1
|
Haggerty SE, King WM. The Interaction of Pre-programmed Eye Movements With the Vestibulo-Ocular Reflex. Front Syst Neurosci 2018; 12:4. [PMID: 29593506 PMCID: PMC5855878 DOI: 10.3389/fnsys.2018.00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/19/2018] [Indexed: 11/16/2022] Open
Abstract
The Vestibulo-Ocular Reflex (VOR) works to stabilize gaze during unexpected head movements. However, even subjects who lack a VOR (e.g., vestibulopathic patients) can achieve gaze stability during planned head movements by using pre-programmed eye movements (PPEM). The extent to which PPEM are used by healthy intact subjects and how they interact with the VOR is still unclear. We propose a model of gaze stabilization which makes several claims: (1) the VOR provides ocular stability during unexpected (i.e., passive) head movements; (2) PPEM are used by both healthy and vestibulopathic subjects during planned (i.e., active) head movements; and (3) when a passive perturbation interrupts an active head movement in intact animals (i.e., combined passive and active head movement) the VOR works with PPEM to provide compensation. First, we show how our model can reconcile some seemingly conflicting findings in earlier literature. We then test the above-mentioned predictions against data we collected from both healthy and vestibular-lesioned guinea pigs. We found that (1) vestibular-lesioned animals showed a dramatic decrease in compensatory eye movements during passive head movements, (2) both populations showed improved ocular compensation during active vs. passive head movements, and (3) during combined active and passive head movements, eye movements compensated for both the active and passive component of head velocity. These results support our hypothesis that while the VOR provides compensation during passive head movements, PPEM are used by both intact and lesioned subjects during active movements and further, that PPEM work together with the VOR to achieve gaze stability.
Collapse
Affiliation(s)
- Stephanie E Haggerty
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Kresge Hearing Research Institute, Ann Arbor, MI, United States
| | - W Michael King
- Kresge Hearing Research Institute, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Hübner PP, Khan SI, Migliaccio AA. Velocity-selective adaptation of the horizontal and cross-axis vestibulo-ocular reflex in the mouse. Exp Brain Res 2014; 232:3035-46. [PMID: 24862508 DOI: 10.1007/s00221-014-3988-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 05/08/2014] [Indexed: 01/07/2023]
Abstract
One commonly observed phenomenon of vestibulo-ocular reflex (VOR) adaptation is a frequency-selective change in gain (eye velocity/head velocity) and phase (relative timing between the vestibular stimulus and response) based on the frequency content of the adaptation training stimulus. The neural mechanism behind this type of adaptation is not clear. Our aim was to determine whether there were other parameter-selective effects on VOR adaptation, specifically velocity-selective and acceleration-selective changes in the horizontal VOR gain and phase. We also wanted to determine whether parameter selectivity was also in place for cross-axis adaptation training (a visual-vestibular training stimulus that elicits a vestibular-evoked torsional eye movement during horizontal head rotations). We measured VOR gain and phase in 17 C57BL/6 mice during baseline (no adaptation training) and after gain-increase, gain-decrease and cross-axis adaptation training using a sinusoidal visual-vestibular (mismatch) stimulus with whole-body rotations (vestibular stimulus) with peak velocity 20 and 50°/s both with a fixed frequency of 0.5 Hz. Our results show pronounced velocity selectivity of VOR adaptation. The difference in horizontal VOR gain after gain-increase versus gain-decrease adaptation was maximal when the sinusoidal testing stimulus matched the adaptation training stimulus peak velocity. We also observed similar velocity selectivity after cross-axis adaptation training. Our data suggest that frequency selectivity could be a manifestation of both velocity and acceleration selectivity because when one of these is absent, e.g. acceleration selectivity in the mouse, frequency selectivity is also reduced.
