. [PMID: 10066257 DOI: 10.1523/jneurosci.19-06-02037.1999] [Citation(s) in RCA: 302] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mice were generated expressing green fluorescent protein (GFP) under the control of the gonadotropin-releasing hormone (GnRH) promoter. Green fluorescence was observed in, and restricted to, GnRH-immunopositive neuronal somata in the olfactory bulb, ganglion terminale, septal nuclei, diagonal band of Broca (DBB), preoptic area (POA), and caudal hypothalamus, as well as GnRH neuronal dendrites and axons, including axon terminals in the median eminence and organum vasculosum of the lamina terminalis (OVLT). Whole-cell recordings from GFP-expressing GnRH neurons in the OVLT-POA-DBB region revealed a firing pattern among GFP-expressing GnRH neurons distinct from that of nonfluorescent neurons. Nucleated patches of GFP-expressing GnRH neurons exhibited pronounced responses to fast application of GABA and smaller responses to L-glutamate and AMPA. One-fifth of the nucleated patches responded to NMDA. The GABA-A, AMPA, and NMDA receptor channels on GnRH neurons mediating these responses may play a role in the modulation of GnRH secretory oscillations.
Collapse
|