1
|
Karpinecz B, Edwards N, Zderic V. Therapeutic Ultrasound-Enhanced Transcorneal PHMB Delivery In Vitro. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:2561-2570. [PMID: 33491798 DOI: 10.1002/jum.15641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Delivery of therapeutic agents to the cornea is a difficult task in the treatment of parasitic keratitis. In this study, we looked at using different combinations of ultrasound parameters to enhance corneal permeability to polyhexamethylene biguanide (PHMB), a clinically available ophthalmic antiparasitic formulation. METHODS Permeability of PHMB was investigated in vitro using a standard diffusion cell setup. Continuous or 25% duty-cycle ultrasound was used at frequencies of 400 or 600 kHz, intensities of 0.5 or 0.8 W/cm2 , and exposure times ranging from 1 to 5 minutes. Structural changes in the cornea were examined using light microscopy. RESULTS Ultrasound exposure produced increases in transcorneal delivery in every treatment parameter combination when compared to the sham treatment. The highest increase was 2.36 times for 5 minutes of continuous ultrasound at a frequency of 600 kHz and an intensity of 0.5 W/cm2 with statistical significance (p <.001). Histological analysis showed that ultrasound application only caused structural changes in the corneal epithelium, with most damage being at the surface layers. CONCLUSIONS This study suggests the possibility of therapeutic ultrasound as a novel drug delivery technique for the treatment of parasitic keratitis. Further studies are needed to examine the thermal effects of these proposed ultrasound applications and the long-term viability of this treatment.
Collapse
Affiliation(s)
- Bianca Karpinecz
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia, USA
| | - Natalie Edwards
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia, USA
| | - Vesna Zderic
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Bradley AE, Wancket LM, Rinke M, Gruebbel MM, Saladino BH, Schafer K, Katsuta O, Garcia B, Chanut F, Hughes K, Nelson K, Himmel L, McInnes E, Schucker A, Uchida K. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Rabbit. J Toxicol Pathol 2021; 34:183S-292S. [PMID: 34712007 PMCID: PMC8544166 DOI: 10.1293/tox.34.183s] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for
Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of
Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North
America (STP) to develop an internationally accepted nomenclature for proliferative and
non-proliferative lesions in laboratory animals. The purpose of this publication is to
provide a standardized nomenclature for classifying microscopic lesions observed in most
tissues and organs from the laboratory rabbit used in nonclinical safety studies. Some of
the lesions are illustrated by color photomicrographs. The standardized nomenclature
presented in this document is also available electronically on the internet
(http://www.goreni.org/). Sources of material included histopathology databases from
government, academia, and industrial laboratories throughout the world. Content includes
spontaneous lesions as well as lesions induced by exposure to test materials. Relevant
infectious and parasitic lesions are included as well. A widely accepted and utilized
international harmonization of nomenclature for lesions in laboratory animals will provide
a common language among regulatory and scientific research organizations in different
countries and increase and enrich international exchanges of information among
toxicologists and pathologists.
Collapse
Affiliation(s)
- Alys E Bradley
- Charles River Laboratories Edinburgh Ltd, Tranent, Scotland, UK
| | | | | | | | | | | | | | - Begonya Garcia
- Charles River Laboratories Edinburgh Ltd, Tranent, Scotland, UK
| | - Franck Chanut
- Sanofi, 1 Avenue Pierre Brosselette, 91380 Chilly-Mazarin, France
| | | | | | - Lauren Himmel
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Adrienne Schucker
- American Preclinical Services, LLC, 8945 Evergreen Blvd, Minneapolis, MN 55433
| | | |
Collapse
|
3
|
Marin-Tapia HA, Romero-Salazar L, Arteaga-Arcos JC, Rosales-Ibáñez R, Mayorga-Rojas M. Micro-mechanical properties of corneal scaffolds from two different bio-models obtained by an efficient chemical decellularization. J Mech Behav Biomed Mater 2021; 119:104510. [PMID: 33872923 DOI: 10.1016/j.jmbbm.2021.104510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/12/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
The present study elucidates the impact of detergent-based chemical decellularization on the micro-mechanical properties of porcine and rabbit corneas for the purpose of extracellular matrix (ECM) derived scaffolds. Aiming to optimize the decellularization process, different concentrations of Sodium Dodecyl Sulfate (SDS), Triton X-100 and CHAPS detergents were assessed on their ability to decellularize corneas from both bio-models at incubation periods of 12 and 24h. We evaluated the effect of decellularization on corneal ECM Young's Modulus and various area's roughness parameters (topography features) at a microscale by using Atomic Force Microscopy (AFM). Only SDS presented adequate decellularization properties at the selected concentrations (0.2, 0.5 and 1%) and incubation periods. All topography features displayed by native corneas were preserved after SDS treatments, while no statistically significant differences were identified for the average value of Young's Modulus between the control samples and those treated with 0.2% SDS (rabbit corneas) and 0.5% SDS (porcine corneas) after 12h. In this sense, cornea decellularization procedures can be improved by simultaneously reducing SDS concentration and incubation period. AFM is a useful tool to perform biomechanical analysis of the effect of decellularization on scaffold micro-mechanics. Evaluation of the scaffold mechanical behavior at a microscale could help in understanding cell-scaffold interactions in terms of mechanotransduction, complementing macroscale techniques (e.g. tensile tests) relevant for tissue engineering quality control and decision-making.
Collapse
Affiliation(s)
- Hugo Arian Marin-Tapia
- Rheology, Nanofluids and Microfluidics Laboratory, Autonomous University of the State of Mexico, Faculty of Sciences, Campus Universitario ''El Cerrillo, Piedras Blancas", Carretera Toluca-Ixtlahuaca km 15.5, C.P. 50200 Estado de México, Mexico; Autonomous University of the State of Mexico, Faculty of Sciences, Campus Universitario ''El Cerrillo, Piedras Blancas", Carretera Toluca-Ixtlahuaca km 15.5, C.P. 50200 Estado de México, Mexico.
| | - Lorena Romero-Salazar
- Nanothermodynamics and Complex Systems Laboratory, Autonomous University of the State of Mexico, Faculty of Sciences, Campus Universitario ''El Cerrillo, Piedras Blancas", Carretera Toluca-Ixtlahuaca km 15.5, C.P. 50200 Estado de México, Mexico.
| | - Juan Carlos Arteaga-Arcos
- Micromechanics Laboratory, Autonomous University of the State of Mexico, Faculty of Sciences, Instituto Literario, No. 100 Ote., C.P, 50000, Toluca, State of Mexico, Mexico.
| | - Raúl Rosales-Ibáñez
- Tissue Engineering and Translational Medicine Laboratory, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico, Tlalnepantla, 54090, Mexico City, Mexico.
| | - Miguel Mayorga-Rojas
- Rheology, Nanofluids and Microfluidics Laboratory, Autonomous University of the State of Mexico, Faculty of Sciences, Campus Universitario ''El Cerrillo, Piedras Blancas", Carretera Toluca-Ixtlahuaca km 15.5, C.P. 50200 Estado de México, Mexico.
| |
Collapse
|
4
|
Vellara HR, Patel DV. Biomechanical properties of the keratoconic cornea: a review. Clin Exp Optom 2021; 98:31-8. [DOI: 10.1111/cxo.12211] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/12/2014] [Accepted: 06/21/2014] [Indexed: 11/26/2022] Open
Affiliation(s)
- Hans R Vellara
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand,
| | - Dipika V Patel
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand,
| |
Collapse
|
5
|
Bargagna‐Mohan P, Schultz G, Rheaume B, Trakhtenberg EF, Robson P, Pal‐Ghosh S, Stepp MA, Given KS, Macklin WB, Mohan R. Corneal nonmyelinating Schwann cells illuminated by single-cell transcriptomics and visualized by protein biomarkers. J Neurosci Res 2021; 99:731-749. [PMID: 33197966 PMCID: PMC7894186 DOI: 10.1002/jnr.24757] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/23/2022]
Abstract
The cornea is the most innervated tissue in the human body. Myelinated axons upon inserting into the peripheral corneal stroma lose their myelin sheaths and continue into the central cornea wrapped by only nonmyelinating corneal Schwann cells (nm-cSCs). This anatomical organization is believed to be important for central vision. Here we employed single-cell RNA sequencing (scRNA-seq), microscopy, and transgenics to characterize these nm-cSCs of the central cornea. Using principal component analysis, uniform manifold approximation and projection, and unsupervised hierarchal cell clustering of scRNA-seq data derived from central corneal cells of male rabbits, we successfully identified several clusters representing different corneal cell types, including a unique cell cluster representing nm-cSCs. To confirm protein expression of cSC genes, we performed cross-species validation, employing corneal whole-mount immunostaining with confocal microscopy in mouse corneas. The expression of several representative proteins of nm-cSCs were validated. As the proteolipid protein 1 (PLP1) gene was also expressed in nm-cSCs, we explored the Plp1-eGFP transgenic reporter mouse line to visualize cSCs. Specific and efficient eGFP expression was observed in cSCs in adult mice of different ages. Of several putative cornea-specific SC genes identified, Dickkopf-related protein 1 was shown to be present in nm-cSCs. Taken together, our findings, for the first time, identify important insights and tools toward the study nm-cSCs in isolated tissue and adult animals. We expect that our results will advance the future study of nm-cSCs in applications of nerve repair, and provide a resource for the study of corneal sensory function.
