1
|
Lewis A. A non-adaptationist hypothesis of play behaviour. J Physiol 2024; 602:2433-2453. [PMID: 37656171 DOI: 10.1113/jp284413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Play is a suite of apparently non-functional, pleasurable behaviours observed in human and non-human animals. Although the phenomenon has been studied extensively, no adaptationist behavioural theory of how play evolved can be supported by the available evidence. However, the advancement of the extended evolutionary synthesis and developments in systems biology offer alternative avenues for non-adaptationist physiological hypotheses. I therefore propose a hypothesis of play, based upon a complex ACh activity that is under agential control of the organism, whereby play initiates ACh-mediated feedforward and feedback processes which act to: (i) regulate metabolic processes; (ii) form new ACh receptors via ACh mRNA activity; (iii) mediate attention, memory consolidation and learning; and (iv) mediate social behaviours, reproduction and embryonic development. However, play occurs across taxa, but does not occur across all taxonomic groups or within all species of a taxonomic group. Thus, to support the validity of the proposed hypothesis, I further propose potential explanations for this anomaly, which include sampling and observer biases, altricial versus precocial juvenile development, and the influence of habitat niche and environmental conditions on behaviour. The proposed hypothesis thus offers new avenues for study in both the biological and social sciences, in addition to having potential applications in applied sciences, such as animal welfare and biomedical research. Crucially, it is hoped that this hypothesis will promote further study of a valid and behaviourally significant, yet currently enigmatic, biological phenomenon.
Collapse
Affiliation(s)
- Amelia Lewis
- Independent Researcher, Lincoln, Lincolnshire, UK
| |
Collapse
|
2
|
Snow F, O'Connell C, Yang P, Kita M, Pirogova E, Williams RJ, Kapsa RMI, Quigley A. Engineering interfacial tissues: The myotendinous junction. APL Bioeng 2024; 8:021505. [PMID: 38841690 PMCID: PMC11151436 DOI: 10.1063/5.0189221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The myotendinous junction (MTJ) is the interface connecting skeletal muscle and tendon tissues. This specialized region represents the bridge that facilitates the transmission of contractile forces from muscle to tendon, and ultimately the skeletal system for the creation of movement. MTJs are, therefore, subject to high stress concentrations, rendering them susceptible to severe, life-altering injuries. Despite the scarcity of knowledge obtained from MTJ formation during embryogenesis, several attempts have been made to engineer this complex interfacial tissue. These attempts, however, fail to achieve the level of maturity and mechanical complexity required for in vivo transplantation. This review summarizes the strategies taken to engineer the MTJ, with an emphasis on how transitioning from static to mechanically inducive dynamic cultures may assist in achieving myotendinous maturity.
Collapse
|
3
|
Usami Y, Iijima H, Kokubun T. Exploring the role of mechanical forces on tendon development using in vivo model: A scoping review. Dev Dyn 2024; 253:550-565. [PMID: 37947268 DOI: 10.1002/dvdy.673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/25/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
Tendons transmit the muscle contraction forces to bones and drive joint movement throughout life. While extensive research have indicated the essentiality of mechanical forces on tendon development, a comprehensive understanding of the fundamental role of mechanical forces still needs to be impaerted. This scoping review aimed to summarize the current knowledge about the role of mechanical forces during the tendon developmental phase. The electronic database search using PubMed, performed in May 2023, yielded 651 articles, of which 16 met the prespecified inclusion criteria. We summarized and divided the methods to reduce the mechanical force into three groups: loss of muscle, muscle dysfunction, and weight-bearing regulation. In contrast, there were few studies to analyze the increased mechanical force model. Most studies suggested that mechanical force has some roles in tendon development in the embryo to postnatal phase. However, we identified species variability and methodological heterogeneity to modulate mechanical force. To establish a comprehensive understanding, methodological commonality to modulate the mechanical force is needed in this field. Additionally, summarizing chronological changes in developmental processes across animal species helps to understand the essence of developmental tendon mechanobiology. We expect that the findings summarized in the current review serve as a groundwork for future study in the fields of tendon developmantal biology and mechanobiology.
Collapse
Affiliation(s)
- Yuna Usami
- Graduate School of Health, Medicine, and Welfare, Saitama Prefectural University, Koshigaya, Japan
| | - Hirotaka Iijima
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, Massachusetts, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Takanori Kokubun
- Graduate School of Health, Medicine, and Welfare, Saitama Prefectural University, Koshigaya, Japan
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Koshigaya, Japan
| |
Collapse
|
4
|
Tsinman T, Huang Y, Ahmed S, Levillain A, Evans MK, Jiang X, Nowlan N, Dyment N, Mauck R. Lack of skeletal muscle contraction disrupts fibrous tissue morphogenesis in the developing murine knee. J Orthop Res 2023; 41:2305-2314. [PMID: 37408453 PMCID: PMC10528502 DOI: 10.1002/jor.25659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Externally applied forces, such as those generated through skeletal muscle contraction, are important to embryonic joint formation, and their loss can result in gross morphologic defects including joint fusion. While the absence of muscle contraction in the developing chick embryo leads to dissociation of dense connective tissue structures of the knee and ultimately joint fusion, the central knee joint cavitates whereas the patellofemoral joint does not in murine models lacking skeletal muscle contraction, suggesting a milder phenotype. These differential results suggest that muscle contraction may not have as prominent of a role in the growth and development of dense connective tissues of the knee. To explore this question, we investigated the formation of the menisci, tendon, and ligaments of the developing knee in two murine models that lack muscle contraction. We found that while the knee joint does cavitate, there were multiple abnormalities in the menisci, patellar tendon, and cruciate ligaments. The initial cellular condensation of the menisci was disrupted and dissociation was observed at later embryonic stages. The initial cell condensation of the tendon and ligaments were less affected than the meniscus, but these tissues contained cells with hyper-elongated nuclei and displayed diminished growth. Interestingly, lack of muscle contraction led to the formation of an ectopic ligamentous structure in the anterior region of the joint as well. These results indicate that muscle forces are essential for the continued growth and maturation of these structures during this embryonic period.