Collapse
Affiliation(s)
- Patrick P Hübner
- Balance and Vision Laboratory, Neuroscience Research Australia, Cnr Barker Street and Easy Street, Randwick, Sydney, NSW, 2031, Australia
| | | | | |
Collapse
|
3
|
King WM. Getting ahead of oneself: anticipation and the vestibulo-ocular reflex. Neuroscience 2013; 236:210-9. [PMID: 23370320 DOI: 10.1016/j.neuroscience.2012.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
Compensatory counter-rotations of the eyes provoked by head turns are commonly attributed to the vestibulo-ocular reflex (VOR). A recent study in guinea pigs demonstrates, however, that this assumption is not always valid. During voluntary head turns, guinea pigs make highly accurate compensatory eye movements that occur with zero or even negative latencies with respect to the onset of the provoking head movements. Furthermore, the anticipatory eye movements occur in animals with bilateral peripheral vestibular lesions, thus confirming that they have an extra vestibular origin. This discovery suggests the possibility that anticipatory responses might also occur in other species including humans and non-human primates, but have been overlooked and mistakenly identified as being produced by the VOR. This review will compare primate and guinea pig vestibular physiology in light of these new findings. A unified model of vestibular and cerebellar pathways will be presented that is consistent with current data in primates and guinea pigs. The model is capable of accurately simulating compensatory eye movements to active head turns (anticipatory responses) and to passive head perturbations (VOR induced eye movements) in guinea pigs and in human subjects who use coordinated eye and head movements to shift gaze direction in space. Anticipatory responses provide new evidence and opportunities to study the role of extra vestibular signals in motor control and sensory-motor transformations. Exercises that employ voluntary head turns are frequently used to improve visual stability in patients with vestibular hypofunction. Thus, a deeper understanding of the origin and physiology of anticipatory responses could suggest new translational approaches to rehabilitative training of patients with bilateral vestibular loss.
Collapse
Affiliation(s)
- W M King
- Department of Otolaryngology and the Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Shanidze N, Kim AH, Raphael Y, King WM. Eye-head coordination in the guinea pig I. Responses to passive whole-body rotations. Exp Brain Res 2010; 205:395-404. [PMID: 20686891 DOI: 10.1007/s00221-010-2374-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/15/2010] [Indexed: 11/28/2022]
Abstract
Vestibular reflexes act to stabilize the head and eyes in space during locomotion. Head stability is essential for postural control, whereas retinal image stability enhances visual acuity and may be essential for an animal to distinguish self-motion from that of an object in the environment. Guinea pig eye and head movements were measured during passive whole-body rotation in order to assess the efficacy of vestibular reflexes. The vestibulo-ocular reflex (VOR) produced compensatory eye movements with a latency of approximately 7 ms that compensated for 46% of head movement in the dark and only slightly more in the light (54%). Head movements, in response to abrupt body rotations, also contributed to retinal stability (21% in the dark; 25% in the light) but exhibited significant variability. Although compensatory eye velocity produced by the VOR was well correlated with head-in-space velocity, compensatory head-on-body speed and direction were variable and poorly correlated with body speed. The compensatory head movements appeared to be determined by passive biomechanical (e.g., inertial effects, initial tonus) and active mechanisms (the vestibulo-collic reflex or VCR). Chemically induced, bilateral lesions of the peripheral vestibular system abolished both compensatory head and eye movement responses.
Collapse
Affiliation(s)
- N Shanidze
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
5
|
Haque A, Zakir M, Dickman JD. Regeneration of vestibular horizontal semicircular canal afferents in pigeons. J Neurophysiol 2009; 102:1274-86. [PMID: 19515948 DOI: 10.1152/jn.91000.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spontaneous regeneration of vestibular and auditory receptors and their innervating afferents in birds, reptiles, and amphibians are well known. Here, we produced a complete vestibular receptor loss and epithelial denervation using an ototoxic agent (streptomycin), after which we quantitatively characterized the afferent innervation of the horizontal semicircular canals following completed regeneration. We found that calyx, dimorph, and bouton afferents all regenerate in a manner the recapitulates the epithelial topography of normal birds, but over a slow time course. Similar to previous findings in the vestibular otolith maculae, regeneration occurs according to a three-stage temporal sequence. Bouton afferents regenerate during the first month of regeneration, followed by calyceal-bearing afferents in the second and third months. Calyx afferents were the last to regenerate in the final stage of recovery after 3 mo. We also found that regenerated afferents exhibited terminal morphologies that are significantly smaller, less complex, and innervate fewer receptor cells over smaller epithelial areas than those that develop through normative morphogenesis. These structural fiber changes in afferent innervation correlate to alterations in gaze responses during regeneration, although the exact underlying mechanisms responsible for behavioral changes remain unknown. Plasticity in central vestibular neurons processing motion information seem to be required to explain the observed morphologic and response adaptations observed in regenerating vestibular systems.