Collapse
Affiliation(s)
- Paola Bargagna‐Mohan
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| | - Gwendolyn Schultz
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| | - Bruce Rheaume
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| | | | - Paul Robson
- Department of Genetics & Genome SciencesUniversity of Connecticut Health CenterFarmingtonCTUSA
- The Jackson Laboratory for Genomic MedicineFarmingtonCTUSA
| | - Sonali Pal‐Ghosh
- Department of Anatomy and Regenerative BiologyGeorge Washington University Medical SchoolWashingtonDCUSA
| | - Mary Ann Stepp
- Department of Anatomy and Regenerative BiologyGeorge Washington University Medical SchoolWashingtonDCUSA
| | - Katherine S. Given
- Department of Cell and Developmental BiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Wendy B. Macklin
- Department of Cell and Developmental BiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Royce Mohan
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| |
Collapse
|
6
|
Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas UV. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res 2021; 80:100863. [PMID: 32438095 PMCID: PMC7648733 DOI: 10.1016/j.preteyeres.2020.100863] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the most common primary corneal endothelial dystrophy and the leading indication for corneal transplantation worldwide. FECD is characterized by the progressive decline of corneal endothelial cells (CECs) and the formation of extracellular matrix (ECM) excrescences in Descemet's membrane (DM), called guttae, that lead to corneal edema and loss of vision. FECD typically manifests in the fifth decades of life and has a greater incidence in women. FECD is a complex and heterogeneous genetic disease where interaction between genetic and environmental factors results in cellular apoptosis and aberrant ECM deposition. In this review, we will discuss a complex interplay of genetic, epigenetic, and exogenous factors in inciting oxidative stress, auto(mito)phagy, unfolded protein response, and mitochondrial dysfunction during CEC degeneration. Specifically, we explore the factors that influence cellular fate to undergo apoptosis, senescence, and endothelial-to-mesenchymal transition. These findings will highlight the importance of abnormal CEC-DM interactions in triggering the vicious cycle of FECD pathogenesis. We will also review clinical characteristics, diagnostic tools, and current medical and surgical management options for FECD patients. These new paradigms in FECD pathogenesis present an opportunity to develop novel therapeutics for the treatment of FECD.
Collapse
Affiliation(s)
- Stephan Ong Tone
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Viridiana Kocaba
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Myriam Böhm
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Adam Wylegala
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tomas L White
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Ula V Jurkunas
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
7
|
Urwin L, Okurowska K, Crowther G, Roy S, Garg P, Karunakaran E, MacNeil S, Partridge LJ, Green LR, Monk PN. Corneal Infection Models: Tools to Investigate the Role of Biofilms in Bacterial Keratitis. Cells 2020; 9:E2450. [PMID: 33182687 PMCID: PMC7696224 DOI: 10.3390/cells9112450] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/15/2022] Open
Abstract
Bacterial keratitis is a corneal infection which may cause visual impairment or even loss of the infected eye. It remains a major cause of blindness in the developing world. Staphylococcus aureus and Pseudomonas aeruginosa are common causative agents and these bacterial species are known to colonise the corneal surface as biofilm populations. Biofilms are complex bacterial communities encased in an extracellular polymeric matrix and are notoriously difficult to eradicate once established. Biofilm bacteria exhibit different phenotypic characteristics from their planktonic counterparts, including an increased resistance to antibiotics and the host immune response. Therefore, understanding the role of biofilms will be essential in the development of new ophthalmic antimicrobials. A brief overview of biofilm-specific resistance mechanisms is provided, but this is a highly multifactorial and rapidly expanding field that warrants further research. Progression in this field is dependent on the development of suitable biofilm models that acknowledge the complexity of the ocular environment. Abiotic models of biofilm formation (where biofilms are studied on non-living surfaces) currently dominate the literature, but co-culture infection models are beginning to emerge. In vitro, ex vivo and in vivo corneal infection models have now been reported which use a variety of different experimental techniques and animal models. In this review, we will discuss existing corneal infection models and their application in the study of biofilms and host-pathogen interactions at the corneal surface.
Collapse
Affiliation(s)
- Lucy Urwin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
| | - Katarzyna Okurowska
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Grace Crowther
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (S.R.); (P.G.)
| | - Prashant Garg
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (S.R.); (P.G.)
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Sheila MacNeil
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Lynda J. Partridge
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
| | - Peter N. Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| |
Collapse
|
8
|
Uyanıklar M, Günal G, Tevlek A, Hosseinian P, Aydin HM. Hybrid Cornea: Cell Laden Hydrogel Incorporated Decellularized Matrix. ACS Biomater Sci Eng 2019; 6:122-133. [DOI: 10.1021/acsbiomaterials.9b01286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Yu D, Brown EB, Huxlin KR, Knox WH. Tissue effects of intra-tissue refractive index shaping (IRIS): insights from two-photon autofluorescence and second harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:855-867. [PMID: 30800519 PMCID: PMC6377903 DOI: 10.1364/boe.10.000855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 05/05/2023]
Abstract
Intra-tissue refractive index shaping (IRIS) is a novel, non-ablative form of vision correction by which femtosecond laser pulses are tightly focused into ocular tissues to induce localized refractive index (RI) change via nonlinear absorption. Here, we examined the effects of Blue-IRIS on corneal microstructure to gain insights into underlying mechanisms. Three-layer grating patterns were inscribed with IRIS ~180 µm below the epithelial surface of ex vivo rabbit globes using a 400 nm femtosecond laser. Keeping laser power constant at 82 mW in the focal volume, multiple patterns were written at different scan speeds. The largest RI change induced in this study was + 0.011 at 20 mm/s. After measuring the phase change profile of each inscribed pattern, two-photon excited autofluorescence (TPEF) and second harmonic generation (SHG) microscopy were used to quantify changes in stromal structure. While TPEF increased significantly with induced RI change, there was a noticeable suppression of SHG signal in IRIS treated regions. We posit that enhancement of TPEF was due to the formation of new fluorophores, while decreases in SHG were most likely due to degradation of collagen triple helices. All in all, the changes observed suggest that IRIS works by inducing a localized, photochemical change in collagen structure.
Collapse
Affiliation(s)
- Dan Yu
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
| | - Edward B. Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Krystel R. Huxlin
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Wayne H. Knox
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
10
|
SCHMITT AJ, MOREIRA ATR, FILHO FAK, SCHMITT FP. Corneal Posterior Curvature Changes After Phacoemulsification Cataract Surgery with 2.75 mm Corneal Incision. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2019; 8:110-115. [PMID: 31263721 PMCID: PMC6592305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to evaluate the corneal posterior curvature changes after phacoemulsification cataract surgery, with intraocular lens implantation, with a temporal limbal self-sealing 2.75 millimeters (mm) corneal incision, using a Placido-dual rotating Scheimpflug device. In this prospective intervention study, corneal posterior curvature changes were evaluated in fifty-six patients (56 eyes). All patients underwent corneal tomography using the Galilei G2 (Ziemer Ophthalmic System AG, Port, Switzerland) preoperatively (PRE) and with two weeks (RP15), one month (RP30), and three months (RP90) after phacoemulsification cataract surgery with a temporal limbal self-sealing 2.75 mm incision. Tomographic parameters analyzed in the posterior cornea were the steep curvature (K2), flat curvature (K1), mean curvature (average K), and posterior corneal astigmatism. We did not observe any statistically significant change in the K2, K1, average K, and posterior corneal astigmatism in any postoperative follow-up measurements (RP15, RP30, RP90), showing that the postoperative values tend to be the same as the preoperative ones when measured with the Galilei G2 tomography. In conclusion, the 2.75 mm temporal limbal self-sealing corneal incision in phacoemulsification cataract surgery does not induce significant changes in the posterior corneal curvature parameters of K2, K1, average K, and astigmatism.