Collapse
Affiliation(s)
- T.K. Tsinman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Y. Huang
- Department of Bioengineering, Imperial College London, London, UK
| | - S. Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | - A.L. Levillain
- Department of Bioengineering, Imperial College London, London, UK
| | - MK. Evans
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - X. Jiang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
| | - N.C. Nowlan
- Department of Bioengineering, Imperial College London, London, UK
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - N.A. Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - R.L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA
| |
Collapse
|
5
|
Rial RV, Akaârir M, Canellas F, Barceló P, Rubiño JA, Martín-Reina A, Gamundí A, Nicolau MC. Mammalian NREM and REM sleep: Why, when and how. Neurosci Biobehav Rev 2023; 146:105041. [PMID: 36646258 DOI: 10.1016/j.neubiorev.2023.105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
This report proposes that fish use the spinal-rhombencephalic regions of their brain to support their activities while awake. Instead, the brainstem-diencephalic regions support the wakefulness in amphibians and reptiles. Lastly, mammals developed the telencephalic cortex to attain the highest degree of wakefulness, the cortical wakefulness. However, a paralyzed form of spinal-rhombencephalic wakefulness remains in mammals in the form of REMS, whose phasic signs are highly efficient in promoting maternal care to mammalian litter. Therefore, the phasic REMS is highly adaptive. However, their importance is low for singletons, in which it is a neutral trait, devoid of adaptive value for adults, and is mal-adaptive for marine mammals. Therefore, they lost it. The spinal-rhombencephalic and cortical wakeful states disregard the homeostasis: animals only attend their most immediate needs: foraging defense and reproduction. However, these activities generate allostatic loads that must be recovered during NREMS, that is a paralyzed form of the amphibian-reptilian subcortical wakefulness. Regarding the regulation of tonic REMS, it depends on a hypothalamic switch. Instead, the phasic REMS depends on an independent proportional pontine control.
Collapse
Affiliation(s)
- Rubén V Rial
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Mourad Akaârir
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Francesca Canellas
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut; Hospital Son Espases, 07120, Palma de Mallorca (España).
| | - Pere Barceló
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - José A Rubiño
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut; Hospital Son Espases, 07120, Palma de Mallorca (España).
| | - Aida Martín-Reina
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Antoni Gamundí
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - M Cristina Nicolau
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| |
Collapse
|
6
|
Murphy P, Rolfe RA. Building a Co-ordinated Musculoskeletal System: The Plasticity of the Developing Skeleton in Response to Muscle Contractions. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:81-110. [PMID: 37955772 DOI: 10.1007/978-3-031-38215-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The skeletal musculature and the cartilage, bone and other connective tissues of the skeleton are intimately co-ordinated. The shape, size and structure of each bone in the body is sculpted through dynamic physical stimuli generated by muscle contraction, from early development, with onset of the first embryo movements, and through repair and remodelling in later life. The importance of muscle movement during development is shown by congenital abnormalities where infants that experience reduced movement in the uterus present a sequence of skeletal issues including temporary brittle bones and joint dysplasia. A variety of animal models, utilising different immobilisation scenarios, have demonstrated the precise timing and events that are dependent on mechanical stimulation from movement. This chapter lays out the evidence for skeletal system dependence on muscle movement, gleaned largely from mouse and chick immobilised embryos, showing the many aspects of skeletal development affected. Effects are seen in joint development, ossification, the size and shape of skeletal rudiments and tendons, including compromised mechanical function. The enormous plasticity of the skeletal system in response to muscle contraction is a key factor in building a responsive, functional system. Insights from this work have implications for our understanding of morphological evolution, particularly the challenging concept of emergence of new structures. It is also providing insight for the potential of physical therapy for infants suffering the effects of reduced uterine movement and is enhancing our understanding of the cellular and molecular mechanisms involved in skeletal tissue differentiation, with potential for informing regenerative therapies.