Collapse
Affiliation(s)
- Asim Haque
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
6
|
Beraneck M, McKee JL, Aleisa M, Cullen KE. Asymmetric recovery in cerebellar-deficient mice following unilateral labyrinthectomy. J Neurophysiol 2008; 100:945-58. [PMID: 18509072 DOI: 10.1152/jn.90319.2008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The term "vestibular compensation" refers to the resolution of motor deficits resulting from a peripheral vestibular lesion. We investigated the role of the cerebellum in the compensation process by characterizing the vestibuloocular reflex (VOR) evoked by head rotations at frequencies and velocities similar to those in natural behaviors in wild-type (WT) versus cerebellar-deficient Lurcher (Lc/+) mice. We found that during exploratory activity, normal mice produce head rotations largely consisting of frequencies < or =4 Hz and velocities and accelerations as large as 400 degrees/s and 5,000 degrees/s2, respectively. Accordingly, the VOR was characterized using sinusoidal rotations (0.2-4 Hz) as well as transient impulses (approximately 400 degrees/s; approximately 2,000 degrees/s2). Before lesions, WT and Lc/+ mice produced similar VOR responses to sinusoidal rotation. Lc/+ mice, however, had significantly reduced gains for transient stimuli. After unilateral labyrinthectomy, VOR recovery followed a similar course for WT and Lc/+ groups during the first week: gain was reduced by 80% for ipsilesionally directed head rotations on day 1 and improved for both strains to values of approximately 0.4 by day 5. Moreover, responses evoked by contralesionally directed rotations returned to prelesion in both strains within this period. However, unlike WT, which showed improving responses to ipsilesionally directed rotations, recovery plateaued after first week for Lc/+ mice. Our results show that despite nearly normal recovery in the acute phase, long-term compensation is compromised in Lc/+. We conclude that cerebellar pathways are critical for long-term restoration of VOR during head rotation toward the lesioned side, while noncerebellar pathways are sufficient to restore proper gaze stabilization during contralesionally directed movements.
Collapse
Affiliation(s)
- M Beraneck
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
7
|
Haque A, Zakir M, Dickman JD. Recovery of gaze stability during vestibular regeneration. J Neurophysiol 2007; 99:853-65. [PMID: 18045999 DOI: 10.1152/jn.01038.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many motion related behaviors, such as gaze stabilization, balance, orientation, and navigation largely depend on a properly functioning vestibular system. After vestibular insult, many of these responses are compromised but can return during the regeneration of vestibular receptors and afferents as is known to occur in birds, reptiles, and amphibians. Here we characterize gaze stability in pigeons to rotational motion during regeneration after complete bilateral vestibular loss via an ototoxic antibiotic. Immediate postlesion effects included severe head oscillations, postural ataxia, and total lack of gaze control. We found that these abnormal behaviors gradually subsided, and gaze stability slowly returned to normal function according to a temporal sequence that lasted several months. We also found that the dynamic recovery of gaze function during regeneration was not homogeneous for all types of motion. Instead high-frequency motion stability was first achieved, followed much later by slow movement stability. In addition, we found that initial gaze stability was established using almost exclusive head-response components with little eye-movement contribution. However, that trend reversed as recovery progressed so that when gaze stability was complete, the eye component had increased and the head response had decreased to levels significantly different from that observed in normal birds. This was true even though the head-fixed VOR response recovered normally. Recovery of gaze stability coincided well with the three stage temporal sequence of morphologic regeneration previously described by our laboratory.
Collapse
Affiliation(s)
- Asim Haque
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
8
|
Beraneck M, Cullen KE. Activity of Vestibular Nuclei Neurons During Vestibular and Optokinetic Stimulation in the Alert Mouse. J Neurophysiol 2007; 98:1549-65. [PMID: 17625061 DOI: 10.1152/jn.00590.2007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As a result of the availability of genetic mutant strains and development of noninvasive eye movements recording techniques, the mouse stands as a very interesting model for bridging the gap among behavioral responses, neuronal response dynamics studied in vivo, and cellular mechanisms investigated in vitro. Here we characterized the responses of individual neurons in the mouse vestibular nuclei during vestibular (horizontal whole body rotations) and full field visual stimulation. The majority of neurons (∼2/3) were sensitive to vestibular stimulation but not to eye movements. During the vestibular-ocular reflex (VOR), these neurons discharged in a manner comparable to the “vestibular only” (VO) neurons that have been previously described in primates. The remaining neurons [eye-movement-sensitive (ES) neurons] encoded both head-velocity and eye-position information during the VOR. When vestibular and visual stimulation were applied so that there was sensory conflict, the behavioral gain of the VOR was reduced. In turn, the modulation of sensitivity of VO neurons remained unaffected, whereas that of ES neurons was reduced. ES neurons were also modulated in response to full field visual stimulation that evoked the optokinetic reflex (OKR). Mouse VO neurons, however, unlike their primate counterpart, were not modulated during OKR. Taken together, our results show that the integration of visual and vestibular information in the mouse vestibular nucleus is limited to a subpopulation of neurons which likely supports gaze stabilization for both VOR and OKR.