Collapse
Affiliation(s)
- Artur Jose SCHMITT
- Ophthalmology Department, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil, Hospital Barigui de Oftalmologia, Curitiba, PR, Brazil
| | | | | | | |
Collapse
|
11
|
Hariharan P, Nabili M, Guan A, Zderic V, Myers M. Model for Porosity Changes Occurring during Ultrasound-Enhanced Transcorneal Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1223-1236. [PMID: 28335999 PMCID: PMC5768443 DOI: 10.1016/j.ultrasmedbio.2017.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 01/09/2017] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Ultrasound-enhanced drug delivery through the cornea has considerable therapeutic potential. However, our understanding of how ultrasound enhances drug transport is poor, as is our ability to predict the increased level of transport for given ultrasound parameters. Described here is a computational model for quantifying changes in corneal porosity during ultrasound exposure. The model is calibrated through experiments involving sodium fluorescein transport through rabbit cornea. Validation was performed using nylon filters, for which the properties are known. It was found that exposure to 800-kHz ultrasound at an intensity 2 W/cm2 for 5 min increased the porosity of the epithelium by a factor of 5. The model can be useful for determining the extent to which ultrasound enhances the amount of drug transported through biological barriers, and the time at which a therapeutic dose is achieved at a given location, for different drugs and exposure strategies.
Collapse
Affiliation(s)
- Prasanna Hariharan
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Marjan Nabili
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Allan Guan
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Vesna Zderic
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Matthew Myers
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
12
|
Pinnock A, Shivshetty N, Roy S, Rimmer S, Douglas I, MacNeil S, Garg P. Ex vivo rabbit and human corneas as models for bacterial and fungal keratitis. Graefes Arch Clin Exp Ophthalmol 2016; 255:333-342. [PMID: 27844206 PMCID: PMC5285415 DOI: 10.1007/s00417-016-3546-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In the study of microbial keratitis, in vivo animal models often require a large number of animals, and in vitro monolayer cell culture does not maintain the three-dimensional structure of the tissues or cell-to-cell communication of in vivo models. Here, we propose reproducible ex vivo models of single- and dual-infection keratitis as an alternative to in vivo and in vitro models. METHODS Excised rabbit and human corneoscleral rims maintained in organ culture were infected using 108 cells of Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans or Fusarium solani. The infection was introduced by wounding with a scalpel and exposing corneas to the microbial suspension or by intrastromal injection. Post-inoculation, corneas were maintained for 24 and 48 h at 37 °C. After incubation, corneas were either homogenised to determine colony-forming units (CFU)/cornea or processed for histological examination using routine staining methods. Single- and mixed-species infections were compared. RESULTS We observed a significant increase in CFU after 48 h compared to 24 h with S. aureus and P. aeruginosa. However, no such increase was observed in corneas infected with C. albicans or F. solani. The injection method yielded an approximately two- to 100-fold increase (p < 0.05) in the majority of organisms from infected corneas. Histology of the scalpel-wounded and injection models indicated extensive infiltration of P. aeruginosa throughout the entire cornea, with less infiltration observed for S. aureus, C. albicans and F. solani. The models also supported dual infections. CONCLUSIONS Both scalpel wounding and injection methods are suitable for inducing infection of ex vivo rabbit and human cornea models. These simple and reproducible models will be useful as an alternative to in vitro and in vivo models for investigating the detection and treatment of microbial keratitis, particularly when this might be due to two infective organisms.
Collapse
Affiliation(s)
| | | | - Sanhita Roy
- LV Prasad Eye Institute, Banjara Hills, Hyderabad, 500034, India
| | | | - Ian Douglas
- University of Sheffield, Sheffield, S10 2TA, UK
| | - Sheila MacNeil
- University of Sheffield, Sheffield, S10 2TA, UK.
- The Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield, S3 7HQ, UK.
| | - Prashant Garg
- LV Prasad Eye Institute, Banjara Hills, Hyderabad, 500034, India
| |
Collapse
|
13
|
Vigier S, Gagnon H, Bourgade K, Klarskov K, Fülöp T, Vermette P. Composition and organization of the pancreatic extracellular matrix by combined methods of immunohistochemistry, proteomics and scanning electron microscopy. Curr Res Transl Med 2016; 65:31-39. [PMID: 28340694 DOI: 10.1016/j.retram.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022]
Abstract
The epidemic expansion of diabetes is a major concern of public health. A promising treatment is the transplantation of islets of Langerhans isolated from the whole pancreas but the yields of islets isolation and the rates of successful engraftments still have to be improved to make this therapy effective. The extracellular matrix (ECM) of the pancreatic tissue is partially lost during the isolation process and a comprehensive knowledge of the pancreatic ECM composition and organization could identify targets to improve islets isolation and transplantation or highlight new therapeutics for pancreatic diseases. The organization, composition and three-dimensional architecture of the pancreatic ECM were analysed in mouse and pig by three different techniques. Laminin α-4 and β-2 chains are localized by immunohistochemistry in the exocrine tissue and inside islets of mouse pancreas but not around islets that are surrounded by an ECM made of collagen type IV and type V. Collagen type I, III, and VI were identified by proteomics as specific constituents of the pig pancreatic ECM along with the low-abundance isoforms α3(IV) α4(IV) α5(IV) and α1(V) α2(V) α3(V) of collagen type IV and type V respectively. The three-dimensional ECM architecture is analysed on decellularized mouse pancreas by scanning electron microscopy and is organized in honeycomb structures made of thin ECM fibers assembled in thicker bundles. The combination of immunohistochemistry, proteomics and scanning electron microscopy gives complementary perspective on the pancreatic ECM composition and organization. It represents a valuable toolbox for deeper investigations of ECMs and proposes clues in tissue engineering of the pancreas.
Collapse
Affiliation(s)
- S Vigier
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500, boulevard de l'Université, J1K 2R1 Sherbrooke, Québec, Canada.
| | - H Gagnon
- PhenoSwitch Bioscience, Faculty of Medicine and Health Sciences, Université de Sherbrooke, J1H 5N4 Sherbrooke, Québec, Canada
| | - K Bourgade
- Research Center on Aging, 1036, rue Belvédère Sud, J1H 4C4 Sherbrooke, Québec, Canada
| | - K Klarskov
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, J1H 5N4 Sherbrooke, Québec, Canada
| | - T Fülöp
- Research Center on Aging, 1036, rue Belvédère Sud, J1H 4C4 Sherbrooke, Québec, Canada
| | - P Vermette
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500, boulevard de l'Université, J1K 2R1 Sherbrooke, Québec, Canada
| |
Collapse
|
14
|
Gao N, Lee P, Yu FS. Intraepithelial dendritic cells and sensory nerves are structurally associated and functional interdependent in the cornea. Sci Rep 2016; 6:36414. [PMID: 27805041 PMCID: PMC5090364 DOI: 10.1038/srep36414] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/10/2016] [Indexed: 12/12/2022] Open
Abstract
The corneal epithelium consists of stratified epithelial cells, sparsely interspersed with dendritic cells (DCs) and a dense layer of sensory axons. We sought to assess the structural and functional correlation of DCs and sensory nerves. Two morphologically different DCs, dendriform and round-shaped, were detected in the corneal epithelium. The dendriform DCs were located at the sub-basal space where the nerve plexus resides, with DC dendrites crossing several nerve endings. The round-shaped DCs were closely associated with nerve fiber branching points, penetrating the basement membrane and reaching into the stroma. Phenotypically, the round-shaped DCs were CD86 positive. Trigeminal denervation resulted in epithelial defects with or without total tarsorrhaphy, decreased tear secretion, and the loss of dendriform DCs at the ocular surface. Local DC depletion resulted in a significant decrease in corneal sensitivity, an increase in epithelial defects, and a reduced density of nerve endings at the center of the cornea. Post-wound nerve regeneration was also delayed in the DC-depleted corneas. Taken together, our data show that DCs and sensory nerves are located in close proximity. DCs may play a role in epithelium innervation by accompanying the sensory nerve fibers in crossing the basement membrane and branching into nerve endings.
Collapse
Affiliation(s)
- Nan Gao
- Departments of Ophthalmology, Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Patrick Lee
- Departments of Ophthalmology, Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Fu-Shin Yu
- Departments of Ophthalmology, Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| |
Collapse
|
15
|
Findlay AS, Panzica DA, Walczysko P, Holt AB, Henderson DJ, West JD, Rajnicek AM, Collinson JM. The core planar cell polarity gene, Vangl2, directs adult corneal epithelial cell alignment and migration. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160658. [PMID: 27853583 PMCID: PMC5099008 DOI: 10.1098/rsos.160658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/15/2016] [Indexed: 05/13/2023]
Abstract
This study shows that the core planar cell polarity (PCP) genes direct the aligned cell migration in the adult corneal epithelium, a stratified squamous epithelium on the outer surface of the vertebrate eye. Expression of multiple core PCP genes was demonstrated in the adult corneal epithelium. PCP components were manipulated genetically and pharmacologically in human and mouse corneal epithelial cells in vivo and in vitro. Knockdown of VANGL2 reduced the directional component of migration of human corneal epithelial (HCE) cells without affecting speed. It was shown that signalling through PCP mediators, dishevelled, dishevelled-associated activator of morphogenesis and Rho-associated protein kinase directs the alignment of HCE cells by affecting cytoskeletal reorganization. Cells in which VANGL2 was disrupted tended to misalign on grooved surfaces and migrate across, rather than parallel to the grooves. Adult corneal epithelial cells in which Vangl2 had been conditionally deleted showed a reduced rate of wound-healing migration. Conditional deletion of Vangl2 in the mouse corneal epithelium ablated the normal highly stereotyped patterns of centripetal cell migration in vivo from the periphery (limbus) to the centre of the cornea. Corneal opacity owing to chronic wounding is a major cause of degenerative blindness across the world, and this study shows that Vangl2 activity is required for directional corneal epithelial migration.