Collapse
Affiliation(s)
- Paula Murphy
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Rebecca A Rolfe
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
7
|
Arulkandarajah KH, Osterstock G, Lafont A, Le Corronc H, Escalas N, Corsini S, Le Bras B, Chenane L, Boeri J, Czarnecki A, Mouffle C, Bullier E, Hong E, Soula C, Legendre P, Mangin JM. Neuroepithelial progenitors generate and propagate non-neuronal action potentials across the spinal cord. Curr Biol 2021; 31:4584-4595.e4. [PMID: 34478646 DOI: 10.1016/j.cub.2021.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
In the developing central nervous system, electrical signaling is thought to rely exclusively on differentiating neurons as they acquire the ability to generate and propagate action potentials. Accordingly, neuroepithelial progenitors (NEPs), which give rise to all neurons and glial cells during development, have been reported to remain electrically passive. Here, we investigated the physiological properties of NEPs at the onset of spontaneous neural activity (SNA) initiating motor behavior in mouse embryonic spinal cord. Using patch-clamp recordings, we discovered that spinal NEPs exhibit spontaneous membrane depolarizations during episodes of SNA. These rhythmic depolarizations exhibited a ventral-to-dorsal gradient with the highest amplitude located in the floor plate, the ventral-most part of the neuroepithelium. Paired recordings revealed that NEPs are coupled via gap junctions and form an electrical syncytium. Although other NEPs were electrically passive, we discovered that floor-plate NEPs generated large Na+/Ca2+ action potentials. Unlike in neurons, floor-plate action potentials relied primarily on the activation of voltage-gated T-type calcium channels (TTCCs). In situ hybridization showed that all 3 known subtypes of TTCCs are predominantly expressed in the floor plate. During SNA, we found that acetylcholine released by motoneurons rhythmically triggers floor-plate action potentials by acting through nicotinic acetylcholine receptors. Finally, by expressing the genetically encoded calcium indicator GCaMP6f in the floor plate, we demonstrated that neuroepithelial action potentials are associated with calcium waves and propagate along the entire length of the spinal cord. Our work reveals a novel physiological mechanism to generate and propagate electrical signals across a neural structure independently from neurons.
Collapse
Affiliation(s)
- Kalaimakan Hervé Arulkandarajah
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Guillaume Osterstock
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Agathe Lafont
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Hervé Le Corronc
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Université d'Angers, 49000 Angers, France
| | - Nathalie Escalas
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31000 Toulouse, France
| | - Silvia Corsini
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Barbara Le Bras
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Linda Chenane
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Juliette Boeri
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Antonny Czarnecki
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Christine Mouffle
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Erika Bullier
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Elim Hong
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Cathy Soula
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31000 Toulouse, France
| | - Pascal Legendre
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Jean-Marie Mangin
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| |
Collapse
|
8
|
Corner MA, Schenck CH. Perchance to dream? Primordial motor activity patterns in vertebrates from fish to mammals: their prenatal origin, postnatal persistence during sleep, and pathological reemergence during REM sleep behavior disorder. Neurosci Bull 2015; 31:649-62. [PMID: 26319263 PMCID: PMC5563724 DOI: 10.1007/s12264-015-1557-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/25/2015] [Indexed: 12/14/2022] Open
Abstract
An overview is presented of the literature dealing with sleep-like motility and concomitant neuronal activity patterns throughout the life cycle in vertebrates, ectothermic as well as endothermic. Spontaneous, periodically modulated, neurogenic bursts of non-purposive movements are a universal feature of larval and prenatal behavior, which in endothermic animals (i.e. birds and mammals) continue to occur periodically throughout life. Since the entire body musculature is involved in ever-shifting combinations, it is proposed that these spontaneously active periods be designated as 'rapid-BODY-movement' (RBM) sleep. The term 'rapid-EYE-movement (REM) sleep', characterized by attenuated muscle contractions and reduced tonus, can then be reserved for sleep at later stages of development. Mature stages of development in which sustained muscle atonia is combined with 'paradoxical arousal' of cortical neuronal firing patterns indisputably represent the evolutionarily most recent aspect of REM sleep, but more research with ectothermic vertebrates, such as fish, amphibians and reptiles, is needed before it can be concluded (as many prematurely have) that RBM is absent in these species. Evidence suggests a link between RBM sleep in early development and the clinical condition known as 'REM sleep behavior disorder (RBD)', which is characterized by the resurgence of periodic bouts of quasi-fetal motility that closely resemble RBM sleep. Early developmental neuromotor risk factors for RBD in humans also point to a relationship between RBM sleep and RBD.
Collapse
Affiliation(s)
- Michael A Corner
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands
| | - Carlos H Schenck
- Minnesota Regional Sleep Disorders Center, Hennepin County Medical Center and University of Minnesota, Minneapolis, Minnesota, 55415, USA.
- Departments of Psychiatry, Hennepin County Medical Center and University of Minnesota, Minneapolis, Minnesota, 55415, USA.