Collapse
Affiliation(s)
- M Beraneck
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
9
|
Straka H, Vibert N, Vidal PP, Moore LE, Dutia MB. Intrinsic membrane properties of vertebrate vestibular neurons: function, development and plasticity. Prog Neurobiol 2005; 76:349-92. [PMID: 16263204 DOI: 10.1016/j.pneurobio.2005.10.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/25/2005] [Accepted: 10/05/2005] [Indexed: 11/30/2022]
Abstract
Central vestibular neurons play an important role in the processing of body motion-related multisensory signals and their transformation into motor commands for gaze and posture control. Over recent years, medial vestibular nucleus (MVN) neurons and to a lesser extent other vestibular neurons have been extensively studied in vivo and in vitro, in a range of species. These studies have begun to reveal how their intrinsic electrophysiological properties may relate to their response patterns, discharge dynamics and computational capabilities. In vitro studies indicate that MVN neurons are of two major subtypes (A and B), which differ in their spike shape and after-hyperpolarizations. This reflects differences in particular K(+) conductances present in the two subtypes, which also affect their response dynamics with type A cells having relatively low-frequency dynamics (resembling "tonic" MVN cells in vivo) and type B cells having relatively high-frequency dynamics (resembling "kinetic" cells in vivo). The presence of more than one functional subtype of vestibular neuron seems to be a ubiquitous feature since vestibular neurons in the chick and frog also subdivide into populations with different, analogous electrophysiological properties. The ratio of type A to type B neurons appears to be plastic, and may be determined by the signal processing requirements of the vestibular system, which are species-variant. The membrane properties and discharge pattern of type A and type B MVN neurons develop largely post-natally, through the expression of the underlying ion channel conductances. The membrane properties of MVN neurons show rapid and long-lasting plastic changes after deafferentation (unilateral labyrinthectomy), which may serve to maintain their level of activity and excitability after the loss of afferent inputs.
Collapse
Affiliation(s)
- H Straka
- L.N.R.S., CNRS UMR 7060-Université René Descartes (Paris 5), Paris, France.
| | | | | | | | | |
Collapse
|
10
|
Shinder ME, Perachio AA, Kaufman GD. Fos responses to short-term adaptation of the horizontal vestibuloocular reflex before and after vestibular compensation in the Mongolian gerbil. Brain Res 2005; 1050:79-93. [PMID: 15978560 DOI: 10.1016/j.brainres.2005.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/04/2005] [Accepted: 05/10/2005] [Indexed: 01/04/2023]
Abstract
Fos expression in vestibular brainstem and cerebellar regions was evaluated during vestibular adaptation in the Mongolian gerbil. In addition, vestibular adaptation was evaluated in both normal and compensated animals, as vestibular compensation reorganizes the vestibular pathway constraining adaptive processes. Behaviorally, discordant optokinetic and vestibular input induced appropriate high and low gain in horizontal angular vestibuloocular reflex responses. In normal animals, low gain adaptation was more complete than high gain. However, in compensated animals, only low gain adaptation produced adaptive responses both toward and away from the lesion with appropriate gain shifts. High gain adaptation in compensated animals failed to result in gain adaptation for head movements toward the side of the lesion. Fos expression during acute vestibular adaptation in normal animals was found in the flocculus/paraflocculus, the dorsal cap of the inferior olive (IOK), and the prepositus hypoglossi (PrH). Floccular Fos labeling was increased under both high and low gain conditions. IOK and PrH labeling was increased and correlated during low gain conditions, but was reduced and uncorrelated during high gain conditions. The pattern of Fos labeling in compensated animals was asymmetric-favoring the ipsilesional flocculus and contralesional vestibular brainstem. Both compensated high and low gain adaptation groups displayed increased floccular and IOK Fos labeling, but only compensated high gain adaptation produced increased Fos labeling in the medial vestibular nucleus. The behavioral and Fos labeling results are consistent with visual-vestibular adaptation requiring direct vestibular input.