Collapse
Affiliation(s)
- Amy S. Findlay
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - D. Alessio Panzica
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - Petr Walczysko
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - Amy B. Holt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - Deborah J. Henderson
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - John D. West
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Ann M. Rajnicek
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - J. Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
- Author for correspondence: J. Martin Collinson e-mail:
| |
Collapse
|
16
|
Wang X, Huang Y, Jastaneiah S, Majumdar S, Kang JU, Yiu SC, Stark W, Elisseeff JH. Protective Effects of Soluble Collagen during Ultraviolet-A Crosslinking on Enzyme-Mediated Corneal Ectatic Models. PLoS One 2015; 10:e0136999. [PMID: 26325407 PMCID: PMC4556688 DOI: 10.1371/journal.pone.0136999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Collagen crosslinking is a relatively new treatment for structural disorders of corneal ectasia, such as keratoconus. However, there is a lack of animal models of keratoconus, which has been an obstacle for carefully analyzing the mechanisms of crosslinking and evaluating new therapies. In this study, we treated rabbit eyes with collagenase and chondroitinase enzymes to generate ex vivo corneal ectatic models that simulate the structural disorder of keratoconus. The models were then used to evaluate the protective effect of soluble collagen in the UVA crosslinking system. After enzyme treatment, the eyes were exposed to riboflavin/UVA crosslinking with and without soluble type I collagen. Corneal morphology, collagen ultrastructure, and thermal stability were evaluated before and after crosslinking. Enzyme treatments resulted in corneal curvature changes, collagen ultrastructural damage, decreased swelling resistance and thermal stability, which are similar to what is observed in keratoconus eyes. UVA crosslinking restored swelling resistance and thermal stability, but ultrastructural damage were found in the crosslinked ectatic corneas. Adding soluble collagen during crosslinking provided ultrastructural protection and further enhanced the swelling resistance. Therefore, UVA crosslinking on the ectatic model mimicked typical clinical treatment for keratoconus, suggesting that this model replicates aspects of human keratoconus and could be used for investigating experimental therapies and treatments prior to translation.
Collapse
Affiliation(s)
- Xiaokun Wang
- Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yong Huang
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sabah Jastaneiah
- Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Shoumyo Majumdar
- Department of Material Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jin U. Kang
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Samuel C. Yiu
- Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Walter Stark
- Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jennifer H. Elisseeff
- Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Material Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hong XJJ, Shinoj VK, Murukeshan VM, Baskaran M, Aung T. A simple and non-contact optical imaging probe for evaluation of corneal diseases. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:093702. [PMID: 26429443 DOI: 10.1063/1.4929684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Non-contact imaging techniques are preferred in ophthalmology. Corneal disease is one of the leading causes of blindness worldwide, and a possible way of detection is by analyzing the shape and optical quality of the cornea. Here, a simple and cost-effective, non-contact optical probe system is proposed and illustrated. The probe possesses high spatial resolutions and is non-dependent on coupling medium, which are significant for a clinician and patient friendly investigation. These parameters are crucial, when considering an imaging system for the objective diagnosis and management of corneal diseases. The imaging of the cornea is performed on ex vivo porcine samples and subsequently on small laboratory animals, in vivo. The clinical significance of the proposed study is validated by performing imaging of the New Zealand white rabbit's cornea infected with Pseudomonas.
Collapse
Affiliation(s)
- Xun Jie Jeesmond Hong
- Center for Optical and Laser Engineering, School of MAE, Nanyang Technological University, Singapore 639798
| | - V K Shinoj
- Center for Optical and Laser Engineering, School of MAE, Nanyang Technological University, Singapore 639798
| | - V M Murukeshan
- Center for Optical and Laser Engineering, School of MAE, Nanyang Technological University, Singapore 639798
| | - M Baskaran
- Singapore Eye Research Institute (SERI) and Singapore National Eye Center (SNEC), 11 Third Hospital Avenue, Singapore 168751
| | - T Aung
- Singapore Eye Research Institute (SERI) and Singapore National Eye Center (SNEC), 11 Third Hospital Avenue, Singapore 168751
| |
Collapse
|
18
|
Lu X, Watsky MA. Effects of vitamin D receptor knockout on cornea epithelium gap junctions. Invest Ophthalmol Vis Sci 2014; 55:2975-82. [PMID: 24722695 DOI: 10.1167/iovs.13-13788] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Gap junctions are present in all corneal cell types and have been shown to have a critical role in cell phenotype determination. Vitamin D has been shown to influence cell differentiation, and recent work demonstrates the presence of vitamin D in the ocular anterior segment. This study measured and compared gap junction diffusion coefficients among different cornea epithelium phenotypes and in keratocytes using a noninvasive technique, fluorescence recovery after photobleaching (FRAP), and examined the influence of vitamin D receptor (VDR) knockout on epithelial gap junction communication in intact corneas. Previous gap junction studies in cornea epithelium and keratocytes were performed using cultured cells or ex vivo invasive techniques. These invasive techniques were unable to measure diffusion coefficients and likely were disruptive to normal cell physiology. METHODS Corneas from VDR knockout and control mice were stained with 5(6)-carboxyfluorescein diacetate (CFDA). Gap junction diffusion coefficients of the corneal epithelium phenotypes and of keratocytes, residing in intact corneas, were detected using FRAP. RESULTS Diffusion coefficients equaled 18.7, 9.8, 5.6, and 4.2 μm(2)/s for superficial squamous cells, middle wing cells, basal cells, and keratocytes, respectively. Corneal thickness, superficial cell size, and the superficial squamous cell diffusion coefficient of 10-week-old VDR knockout mice were significantly lower than those of control mice (P < 0.01). The superficial cell diffusion coefficient of heterozygous mice was significantly lower than control mice (P < 0.05). CONCLUSIONS Our results demonstrate differences in gap junction dye spread among the epithelial cell phenotypes, mirroring the epithelial developmental axis. The VDR knockout influences previously unreported cell-to-cell communication in superficial epithelium.
Collapse
Affiliation(s)
- Xiaowen Lu
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, Georgia, United States
| | | |
Collapse
|
19
|
Yüksel H, Türkcü FM, Ari Ş, Çinar Y, Cingü AK, Şahin M, Şahin A, Özkurt Z, Çaça İ. Anterior segment parameters of rabbits with rotating Scheimpflug camera. Vet Ophthalmol 2014; 18:210-3. [PMID: 24506315 DOI: 10.1111/vop.12150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Rabbit is one of the most commonly used experimental animals for corneal studies due to similarity of size to human cornea and ease of manipulation. In this study, we assessed anterior segment parameters of the healthy rabbit eyes with Pentacam HR (Oculus, Wetzlar, Germany). METHODS Six-month-old, approximately 2.5-3 kg weighted, 30 female New Zealand rabbits were used in the study. Right eye of the each rabbit was imaged with Pentacam HR under intramuscular ketamine hydrochloride (Ketalar; Eczacibasi, Turkey) anesthesia (50 mg/kg). After the imaging, the rabbits with blinking errors, which results in low-quality images, were excluded from the study. Keratometric readings, central corneal thickness (CCT), anterior chamber depth (ACD), and anterior and posterior elevation values, and lens density were noted. RESULTS In this study, the flattest and the steepest keratometric values were found as 43.34 ± 1.86, 42.7 ± 2.0, and 43.9 ± 1.9 diopters, respectively. The mean CCT and ACD of rabbits were found as 388 ± 39 μm and 2.08 ± 0.16 mm, respectively. Mean of the anterior and posterior elevation at thinnest point was found as 1.29 ± 4.28 and 3.91 ± 6.17 μm, respectively. CONCLUSIONS Keratometric readings and anterior and posterior elevation values of rabbits were similar to human; however, corneal thickness and anterior chamber depth (ACD) values were lower than humans.