| |
Collapse
|
9
|
Shea CA, Rolfe RA, Murphy P. The importance of foetal movement for co-ordinated cartilage and bone development in utero : clinical consequences and potential for therapy. Bone Joint Res 2015; 4:105-16. [PMID: 26142413 PMCID: PMC4602203 DOI: 10.1302/2046-3758.47.2000387] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Construction of a functional skeleton is accomplished
through co-ordination of the developmental processes of chondrogenesis,
osteogenesis, and synovial joint formation. Infants whose movement in
utero is reduced or restricted and who subsequently suffer
from joint dysplasia (including joint contractures) and thin hypo-mineralised
bones, demonstrate that embryonic movement is crucial for appropriate
skeletogenesis. This has been confirmed in mouse, chick, and zebrafish
animal models, where reduced or eliminated movement consistently yields
similar malformations and which provide the possibility of experimentation
to uncover the precise disturbances and the mechanisms by which
movement impacts molecular regulation. Molecular genetic studies have
shown the important roles played by cell communication signalling
pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone
morphogenetic protein. These pathways regulate cell behaviours such
as proliferation and differentiation to control maturation of the
skeletal elements, and are affected when movement is altered. Cell
contacts to the extra-cellular matrix as well as the cytoskeleton
offer a means of mechanotransduction which could integrate mechanical
cues with genetic regulation. Indeed, expression of cytoskeletal
genes has been shown to be affected by immobilisation. In addition
to furthering our understanding of a fundamental aspect of cell control
and differentiation during development, research in this area is
applicable to the engineering of stable skeletal tissues from stem
cells, which relies on an understanding of developmental mechanisms
including genetic and physical criteria. A deeper understanding
of how movement affects skeletogenesis therefore has broader implications
for regenerative therapeutics for injury or disease, as well as
for optimisation of physical therapy regimes for individuals affected
by skeletal abnormalities. Cite this article: Bone Joint Res 2015;4:105–116
Collapse
Affiliation(s)
- C A Shea
- Trinity College Dublin, College Green, Dublin, D2, Ireland
| | | | - P Murphy
- Trinity College Dublin, College Green, Dublin, D2, Ireland
| |
Collapse
|
10
|
GAD65/GAD67 double knockout mice exhibit intermediate severity in both cleft palate and omphalocele compared with GAD67 knockout and VGAT knockout mice. Neuroscience 2015; 288:86-93. [DOI: 10.1016/j.neuroscience.2014.12.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 12/24/2022]
|
11
|
Schiele NR, Marturano JE, Kuo CK. Mechanical factors in embryonic tendon development: potential cues for stem cell tenogenesis. Curr Opin Biotechnol 2013; 24:834-40. [PMID: 23916867 DOI: 10.1016/j.copbio.2013.07.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 12/22/2022]
Abstract
Tendons are connective tissues required for motion and are frequently injured. Poor healing and inadequate return to normal tissue structure and mechanical function make tendon a prime candidate for tissue engineering; however functional tendons have yet to be engineered. The physical environment, from substrate stiffness to dynamic mechanical loading, may regulate tenogenic stem cell differentiation. Tissue stiffness and loading parameters derived from embryonic development may enhance tenogenic stem cell differentiation and tendon tissue formation. We highlight the current understanding of the mechanical environment experienced by embryonic tendons and how progenitor cells may sense and respond to physical inputs. We further discuss how mechanical factors have only recently been used to induce tenogenic fate in stem cells.
Collapse
Affiliation(s)
- Nathan R Schiele
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | | | | |
Collapse
|
12
|
Momose-Sato Y, Sato K. Large-scale synchronized activity in the embryonic brainstem and spinal cord. Front Cell Neurosci 2013; 7:36. [PMID: 23596392 PMCID: PMC3625830 DOI: 10.3389/fncel.2013.00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 03/20/2013] [Indexed: 01/09/2023] Open
Abstract
In the developing central nervous system, spontaneous activity appears well before the brain responds to external sensory inputs. One of the earliest activities is observed in the hindbrain and spinal cord, which is detected as rhythmic electrical discharges of cranial and spinal motoneurons or oscillations of Ca(2+)- and voltage-related optical signals. Shortly after the initial expression, the spontaneous activity appearing in the hindbrain and spinal cord exhibits a large-scale correlated wave that propagates over a wide region of the central nervous system, maximally extending to the lumbosacral cord and to the forebrain. In this review, we describe several aspects of this synchronized activity by focusing on the basic properties, development, origin, propagation pattern, pharmacological characteristics, and possible mechanisms underlying the generation of the activity. These profiles differ from those of the respiratory and locomotion pattern generators observed in the mature brainstem and spinal cord, suggesting that the wave is primordial activity that appears during a specific period of embryonic development and plays some important roles in the development of the central nervous system.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Health and Nutrition, College of Human Environmental Studies, Kanto Gakuin UniversityYokohama, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's UniversityTokyo, Japan
| |
Collapse
|
13
|
Schiele NR, Koppes RA, Chrisey DB, Corr DT. Engineering cellular fibers for musculoskeletal soft tissues using directed self-assembly. Tissue Eng Part A 2013; 19:1223-32. [PMID: 23346952 DOI: 10.1089/ten.tea.2012.0321] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Engineering strategies guided by developmental biology may enhance and accelerate in vitro tissue formation for tissue engineering and regenerative medicine applications. In this study, we looked toward embryonic tendon development as a model system to guide our soft tissue engineering approach. To direct cellular self-assembly, we utilized laser micromachined, differentially adherent growth channels lined with fibronectin. The micromachined growth channels directed human dermal fibroblast cells to form single cellular fibers, without the need for a provisional three-dimensional extracellular matrix or scaffold to establish a fiber structure. Therefore, the resulting tissue structure and mechanical characteristics were determined solely by the cells. Due to the self-assembly nature of this approach, the growing fibers exhibit some key aspects of embryonic tendon development, such as high cellularity, the rapid formation (within 24 h) of a highly organized and aligned cellular structure, and the expression of cadherin-11 (indicating direct cell-to-cell adhesions). To provide a dynamic mechanical environment, we have also developed and characterized a method to apply precise cyclic tensile strain to the cellular fibers as they develop. After an initial period of cellular fiber formation (24 h postseeding), cyclic strain was applied for 48 h, in 8-h intervals, with tensile strain increasing from 0.7% to 1.0%, and at a frequency of 0.5 Hz. Dynamic loading dramatically increased cellular fiber mechanical properties with a nearly twofold increase in both the linear region stiffness and maximum load at failure, thereby demonstrating a mechanism for enhancing cellular fiber formation and mechanical properties. Tissue engineering strategies, designed to capture key aspects of embryonic development, may provide unique insight into accelerated maturation of engineered replacement tissue, and offer significant advances for regenerative medicine applications in tendon, ligament, and other fibrous soft tissues.