Collapse
Affiliation(s)
- Michael E Shinder
- University of Texas Medical Branch, 7.102 Medical Research Building, 301 University Boulevard, Galveston, TX 77555-1063, USA
| | | | | |
Collapse
|
11
|
Ris L, Hachemaoui M, Vibert N, Godaux E, Vidal PP, Moore LE. Resonance of spike discharge modulation in neurons of the guinea pig medial vestibular nucleus. J Neurophysiol 2001; 86:703-16. [PMID: 11495944 DOI: 10.1152/jn.2001.86.2.703] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The modulation of action potential discharge rates is an important aspect of neuronal information processing. In these experiments, we have attempted to determine how effectively spike discharge modulation reflects changes in the membrane potential in central vestibular neurons. We have measured how their spike discharge rate was modulated by various current inputs to obtain neuronal transfer functions. Differences in the modulation of spiking rates were observed between neurons with a single, prominent after hyperpolarization (AHP, type A neurons) and cells with more complex AHPs (type B neurons). The spike discharge modulation amplitudes increased with the frequency of the current stimulus, which was quantitatively described by a neuronal model that showed a resonance peak >10 Hz. Modeling of the resonance peak required two putative potassium conductances whose properties had to be markedly dependent on the level of the membrane potential. At low frequencies (< or =0.4 Hz), the gain or magnitude functions of type A and B discharge rates were similar relative to the current input. However, resting input resistances obtained from the ratio of the membrane potential and current were lower in type B compared with type A cells, presumably due to a higher level of active potassium conductances at rest. The lower input resistance of type B neurons was compensated by a twofold greater sensitivity of their firing rate to changes in membrane potential, which suggests that synaptic inputs on their dendritic processes would be more efficacious. This increased sensitivity is also reflected in a greater ability of type B neurons to synchronize with low-amplitude sinusoidal current inputs, and in addition, their responses to steep slope ramp stimulation are enhanced over the more linear behavior of type A neurons. This behavior suggests that the type B MVNn are moderately tuned active filters that promote high-frequency responses and that type A neurons are like low-pass filters that are well suited for the resting tonic activity of the vestibular system. However, the more sensitive and phasic type B neurons contribute to both low- and high-frequency control as well as signal detection and would amplify the contribution of both irregular and regular primary afferents at high frequencies.
Collapse
Affiliation(s)
- L Ris
- Laboratory of Neurosciences, University of Mons-Hainaut, B-7000 Mons, Belgium
| | | | | | | | | | | |
Collapse
|
12
|
Babalian AL, Vidal PP. Floccular modulation of vestibuloocular pathways and cerebellum-related plasticity: An in vitro whole brain study. J Neurophysiol 2000; 84:2514-28. [PMID: 11067994 DOI: 10.1152/jn.2000.84.5.2514] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The isolated whole brain (IWB) preparation of the guinea pig was used to investigate the floccular modulation of vestibular-evoked responses in abducens and oculomotor nerves and abducens nucleus; for identification of flocculus target neurons (FTNs) in the vestibular nuclei and intracellular study of some of their physiological properties; to search for possible flocculus-dependent plasticity at the FTN level by pairing of vestibular nerve and floccular stimulations; and to study the possibility of induction of long-term depression (LTD) in Purkinje cells by paired stimulation of the inferior olive and vestibular nerve. Stimulation of the flocculus had only effects on responses evoked from the ipsilateral (with respect to the stimulated flocculus) vestibular nerve. Floccular stimulation significantly inhibited the vestibular-evoked discharges in oculomotor nerves on both sides and the inhibitory field potential in the ipsilateral abducens nucleus while the excitatory responses in the contralateral abducens nerve and nucleus were free from such inhibition. Eleven second-order vestibular neurons were found to receive a short-latency monosynaptic inhibitory input from the flocculus and were thus characterized as FTNs. Monosynaptic inhibitory postsynaptic potentials from the flocculus were bicuculline sensitive, suggesting a GABA(A)-ergic transmission from Purkinje cells to FTNs. Two of recorded FTNs could be identified as vestibulospinal neurons by their antidromic activation from the cervical segments of the spinal cord. Several pairing paradigms were investigated in which stimulation of the flocculus could precede, coincide with, or follow the vestibular nerve stimulation. None of them led to long-term modification of responses in the abducens nucleus or oculomotor nerve evoked by activation of vestibular afferents. On the other hand, pairing of the inferior olive and vestibular nerve stimulation resulted in approximately a 30% reduction of excitatory postsynaptic potentials evoked in Purkinje cells by the vestibular nerve stimulation. This reduction was pairing-specific and lasted throughout the entire recording time of the neurons. Thus in the IWB preparation, we were able to induce a LTD in Purkinje cells, but we failed to detect traces of flocculus-dependent plasticity at the level of FTNs in vestibular nuclei. Although these data cannot rule out the possibility of synaptic modifications in FTNs and/or at other brain stem sites under different experimental conditions, they are in favor of the hypothesis that the LTD in the flocculus could be the essential mechanism of cellular plasticity in the vestibuloocular pathways.
Collapse
Affiliation(s)
- A L Babalian
- Laboratoire de la Neurobiologie des Réseaux Sensorimoteures, Centre National de la Recherche Scientifique, 75270 Paris Cedex 06, France.
| | | |
Collapse
|