Collapse
Affiliation(s)
- Harun Yüksel
- Department of Ophthalmology, Dicle University Faculty of Medicine, Diyarbakir, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Uppal RK, Johal MS, Sharma ML. Toxicological effects and recovery of the corneal epithelium inCyprinus carpio communisLinn. exposed to monocrotophos: an scanning electron microscope study. Vet Ophthalmol 2013; 18:214-20. [DOI: 10.1111/vop.12134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ravneet Kaur Uppal
- Fish and Fisheries Laboratory; Department of Zoology; Panjab University; Chandigarh 160014 India
| | - Mohinder Singh Johal
- Fish and Fisheries Laboratory; Department of Zoology; Panjab University; Chandigarh 160014 India
| | - Madan Lal Sharma
- Centre for Instrumental Laboratory; Panjab University; Chandigarh 160014 India
| |
Collapse
|
21
|
Kymionis GD, Kontadakis GA, Naoumidi I, Kankariya VP, Panagopoulou S, Manousaki A, Grentzelos MA, Pallikaris IG. Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome. Br J Ophthalmol 2013; 98:133-7. [DOI: 10.1136/bjophthalmol-2013-304023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Zhang W, Gao Z, Shao D, Zhang L, Wang C, Zhang Y. Atomic force microscopy analysis of progenitor corneal epithelial cells fractionated by a rapid centrifugation isolation technique. PLoS One 2013; 8:e59282. [PMID: 23555648 PMCID: PMC3608637 DOI: 10.1371/journal.pone.0059282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/13/2013] [Indexed: 12/13/2022] Open
Abstract
Purpose To investigate the use of atomic force microscopy (AFM) to image the three groups of corneal epithelial cells fractionated by a novel rapid centrifugation isolation technique. Methods Epithelial cells harvested from primary cultures of rabbit limbal rings were centrifuged onto uncoated dishes, first at 1400 rpm and then at 1800 rpm. The adherent cells after centrifugation at 1400 rpm (ATC1), the adherent cells at 1800 rpm (ATC2) and the non-adherent cells at 1800 rpm (NAC) were investigated for BrdU retention and were subjected to contact mode AFM and Transmission Electron Microscopy (TEM). Results Compared with unfractionated cells, the ATC1 group, accounting for about 10% of the whole population, was enriched in BrdU label-retaining cells. There were dramatic overall shape, surface membrane and intra-cellular ultrastructure differences noted among ATC1, ATC2 and NAC populations. The whole cell roughness measurements were 21.1±1.5 nm, 79.5±3.4 nm and 103±4.6 nm for the ATC1, ATC2 and NAC groups, respectively. The mero-nucleus roughness measurements were 34.2±1.7 nm, 13.0±0.8 nm and 8.5±0.5 nm in the ATC1, ATC2 and NAC populations, respectively. Conclusions AFM was found to be a good tool for distinguishing among the three groups of cells. BrdU label retention, the AFM parameters and TEM together suggest that the ATC1, ATC2 and NAC populations may be progenitor corneal epithelial cells, transit amplifying cells and terminal differentiation cells, respectively.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Zongyin Gao
- Department of Ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Dongping Shao
- Department of Ophthalmology, the Affiliated Nanhai Hospital of Southern Medical University, Foshan, Guangdong Province, P. R. China
| | - Liu Zhang
- Department of Ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|
23
|
|
24
|
Riau AK, Tan NYS, Angunawela RI, Htoon HM, Chaurasia SS, Mehta JS. Reproducibility and age-related changes of ocular parametric measurements in rabbits. BMC Vet Res 2012; 8:138. [PMID: 22901963 PMCID: PMC3514359 DOI: 10.1186/1746-6148-8-138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/15/2012] [Indexed: 12/02/2022] Open
Abstract
Background The rabbit is a common animal model for ophthalmic research, especially corneal research. Ocular structures grow rapidly during the early stages of life. It is unclear when the rabbit cornea becomes mature and stabilized. We investigated the changes of keratometry, refractive state and central corneal thickness (CCT) with age. In addition, we studied the intra- and inter-observer reproducibility of anterior chamber depth (ACD) and anterior chamber width (ACW) measurements in rabbits using anterior segment-optical coherence tomography (AS-OCT). Results The growth of New Zealand White rabbits (n = 16) were monitored from age 1 to 12 months old. Corneal keratometric and refractive values were obtained using an autorefractor/keratometer, and CCT was measured using an AS-OCT. Keratometry and CCT changed rapidly from 1 to 7 months and appeared to be stabilizing after 8 months. The reduction of corneal curvature was approximately 1.36 diopter (D)/month from age 1 to 7 months, but the change decelerated to 0.30 D/month from age 8 to 12 months. An increase of 10 μm/month in CCT was observed from age 1 to 7 months, but the gain was reduced to less than 1 μm/month from age 8 to 12 months. There was a hyperopic shift over the span of 12 months, albeit the increase in spherical equivalent was slow and gradual. Rabbits of random age were then selected for 2 repeated ACD and ACW measurements by 2 independent and masked observers. Bland-Altman plots revealed a good agreement of ACD and ACW measurements inter- and intra-observer and the ranges of 95% limit of agreement were acceptable from a clinical perspective. Conclusions Corneal keratometry, spherical equivalent refraction and CCT changed significantly during the first few months of life of rabbits. Young rabbits have been used in a large number of eye research studies. In certain settings, the ocular parametric changes are an important aspect to note as they may alter the findings made in a rabbit experimental model. In this study, we have also demonstrated for the first time a good between observer reproducibility of measurements of ocular parameters in an animal model by using an AS-OCT.
Collapse
Affiliation(s)
- Andri K Riau
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
25
|
Wolf A, von Jagow B, Kook D, Messmer EM, Lackerbauer CA, Kampik A, Kohnen T, Grueterich M. Evaluation of interface quality in organ-cultured lamellar corneal transplants. Clin Ophthalmol 2012; 6:967-72. [PMID: 22888202 PMCID: PMC3413341 DOI: 10.2147/opth.s30254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND With increasing numbers of lamellar keratoplasties, eye banks are challenged to deliver precut lamellar donor tissue. In Europe, the most common technique of corneal storage is organ culture which requires a deswelling process before surgical processing. The aim of this study was to investigate the influence of different deswelling times on the cutting plane quality after microkeratome-assisted lamellar dissection. METHODS Eight paired donor corneas (16 specimens) not suitable for transplantation were organ cultured under standard conditions at the Eye Bank of the Ludwig-Maximilians Universität, Munich, Germany. Pairs of corneal buttons were analyzed during the deswelling process in dextrane-containing medium. While one cornea was cut at an early time point during the deswelling process and put back into deswelling medium thereafter, the partner cornea was completely deswollen and dissected after 72 hours. Specimens were then further processed for scanning electron microscopy. Surface quality was assessed both digitally using Scanning Probe Imaging Processing software, and manually by three blinded graders. RESULTS The corneal buttons processed at the beginning of the deswelling process had a smoother surface when compared to the partner cornea that was cut at the end of the deswelling process. In our setting, no relevant difference was detectable between manual and automated microkeratome dissection. CONCLUSION For lamellar keratoplasty, organ-cultured corneas should be processed at an early stage during the deswelling process. We interpret the smoother dissection plane during early deswelling as a result of mechanical properties in a highly hydrated cornea.
Collapse
Affiliation(s)
- Armin Wolf
- Department of Ophthalmology, Ludwig-Maximilians-Universität, München
| | - Burkhard von Jagow
- Department of Ophthalmology, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Daniel Kook
- Department of Ophthalmology, Ludwig-Maximilians-Universität, München
| | | | | | - Anselm Kampik
- Department of Ophthalmology, Ludwig-Maximilians-Universität, München
| | - Thomas Kohnen
- Department of Ophthalmology, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Martin Grueterich
- Department of Ophthalmology, Ludwig-Maximilians-Universität, München
| |
Collapse
|
26
|
Zhao M, Campolmi N, Thuret G, Piselli S, Acquart S, Peoc'h M, Gain P. Poloxamines for deswelling of organ-cultured corneas. Ophthalmic Res 2012; 48:124-33. [PMID: 22572891 DOI: 10.1159/000334981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/28/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Poloxamines are amphiphilic tetrofunctional block copolymers composed of four polyoxyethylene-polyoxypropylene arms joined to a central ethylene diamine bridge. Their safe profile allows diverse pharmaceutical and biomedical applications. AIM To assess their use for corneal deswelling using a porcine model of organ culture (OC). METHODS Five poloxamines (T90R4, T904, T908, T1107 and T1307) were dissolved in a standard commercial OC medium (control) to reach 350 mosm kg(-1). In vitro cytotoxicity was tested using MTT assay on human corneal epithelial and endothelial cell (EC) lines and on primary human corneal fibroblasts. Paired porcine corneas stored in OC for 3 days were assigned for 48 h to a poloxamine medium or to a standard deswelling medium containing 5% dextran T500. Corneal EC density, morphometry, mortality, stromal thickness and transparency were evaluated before and after deswelling. Post-deswelling, EC viability/mortality was determined using a fluorescent live/dead assay. RESULTS Besides similar corneal thickness reduction and transparency improvement, T908, T1107 and T1307 decreased EC loss (5.4 ± 1.7% vs. 9.9 ± 2.6% in controls (p < 0.001)) and mortality, improved EC morphometry and reduced endothelial lesions compared to dextran. CONCLUSION On this porcine model, poloxamines T908, T1107 and T1307 appear as good candidates to replace dextran for the deswelling. Experiments on human corneas are now necessary to confirm their efficiency and safety profile in OC.