Collapse
Affiliation(s)
- Nathan R Schiele
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
| | | | | | | |
Collapse
|
14
|
Momose-Sato Y, Nakamori T, Sato K. Spontaneous depolarization wave in the mouse embryo: origin and large-scale propagation over the CNS identified with voltage-sensitive dye imaging. Eur J Neurosci 2012; 35:1230-41. [PMID: 22339904 DOI: 10.1111/j.1460-9568.2012.07997.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spontaneous embryonic movements, called embryonic motility, are produced by correlated spontaneous activity in the cranial and spinal nerves, which is driven by brainstem and spinal networks. Using optical imaging with a voltage-sensitive dye, we have revealed previously that this correlated activity is a widely propagating wave of neural depolarization, which we termed the depolarization wave. We have observed in the chick and rat embryos that the activity spread over an extensive region of the CNS, including the spinal cord, hindbrain, cerebellum, midbrain and forebrain. One important consideration is whether a depolarization wave with similar characteristics occurs in other species, especially in different mammals. Here, we provide evidence for the existence of the depolarization wave in the mouse embryo by showing that the widely propagating wave appeared independently of the localized spontaneous activity detected previously with Ca(2+) imaging. Furthermore, we mapped the origin of the depolarization wave and revealed that the wave generator moved from the rostral spinal cord to the caudal cord as development proceeded, and was later replaced with mature rhythmogenerators. The present study, together with an accompanying paper that describes pharmacological properties of the mouse depolarization wave, shows that a synchronized wave with common characteristics is expressed in different species, suggesting fundamental roles in neural development.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Health and Nutrition, College of Human Environmental Studies, Kanto Gakuin University, Yokohama 236-8503, Japan.
| | | | | |
Collapse
|
15
|
Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones. J Neurosci 2009; 29:13566-77. [PMID: 19864569 DOI: 10.1523/jneurosci.3277-09.2009] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies of neuronal networks have revealed few general principles that link patterns of development with later functional roles. While investigating the neural control of movements, we recently discovered a topographic map in the spinal cord of larval zebrafish that relates the position of motoneurons and interneurons to their order of recruitment during swimming. Here, we show that the map reflects an orderly pattern of differentiation of neurons driving different movements. First, we use high-speed filming to show that large-amplitude swimming movements with bending along much of the body appear first, with smaller, regional swimming movements emerging later. Next, using whole-cell patch recordings, we demonstrate that the excitatory circuits that drive large-amplitude, fast swimming movements at larval stages are present and functional early on in embryos. Finally, we systematically assess the orderly emergence of spinal circuits according to swimming speed using transgenic fish expressing the photoconvertible protein Kaede to track neuronal differentiation in vivo. We conclude that a simple principle governs the development of spinal networks in which the neurons driving the fastest, most powerful swimming in larvae develop first with ones that drive increasingly weaker and slower larval movements layered on over time. Because the neurons are arranged by time of differentiation in the spinal cord, the result is a topographic map that represents the speed/strength of movements at which neurons are recruited and the temporal emergence of networks. This pattern may represent a general feature of neuronal network development throughout the brain and spinal cord.
Collapse
|
16
|
Sibilla S, Ballerini L. GABAergic and glycinergic interneuron expression during spinal cord development: dynamic interplay between inhibition and excitation in the control of ventral network outputs. Prog Neurobiol 2009; 89:46-60. [PMID: 19539686 DOI: 10.1016/j.pneurobio.2009.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 04/10/2009] [Accepted: 06/09/2009] [Indexed: 11/28/2022]
Abstract
A key objective of neuroscience research is to understand the processes leading to mature neural circuitries in the central nervous system (CNS) that enable the control of different behaviours. During development, network-constitutive neurons undergo dramatic rearrangements, involving their intrinsic properties, such as the blend of ion channels governing their firing activity, and their synaptic interactions. The spinal cord is no exception to this rule; in fact, in the ventral horn the maturation of motor networks into functional circuits is a complex process where several mechanisms cooperate to achieve the development of motor control. Elucidating such a process is crucial in identifying neurons more vulnerable to degenerative or traumatic diseases or in developing new strategies aimed at rebuilding damaged tissue. The focus of this review is on recent advances in understanding the spatio-temporal expression of the glycinergic/GABAergic system and on the contribution of this system to early network function and to motor pattern transformation along with spinal maturation. During antenatal development, the operation of mammalian spinal networks strongly depends on the activity of glycinergic/GABAergic neurons, whose action is often excitatory until shortly before birth when locomotor networks acquire the ability to generate alternating motor commands between flexor and extensor motor neurons. At this late stage of prenatal development, GABA-mediated excitation is replaced by synaptic inhibition mediated by glycine and/or GABA. At this stage of spinal maturation, the large majority of GABAergic neurons are located in the dorsal horn. We propose that elucidating the role of inhibitory systems in development will improve our knowledge on the processes regulating spinal cord maturation.