Collapse
Affiliation(s)
- M Zhao
- Laboratory 'Biology, Imaging and Engineering of Corneal Graft' EA2521, SFR143, Faculty of Medicine, University Jean Monnet, Saint Etienne, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Animal models of bacterial keratitis. J Biomed Biotechnol 2011; 2011:680642. [PMID: 21274270 PMCID: PMC3022227 DOI: 10.1155/2011/680642] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 11/29/2010] [Accepted: 12/09/2010] [Indexed: 11/20/2022] Open
Abstract
Bacterial keratitis is a disease of the cornea characterized by pain, redness, inflammation, and opacity. Common causes of this disease are Pseudomonas aeruginosa and Staphylococcus aureus. Animal models of keratitis have been used to elucidate both the bacterial factors and the host inflammatory response involved in the disease. Reviewed herein are animal models of bacterial keratitis and some of the key findings in the last several decades.
Collapse
|
28
|
Irreversible optical clearing of sclera by dehydration and cross-linking. Biomaterials 2010; 32:1080-90. [PMID: 21055804 DOI: 10.1016/j.biomaterials.2010.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 10/01/2010] [Indexed: 11/20/2022]
Abstract
This study manipulates both clear cornea and opaque sclera by two dehydration processes for revealing the relationship between altered tissue structures and change in optical functions. In contrast to the high levels of light scattering in dehydrated tissues by critical point dry, a simple dehydration at 4-8 °C effectively and significantly improved their visible-light transmission, even in the sclera, with accompanying dense fiber packing. Further improvement in visible-light transmission, from 40-50% to 80-90%, has been achieved by flatting tissue surface with cover glasses during dehydration at low temperature. Such optical clearing of sclera by dehydration is reversible. However, chemical cross-linking effectively stabilizes their densely packed microscopic structures and visible-light transmission at over 50% irreversibly, even at wet conditions. Interestingly, the repetition of both low temperature dehydration/cross-linking treatments effectively reduced the required amounts of cross-linking reagents to keep a high transparency. Wet transparent cross-linked sclera can also show a characteristic strong tensile strength. Furthermore, rabbit corneal epithelium has regenerated on the transparent sclera with cross-linking in vitro.
Collapse
|
29
|
Use of magnetically oriented orthogonal collagen scaffolds for hemi-corneal reconstruction and regeneration. Biomaterials 2010; 31:8313-22. [PMID: 20708260 DOI: 10.1016/j.biomaterials.2010.07.066] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/16/2010] [Indexed: 11/22/2022]
Abstract
We recently showed that the highly organized architecture of the corneal stroma could be reproduced using scaffolds consisting of orthogonally aligned multilayers of collagen fibrils prepared using a high magnetic field. Here we show that such scaffolds permit the reconstruction in vitro of human hemi-corneas (stroma + epithelium), using primary human keratocytes and limbal stem cell derived human keratinocytes. On the surface of these hemi-corneas, a well-differentiated epithelium was formed, as determined both histologically and ultrastructurally and by the expression of characteristic markers. Within the stroma, the keratocytes aligned with the directions of the fibrils in the scaffold and synthesized a new extracellular matrix with typical collagen markers and small, uniform diameter fibrils. Finally, in vivo experiments using a rabbit model showed that these orthogonally oriented multi-layer scaffolds could be used to repair the anterior region of the stroma, leading to re-epithelialization and recovery of both transparency and ultrastructural organization.
Collapse
|
30
|
Nourian AR, Baldwin GI, van Eps AW, Pollitt CC. Equine laminitis: ultrastructural lesions detected 24-30 hours after induction with oligofructose. Equine Vet J 2010; 39:360-4. [PMID: 17722730 DOI: 10.2746/042516407x177448] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY The pathology of equine laminitis has been well-documented 48 h after dosing with oligofructose when clinical lameness and lamellar disintegration is well advanced. Further analysis of the earliest lesions, by collecting lamellar samples at the first sign of foot lameness after oligofructose dosing is required in order to increase understanding of the disease. OBJECTIVES To investigate lamellar epidermal hemidesmosome damage and basement membrane dysadhesion by transmission electron microscopy (TEM). METHODS Eight clinically normal, mature Standardbred horses were divided randomly into 2 groups of 4. The treatment group were dosed with oligofructose (10 g/kg bwt) and subjected to euthanasia when shifting weight from one foot to other commenced and at the first sign of lameness during walking and turning. This occurred at 24 h in 3 horses and 30 h in one. The sham treatment control group were dosed with water and subjected to euthanasia after 48 h. Lamellar tissues of the front feet were harvested and processed for ultrastructural study using TEM. RESULTS Examination by TEM showed excessive waviness of the basement membrane zone and pointed tips of some secondary epidermal lamellae, an ultrastructural lesion typical of laminitis. The average number of hemidesmosomes/microm of basement membrane was decreased and their distance from the centre of the lamina densa of the basement membrane was increased. CONCLUSIONS Laminitis lesions are detectable 24 h after oligofructose administration. POTENTIAL RELEVANCE Hindgut events occurring in the first 24 h after dosing have begun the destruction of the hoof lamellar interface. Prevention and treatment strategies should precede lameness if they are to be efficacious.
Collapse
Affiliation(s)
- A R Nourian
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | | | | | | |
Collapse
|
31
|
Corneal Anatomy, Physiology, and Wound Healing. Ophthalmology 2009. [DOI: 10.1016/b978-0-323-04332-8.00025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
32
|
|
33
|
Julio G, Merindano MD, Canals M, Ralló M. Image processing techniques to quantify microprojections on outer corneal epithelial cells. J Anat 2008; 212:879-86. [PMID: 18510513 DOI: 10.1111/j.1469-7580.2008.00898.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
It is widely accepted that cellular microprojections (microvilli and/or microplicae) of the corneal surface are essential to maintain the functionality of the tissue. To date, the characterization of these vital structures has been made by analysing scanning or transmission electron microscopy images of the cornea by methods that are intrinsically subjective and imprecise (qualitative or semiquantitative methods). In the present study, numerical data concerning three microprojection features were obtained by an automated method and analysed to establish which of them showed less variability. We propose that the most stable microprojection characteristic would be a useful sign in early detection of epithelial damage or disease. With this aim, the scanning electron microscopy images of 220 corneal epithelial cells of nine rabbits were subjected to several image processing techniques to quantify microprojection density, microprojection average size and surface covered by microprojections (SCM). We then assessed the reliability of the methods used and performed a statistical analysis of the data. Our results show that the thresholding process, the basis of all image processing techniques used in this work, is highly reliable in separating microprojections from the rest of the cell membrane. Assessment of histogram information from thresholded images is a good method to quantify SCM. Amongst the three studied variables, SCM was the most stable (with a coefficient of variation of 15.24%), as 89.09% of the sample cells had SCM values > or = 40%. We also found that the variability of SCM was mainly due to intercellular differences (the cell factor contribution represented 88.78% of the total variation in the analysed cell areas). Further studies are required to elucidate how healthy corneas maintain high SCM values.
Collapse
Affiliation(s)
- Gemma Julio
- Department of Optics and Optometry, School of Optics and Optometry, Technical University of Catalonia, Terrassa, Spain.
| | | | | | | |
Collapse
|
34
|
Histomorphological and immunofluorescence evaluation of bimanual and coaxial phacoemulsification incisions in rabbits. J Cataract Refract Surg 2008; 34:670-6. [DOI: 10.1016/j.jcrs.2007.11.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 11/24/2007] [Indexed: 11/17/2022]
|
35
|
Rabbit cornea microstructure response to changes in intraocular pressure visualized by using nonlinear optical microscopy. Cornea 2008; 27:202-8. [PMID: 18216577 DOI: 10.1097/ico.0b013e318159221e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To characterize the microstructural response of the rabbit cornea to changes in intraocular pressure (IOP) by using nonlinear optical microscopy (NLOM). METHODS Isolated rabbit corneas were mounted on an artificial anterior chamber in series with a manometer and were hydrostatically pressurized by a reservoir. The chamber was mounted on an upright microscope stage of a custom-built NLOM system for corneal imaging without using exogenous stains or dyes. Second harmonic generation in collagen was used to image through the full thickness of the central corneal stroma at IOPs between 5 and 20 mm Hg. Microstructural morphology changes as a function of IOP were used to characterize the depth-dependent response of the central cornea. RESULTS Regional collagen lamellae architecture through the full thickness of the stroma was specifically imaged as a function of IOP. Hypotensive corneas showed gaps between lamellar structures that decreased in size with increasing IOP. These morphologic features appear to result from interwoven lamellae oriented along the anterior-posterior axis and parallel to the cornea surface. They appear throughout the full thickness and disappear with tension in the anterior but persist in the posterior central cornea, even at hypertensive IOP. CONCLUSIONS NLOM reveals interwoven collagen lamellae sheets through the full thickness of the rabbit central cornea oriented along the anterior-posterior axis and parallel to the surface. The nondestructive nature of NLOM allows 3-dimensional imaging of stromal architecture as a function of IOP in situ. Collagen morphologic features were used as an indirect measure of depth-dependent mechanical response to changes in IOP.
Collapse
|
36
|
Elsheikh A, Alhasso D, Rama P. Assessment of the epithelium's contribution to corneal biomechanics. Exp Eye Res 2007; 86:445-51. [PMID: 18221938 DOI: 10.1016/j.exer.2007.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 12/07/2007] [Accepted: 12/10/2007] [Indexed: 11/26/2022]
Abstract
Determining the epithelium's contribution to corneal biomechanics is important for the predictive numerical simulation of corneal biomechanical behaviour in which the cornea's five main layers are represented separately. Twenty-four corneal buttons were tested under posterior inflation conditions while monitoring their behaviour using non-contact methods. The corneas were divided into two groups of 12; one with and one without the epithelium. Control of specimen hydration, temperature and pressure application rate, and limiting the programme to specimens within a small age range resulted in a narrow scatter of test results. On average, intact specimens were able to carry slightly more pressure at the same deformation, and experienced less average stress for the same strain, compared with specimens without the epithelium. These results indicated that the stiffness of the epithelium was considerably lower than that of the stroma, and might therefore be ignored in numerical simulation studies.
Collapse
Affiliation(s)
- Ahmed Elsheikh
- Division of Civil Engineering, University of Dundee, Dundee, UK.
| | | | | |
Collapse
|
37
|
Gajjar D, Praveen MR, Vasavada AR, Pandita D, Vasavada VA, Patel DB, Johar K, Raj S. Ingress of bacterial inoculum into the anterior chamber after bimanual and microcoaxial phacoemulsification in rabbits. J Cataract Refract Surg 2007; 33:2129-34. [DOI: 10.1016/j.jcrs.2007.07.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 07/16/2007] [Indexed: 10/22/2022]
|
38
|
Rajnicek AM, Foubister LE, McCaig CD. Prioritising guidance cues: directional migration induced by substratum contours and electrical gradients is controlled by a rho/cdc42 switch. Dev Biol 2007; 312:448-60. [PMID: 17976566 DOI: 10.1016/j.ydbio.2007.09.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/25/2007] [Accepted: 09/25/2007] [Indexed: 01/30/2023]
Abstract
Coordinated cell migration is a fundamental feature of embryogenesis but the intracellular mechanism by which cells integrate co-existing extracellular cues to yield appropriate vectoral migration is unknown. Cells in the cornea are guided by a naturally occurring DC electric field (EF) (electrotaxis) as they navigate non-planar substrata but the relative potencies of electrotaxis and guidance by substratum shape (contact guidance) have never been determined. We tested the hypothesis that vectoral migration was controlled by selective activation of rac, cdc42 or rho in response to a 150 mV/mm EF or to a series of parallel substratum nanogrooves (NGs) 130 nm deep. EFs and NGs were presented singly or in combination. Electrotaxis of dissociated bovine corneal epithelial cells (CECs) on planar quartz required signalling by cdc42 and rho but not rac. Contact guidance by substratum NGs required rho but not cdc42 or rac activities. When an EF and NGs were superimposed in parallel, cathodal electrotaxis along NGs was enhanced compared to that on planar quartz but when they were superimposed orthogonally (vertical NGs with horizontal EF) cells were recruited from contact guidance to electrotaxis, suggesting that the EF was more potent. However, increasing the EF to 250 mV/mm was insufficient to recruit the majority to electrotaxis. Consistent for the cues in isolation, when an EF (150 mV/mm) and NGs were superimposed orthogonally, rac activity was not essential for either contact guidance or electrotaxis. However, attenuation of cdc42 signalling abolished electrotaxis and enhanced contact guidance relative to controls (no drug), whereas inhibiting rho signalling enhanced electrotaxis and rho stimulation enhanced contact guidance. Our data are consistent with the idea that migrating CECs use a cdc42/rho "switch" to sort vectoral cues, with cdc42 controlling electrotaxis and rho controlling contact guidance.
Collapse
Affiliation(s)
- Ann M Rajnicek
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | | | | |
Collapse
|
39
|
Sarayba MA, Ignacio TS, Binder PS, Tran DB. Comparative Study of Stromal Bed Quality by Using Mechanical, IntraLase Femtosecond Laser 15- and 30-kHz Microkeratomes. Cornea 2007; 26:446-51. [PMID: 17457194 DOI: 10.1097/ico.0b013e318033e7cc] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate corneal stromal bed quality of lamellar keratectomy in laser in situ keratomileusis (LASIK) procedures by using mechanical and femtosecond laser microkeratomes. METHODS LASIK corneal flaps were created in 9 fresh human globes not suitable for transplantation. We grouped the samples into 3 different groups of 3 globes each. Group 1 was the control group, in which the flaps were created using a Hansatome microkeratome with a 160-microm head. Groups 2 and 3 consisted of flaps created at the 110-microm flap thickness setting using the IntraLase 15- and 30-kHz femtosecond laser, respectively. All the flaps were removed, and the corneal stromal beds were prepared for scanning electron microscopy (SEM). Qualitative surface roughness (QlSR) of the SEM images was graded using a roughness grading scale from 1 to 5 by 3 masked observers. Quantitative surface roughness (QnSR) of the SEM images was also assessed using software designed for roughness analysis. Mann-Whitney nonparametric statistical analysis was performed to compare groups. RESULTS There was no statistically significant difference in QlSR and QnSR scores between group 2 and group 1 (brand-new blade only). Group 3 30-kHz IntraLase samples showed a smoother stromal bed compared with group 1 and 2 samples. This was a statistically significant difference for QlSR (QlSR = 1.1 +/- 0.17, P < 0.001) and showed borderline significance for QnSR (QnSR = 24.4 +/- 0.96, P = 0.05). CONCLUSIONS The IntraLase 15-kHz femtosecond laser 110-microm flaps and the Hansatome 160-microm head using a new blade both produced smooth, good-quality, compact stromal beds as assessed qualitatively by masked observers and quantitatively by image analysis software. The 30-kHz femotsecond laser permits a tighter spot/line separation and lower energy per pulse, which creates smoother corneal stromal beds.
Collapse
|
40
|
Sarayba MA, Ignacio TS, Tran DB, Binder PS. A 60 kHz IntraLase Femtosecond Laser Creates a Smoother LASIK Stromal Bed Surface Compared to a Zyoptix XP Mechanical Microkeratome in Human Donor Eyes. J Refract Surg 2007; 23:331-7. [PMID: 17455827 DOI: 10.3928/1081-597x-20070401-04] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To compare the stromal surfaces created by the latest mechanical microkeratome and femtosecond, laser technologies. METHODS Laser in situ keratomileusis (LASIK) flaps were created in six fresh human globes unsuitable for transplantation. The eyes were placed in one of two groups of three globes each. One group had LASIK flaps created with a Zyoptix XP microkeratome using a 120-microm head and a fresh blade for each eye. Another group had flaps created at an attempted 100-microm thickness using the 60 kHz IntraLase femtosecond laser. Immediately following flap creation, the stromal beds were prepared for scanning electron microscopy (SEM). Qualitative roughness of the SEM images was graded by masked observers. Quantitative roughness of the SEM images was assessed using computerized software designed for roughness analysis. Mann-Whitney non-parametric statistical analysis was performed to compare groups. RESULTS A statistically significant difference was noted in bed smoothness as measured by qualitative roughness and quantitative roughness scores. The IntraLase samples showed smoother stromal beds compared to the Zyoptix group (qualitative roughness = 2.0 +/- 0.7 pm vs 3.6 +/- 1.6 pm, P = .03; quantitative roughness = 20238 +/- 1869 pm vs 26368 +/- 8133 pm, P = .03). CONCLUSIONS The 60 kHz IntraLase femtosecond laser and the Zyoptix XP 120-microm head using a new blade produced smooth, good quality, compact stromal beds qualitatively and quantitatively. Because the 60 kHz femtosecond laser permits a tight spot/line separation using low energy, it creates a smoother corneal stromal bed compared to previous femtosecond laser engines.