Collapse
Affiliation(s)
- Sara Sibilla
- Life Science Department, Center for Neuroscience B.R.A.I.N., University of Trieste, via Fleming 22, 34127 Trieste, Italy
| | | |
Collapse
|
17
|
Affiliation(s)
- Marco Del Giudice
- Center for Cognitive Science, Department of Psychology, University of Turin, Torino, Italy.
| | | | | |
Collapse
|
18
|
Momose-Sato Y, Mochida H, Kinoshita M. Origin of the earliest correlated neuronal activity in the chick embryo revealed by optical imaging with voltage-sensitive dyes. Eur J Neurosci 2008; 29:1-13. [PMID: 19077122 DOI: 10.1111/j.1460-9568.2008.06568.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spontaneous correlated neuronal activity during early development spreads like a wave by recruiting a large number of neurons, and is considered to play a fundamental role in neural development. One important and as yet unresolved question is where the activity originates, especially at the earliest stage of wave expression. In other words, which part of the brain differentiates first as a source of the correlated activity, and how does it change as development proceeds? We assessed this issue by examining the spatiotemporal patterns of the depolarization wave, the optically identified primordial correlated activity, using the optical imaging technique with voltage-sensitive dyes. We surveyed the region responsible for the induction of the evoked and spontaneous depolarization waves in chick embryos, and traced its developmental changes. The results showed that the wave initially originated in a restricted area near the obex and was generated by multiple regions at later stages. We suggest that the upper cervical cord/lower medulla near the obex is the kernel that differentiates first as the source of the correlated activity, and that regional and temporal differences in neuronal excitability might underlie the developmental profile of wave generation in early chick embryos.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Health and Nutrition, College of Human Environmental Studies, Kanto Gakuin University, Yokohama, Japan.
| | | | | |
Collapse
|
19
|
Iseki S, Ishii-Suzuki M, Tsunekawa N, Yamada Y, Eto K, Obata K. Experimental induction of palate shelf elevation in glutamate decarboxylase 67-deficient mice with cleft palate due to vertically oriented palatal shelf. ACTA ACUST UNITED AC 2007; 79:688-95. [PMID: 17849453 DOI: 10.1002/bdra.20400] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Gamma-aminobutyric acid is an inhibitory neurotransmitter, synthesized by two isoforms of glutamate decarboxylase (GAD), GAD65 and -67. Unexpectedly, inactivation of GAD67 induces cleft palate in mice. Reduction of spontaneous tongue movement resulting from decreased motor nerve activity has been related to the development of cleft palate in GAD67(-/-) fetuses. In the present study, development of cleft palate was examined histologically and manipulated with culture of the maxilla and partial resection of fetal tongue. METHODS GAD67(-/-) mice and their littermates were used. Histological examination and immunohistochemistry were performed conventionally. Organ culture of the maxilla was carried out as reported previously. Fetuses were maintained alive under anesthesia and tips of their tongues were resected. RESULTS Elevation of palatal shelves, the second step of palate formation, was not observed in GAD67(-/-) mice. In wild-type mice, GAD67 and gamma-aminobutyric acid were not expressed in the palatal shelves, except in the medial edge epithelium. During 2 days of culture of maxillae dissected from E13.5-E14.0 GAD67(-/-) fetuses, elevation and fusion of the palatal shelves were induced. When E13.5-15.5 mutant fetuses underwent partial tongue resection, the palatal shelves became elevated within 30 min. CONCLUSIONS These results suggest that the potential for palate formation is maintained in the palatal shelves of GAD67(-/-) fetuses, but it is obstructed by other, probably neural, factors, resulting in cleft palate.
Collapse
Affiliation(s)
- Sachiko Iseki
- Department of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental University, Yushima, Tokyo 113-8549, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Bouvier J, Autran S, Fortin G, Champagnat J, Thoby-Brisson M. Acute role of the brain-derived neurotrophic factor (BDNF) on the respiratory neural network activity in mice in vitro. ACTA ACUST UNITED AC 2007; 100:290-6. [PMID: 17628454 DOI: 10.1016/j.jphysparis.2007.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In humans, several pathologies are associated with disturbances of the respiratory control, some of them including alteration in the brain-derived neurotrophic factor (BDNF) signalling pathway. BDNF has long been known as a neurotrophic factor involved in survival, differentiation and maintenance of neuronal populations in the peripheral and central nervous system. More recently BDNF has also been discovered to be a potent neuromodulator with acute effects on neuronal excitability and synaptic plasticity. Animals deleted for the gene encoding BDNF exhibit respiratory alteration suggesting an important but yet undefined role of the neurotrophin in respiratory rhythmogenesis either by a trophic and/or an acute action. The possibility that BDNF might exert an acute regulatory role on the rhythmic activity of the respiratory generator of the pre-Bötzinger complex has been recently examined in newborn mice in vitro. Results obtained, reviewed in the present paper, will help getting insights in respiratory rhythm regulatory mechanisms that involve BDNF signalling.
Collapse
Affiliation(s)
- Julien Bouvier
- Laboratoire de Neurobiologie Génétique et Intégrative Institut Alfred Fessard, CNRS UPR2216, 1 avenue de la terrasse, 91198 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
21
|
Wallén-Mackenzie Å, Gezelius H, Thoby-Brisson M, Nygård A, Enjin A, Fujiyama F, Fortin G, Kullander K. Vesicular glutamate transporter 2 is required for central respiratory rhythm generation but not for locomotor central pattern generation. J Neurosci 2006; 26:12294-307. [PMID: 17122055 PMCID: PMC6675433 DOI: 10.1523/jneurosci.3855-06.2006] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamatergic excitatory neurotransmission is dependent on glutamate release from presynaptic vesicles loaded by three members of the solute carrier family, Slc17a6-8, which function as vesicular glutamate transporters (VGLUTs). Here, we show that VGLUT2 (Slc17a6) is required for life ex utero. Vglut2 null mutant mice die immediately after birth because of the absence of respiratory behavior. Investigations at embryonic stages revealed that neural circuits in the location of the pre-Bötzinger (PBC) inspiratory rhythm generator failed to become active. However, neurons with bursting pacemaker properties and anatomical integrity of the PBC area were preserved. Vesicles at asymmetric synapses were fewer and malformed in the Vglut2 null mutant hindbrain, probably causing the complete disruption of AMPA/kainate receptor-mediated synaptic activity in mutant PBC cells. The functional deficit results from an inability of PBC neurons to achieve synchronous activation. In contrast to respiratory rhythm generation, the locomotor central pattern generator of Vglut2 null mutant mice displayed normal rhythmic and coordinated activity, suggesting differences in their operating principles. Hence, the present study identifies VGLUT2-mediated signaling as an obligatory component of the developing respiratory rhythm generator.
Collapse
Affiliation(s)
- Åsa Wallén-Mackenzie
- Department of Neuroscience, Unit of Developmental Genetics, Uppsala University, 751 23 Uppsala, Sweden
| | - Henrik Gezelius
- Department of Neuroscience, Unit of Developmental Genetics, Uppsala University, 751 23 Uppsala, Sweden
| | - Muriel Thoby-Brisson
- Laboratoire de Neurobiologie Génétique et Intégrative, Institut Alfred Fessard, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France, and
| | - Anna Nygård
- Department of Neuroscience, Unit of Developmental Genetics, Uppsala University, 751 23 Uppsala, Sweden
| | - Anders Enjin
- Department of Neuroscience, Unit of Developmental Genetics, Uppsala University, 751 23 Uppsala, Sweden
| | - Fumino Fujiyama
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Gilles Fortin
- Laboratoire de Neurobiologie Génétique et Intégrative, Institut Alfred Fessard, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France, and
| | - Klas Kullander
- Department of Neuroscience, Unit of Developmental Genetics, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
22
|
de Vries JIP, Fong BF. Normal fetal motility: an overview. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2006; 27:701-11. [PMID: 16710877 DOI: 10.1002/uog.2740] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
After 35 years of real-time two-dimensional sonography, and now that 4D sonography is within our grasp, this article presents an overview of present-day knowledge of normal fetal motility. A literature search was carried out on articles from 1970, using the keywords: 'fetal', 'movements', 'motility', 'movement patterns', 'ultrasound' and 'sonography'. Inclusion criteria were human studies and use of real-time sonography. Articles were screened for type of motor assessment procedure, in terms of whether they: specified movements for participating body parts (specific movement pattern, SMP), were qualitative (performance in terms of speed and amplitude), were quantitative, identified behavioral states, stated the duration of observation, and specified gestational age. We noted developmental milestones obtained for each study aim. One of four aims was identified for each article, depending on whether it focused on emergence, development, or continuity after birth of the movement patterns, or on the relationship of various motor aspects to other parameters that evaluate fetal condition, such as blood flow and fetal heart rate. A total of 109 relevant articles was identified, examining 9862 fetuses. Assessment was performed primarily with analysis of SMPs (89%); 52% also included non-SMPs (NSMPs), 78% included quantification, 24% assessment of quality, and 32% behavioral states. The duration of observation was 1 h or longer in 50% of the studies. The focus in 28 studies was on emergence, in 44 it was on development, in five it was on continuity and in 32 it was on relationship of the movements with other parameters of fetal well-being. A few milestones identified were determination of the strictly age-related emergence of SMPs and behavioral states, the highly reproducible quality of SMPs throughout gestation, the age-related trends in quantified SMPs, the continuity in quality and quantity after birth, and the close relationship between motility and heart-rate variability, flow parameters, and behavioral states. Periods of longest inactivity recorded before 20 weeks were 13 min; after 30 weeks they were 45 min. Much insight was obtained into the development of motility and its relationship to other parameters from those articles applying comparable assessment procedures. An assessment procedure with well-defined SMPs, qualitative and quantitative aspects of SMPs and NSMPs, and an observation period dependent on age are advocated for future research.
Collapse
Affiliation(s)
- J I P de Vries
- Department of Obstetrics and Gynaecology, Institute of Fundamental and Clinical Human Sciences, VU University Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
23
|
Moody WJ, Bosma MM. Ion Channel Development, Spontaneous Activity, and Activity-Dependent Development in Nerve and Muscle Cells. Physiol Rev 2005; 85:883-941. [PMID: 15987798 DOI: 10.1152/physrev.00017.2004] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
At specific stages of development, nerve and muscle cells generate spontaneous electrical activity that is required for normal maturation of intrinsic excitability and synaptic connectivity. The patterns of this spontaneous activity are not simply immature versions of the mature activity, but rather are highly specialized to initiate and control many aspects of neuronal development. The configuration of voltage- and ligand-gated ion channels that are expressed early in development regulate the timing and waveform of this activity. They also regulate Ca2+influx during spontaneous activity, which is the first step in triggering activity-dependent developmental programs. For these reasons, the properties of voltage- and ligand-gated ion channels expressed by developing neurons and muscle cells often differ markedly from those of adult cells. When viewed from this perspective, the reasons for complex patterns of ion channel emergence and regression during development become much clearer.
Collapse
Affiliation(s)
- William J Moody
- Department of Biology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
24
|
Tsunekawa N, Arata A, Obata K. Development of spontaneous mouth/tongue movement and related neural activity, and their repression in fetal mice lacking glutamate decarboxylase 67. Eur J Neurosci 2005; 21:173-8. [PMID: 15654854 DOI: 10.1111/j.1460-9568.2004.03860.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Spontaneous body movement starts at early fetal stage, at embryonic day (E) 12-15 in mice. In the present study, the movement of the head region was studied in E13-14 mice by in utero ultrasound imaging, together with the in vitro recording of underlying neural activities in the hypoglossal nerve and the ventral root of the upper cervical cord of an isolated brainstem-spinal cord preparation. The role of gamma-aminobutyric acid (GABA) in the generation of fetal movement was assessed using mice lacking GABA-synthesizing glutamate decarboxylase 67 (GAD67). At E14, mouth opening and tongue withdrawal were observed independently at frequency of 14/h each. This movement was rarely observed in the GAD67-deficient mouse. The intraventricular administration of picrotoxin or 3-mercaptopropionic acid abolished mouth opening in the wild-type mice. In a brainstem-spinal cord preparation, three types of neural discharge were recorded: mouth/tongue-moving burst, respiratory burst and irregular activity on the basis of their waveform, regularity in occurrence and concomitant muscle activity. In the GAD67-deficient mice, the occurrence of mouth/tongue-moving burst and irregular activity was inhibited to about 15 and 40% of those in the wild-type mice, respectively. Respiratory burst was slightly inhibited but the difference was not significant. Picrotoxin greatly reduced the frequency of mouth/tongue-moving burst. These results indicate that GABA is involved in rhythm generation in movement of the head region and support the hypothesis that cleft palate in the GAD67-deficient mouse is due to the impairment of mouth or tongue movement that assists palate formation.
Collapse
Affiliation(s)
- Naoko Tsunekawa
- Obata Research Unit, RIKEN Brain Science Institute, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan
| | | | | |
Collapse
|
25
|
Corner MA, van Pelt J, Wolters PS, Baker RE, Nuytinck RH. Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks--an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neurosci Biobehav Rev 2002; 26:127-85. [PMID: 11856557 DOI: 10.1016/s0149-7634(01)00062-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spontaneous bioelectric activity (SBA) taking the form of extracellularly recorded spike trains (SBA) has been quantitatively analyzed in organotypic neonatal rat visual cortex explants at different ages in vitro, and the effects investigated of both short- and long-term pharmacological suppression of glutamatergic synaptic transmission. In the presence of APV, a selective NMDA receptor blocker, 1-2- (but not 3-)week-old cultures recovered their previous SBA levels in a matter of hours, although in imitation of the acute effect of the GABAergic inhibitor picrotoxin (PTX), bursts of action potentials were abnormally short and intense. Cultures treated either overnight or chronically for 1-3 weeks with APV, the AMPA/kainate receptor blocker DNQX, or a combination of the two were found to display very different abnormalities in their firing patterns. NMDA receptor blockade for 3 weeks produced the most severe deviations from control SBA, consisting of greatly prolonged and intensified burst firing with a strong tendency to be broken up into trains of shorter spike clusters. This pattern was most closely approximated by acute GABAergic disinhibition in cultures of the same age, but this latter treatment also differed in several respects from the chronic-APV effect. In 2-week-old explants, in contrast, it was the APV+DNQX treated group which showed the most exaggerated spike bursts. Functional maturation of neocortical networks, therefore, may specifically require NMDA receptor activation (not merely a high level of neuronal firing) which initially is driven by endogenous rather than afferent evoked bioelectric activity. Putative cellular mechanisms are discussed in the context of a thorough review of the extensive but scattered literature relating activity-dependent brain development to spontaneous neuronal firing patterns.
Collapse
Affiliation(s)
- M A Corner
- Academic Medical Centre, Meibergdreef 33, Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|