Collapse
|
41
|
McCally RL, Connolly PJ, Stark WJ, Jain S, Azar DT. Identical excimer laser PTK treatments in rabbits result in two distinct haze responses. Invest Ophthalmol Vis Sci 2006; 47:4288-94. [PMID: 17003417 PMCID: PMC1790975 DOI: 10.1167/iovs.05-1469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To obtain objective light-scattering measurements to test a hypothesis that identical PTK treatments cause distinct low- and high-level light-scattering responses in rabbit corneas. METHODS An excimer laser was used to produce identical 6-mm diameter phototherapeutic keratectomy treatments (PTK) in 32 pigmented rabbits. Eyes were treated by performing a 40-microm epithelial ablation, followed by a 100-mum stromal PTK. Objective scattering measurements were made before treatment, weekly up to 5 weeks, and then biweekly to 9 weeks. Confocal microscopy was performed on several corneas at 4 and 7 weeks. RESULTS Mean scattering levels split into distinct low- and high-scattering groups 2 weeks after treatment and remained distinct until week 7 (P < 0.003). Scattering in the low group reached a broad peak that lasted from weeks 2 to 4 at approximately 3 times the pretreatment level. Scattering in the high group peaked at 3 weeks at approximately 12 times the pretreatment level. Scattering levels diminished after reaching their peaks. Confocal images showed a band of highly reflective material in the anterior stroma that extended much deeper in corneas from the high group. The reflective band in the highly scattering corneas obscured the posterior stroma from view for up to 5 weeks. CONCLUSIONS Quantitative scattering data obtained with the scatterometer suggest that identical PTK treatments indeed result in distinct low- and high-level light-scattering responses in rabbits.
Collapse
Affiliation(s)
- Russell L McCally
- The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723-6099, USA.
| | | | | | | | | |
Collapse
|
42
|
Bergmanson JPG, Horne J, Doughty MJ, Garcia M, Gondo M. Assessment of the number of lamellae in the central region of the normal human corneal stroma at the resolution of the transmission electron microscope. Eye Contact Lens 2006; 31:281-7. [PMID: 16284509 DOI: 10.1097/01.icl.0000165280.94927.0d] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To determine the total number of lamellae within the central region of the human corneal stroma by using a continuous section through the corneal stroma and at the ultrastructural resolution of the electron microscope. METHODS Six human eye bank corneas, from individuals aged between 42 and 82 years, were received in corneal storage medium (Optisol GS) and then processed for transmission electron microscopy with buffered 2% glutaraldehyde fixation. Thin sections were mounted on parallel bar copper grids for an uninterrupted full corneal thickness observation. A sequence of overlapping micrographs were taken at 2,600x magnification, printed at a final magnification of 3,640x, and assembled as a montage. The number of lamellae were counted across the corneal stromal strip by three observers, independently, by using a preagreed set of criteria for identifying individual lamella. RESULTS The average number of lamellae per stroma was determined to be 242+/-4 (range, 234-247). In the more anterior region of the stroma, the density of the lamellae was 50% greater than in the posterior stroma (mean, 57+/-12 per 100 microm anteriorly vs. 38+/-5 per 100 microm posteriorly). Interobserver differences were modest and generally less than the intersample variance. CONCLUSIONS When assessed at the resolution of the transmission electron microscope, the number of stromal lamellae in the central region of the human cornea are higher (at approximately 240 per cornea) than most previous estimates reported from light microscopy studies.
Collapse
Affiliation(s)
- Jan P G Bergmanson
- Texas Eye Research and Technology Center, University of Houston College of Optometry, Houston, TX 77204-2020, USA.
| | | | | | | | | |
Collapse
|
43
|
Almeida GC, Faria e Souza SJ. Effect of topical dorzolamide on rabbit central corneal thickness. Braz J Med Biol Res 2006; 39:277-81. [PMID: 16470316 DOI: 10.1590/s0100-879x2006000200015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our objective was to study the effect of dorzolamide on corneal hydration in an 18-week controlled experiment using ultrasonic pachymetry. Twenty-eight male rabbits were divided randomly into four groups. The 7 rabbits in each group received eye drops containing either 2% (w/v) dorzolamide or placebo in their right eye, or in their left eye. The 2% dorzolamide rabbits were treated every 8 h. Fellow eyes are defined as eyes which did not receive either dorzolamide or placebo. The study was blind for both the person who applied the drug and the one who performed the pachymetry. The effect of treatments is reported on the basis of the percentage of pachymetric variation compared to the measurement made before drug application. There was no significant difference (P = 0.061) in pachymetric variation between dorzolamide (-4.42 +/- 11.71%) and placebo (2.48 +/- 9.63%). However, there was a significant difference (P = 0.0034) in pachymetric variation between the dorzolamide fellow eyes (-7.56 +/- 10.50%) and the placebo (-4.42 +/- 11.71%). In conclusion, dorzolamide did not increase the corneal thickness in rabbits.
Collapse
Affiliation(s)
- G C Almeida
- Departamento de Especialidades Cirúrgicas, Oftalmologia, Faculdade de Medicina Estadual de São José do Rio Preto, São José do Rio Preto, SP, Brazil.
| | | |
Collapse
|
44
|
Ojeda JL, Icardo JM, Wong WP, Ip YK. Microanatomy and ultrastructure of the kidney of the African lungfishProtopterus dolloi. ACTA ACUST UNITED AC 2006; 288:609-25. [PMID: 16703593 DOI: 10.1002/ar.a.20333] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Dipnoi (lungfishes) have developed true lungs, having the ability to take oxygen from both the gills and the lungs. During the tropical dry season, many lungfish estivate on land, breathing only air. The estivation period is accompanied by profound functional modifications, including the suppression of urine. Thus, the lungfish kidney must be designed to cope with these dramatic cyclic changes in renal function. We study here the microanatomy and the structure of the kidney of the African lungfish Protopterus dolloi, maintained under controlled freshwater conditions. Chemical microdissection, light microscopy, and scanning and transmission electron microscopy have been used. The nephrons of P. dolloi are composed of a renal corpuscle (RC) and of a renal tubule that appears divided into five morphologically distinct segments: neck segment (NS), proximal tubule (PT), intermediate segment (IS), distal tubule (DT), and collecting tubule (CT). Paired CTs abut into a collecting duct, the latter emptying into an archinephric duct. The RCs lie in the mid-zone of the kidney, between the PTs and the convoluted DTs. The spatial distribution of these elements allows recognition of a kidney zonation. The RCs group into clusters (3-4 RCs per cluster) that are supplied by a single arteriole surrounded by pericytes. Each cluster appears to represent a functional unit with a common hemodynamic regulatory mechanism. The major processes of the podocytes form flattened networks that appear to constitute an integrated system due to the presence of gap junctions. The existence of mesangial cells with large cell processes, and of mesangial cells with a dendritic appearance, suggests a complex functional role (contractile and phagocytic) for the mesangium. The NS and the IS are the narrowest nephron segments, formed only by multiciliated cells. The PT and the DT can be subdivided, based on the tubular morphology and on cell composition, into portions I and II: PTI is formed only by brush border (BB) cells, while PTII contains BB and multiciliated cells. The DTI is formed by segment-specific cells, while the DTII contains segment-specific and a small number of flask cells. The CT contains principal and flask cells in a 5:1 ratio. The flask cells adopt two different configurations (with a narrow canaliculus or with a large cavity). The main goal of this study was to disclose specific kidney features that could be related to function, phylogeny, and habitat. In addition, the present results constitute the basis for a study of the morphologic changes that should occur in the kidney of P. dolloi during estivation.
Collapse
Affiliation(s)
- José L Ojeda
- Department of Anatomy and Cell Biology, University of Cantabria, Santander, Spain.
| | | | | | | |
Collapse
|
45
|
Tendler Y, Panshin A, Weisinger G, Zinder O. Identification of cytoplasmic p53 protein in corneal epithelium of vertebrates. Exp Eye Res 2005; 82:674-81. [PMID: 16376331 DOI: 10.1016/j.exer.2005.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 09/13/2005] [Indexed: 11/16/2022]
Abstract
The tumour suppressor gene p53 encodes a phosphoprotein involved in the control of cell growth. It's expression and function have been documented in malignancy, apoptosis and the aging processes. Recently, p53 expression has been demonstrated in normal murine tissues, including whole eye. Currently, we intend to map and to characterize p53 expression in the normal cornea across different species. To do this, eyes of animals were enucleated after sacrifice by CO(2) narcosis and then p53 expression in whole eyes (cornea) was mapped by indirect immunohistochemical staining techniques using the anti-p53 monoclonal antibodies PAb 248, PAb 421 and PAb 240 (alternatively called mAb 248, mAb 421 and mAb 240, respectively). Additionally, eyes were freshly dissected to separate the corneas, for quantitating p53 expression, using Western blot analysis. We found strong cytoplasmic p53 expression in the corneal epithelium of various vertebrate species by immunohistochemistry and by Western analysis. High levels of cytoplasmic p53 protein were normally found in normal corneal epithelium of various vertebrate species. Hence, these data may indicate that p53 may have a new evolutionary significant function in the eye.
Collapse
Affiliation(s)
- Yevgeny Tendler
- Department of Clinical Biochemistry, Rambam Medical Center, Haifa, Israel
| | | | | | | |
Collapse
|
46
|
Lombardo M, De Santo MP, Lombardo G, Barberi R, Serrao S. Atomic force microscopy analysis of normal and photoablated porcine corneas. J Biomech 2005; 39:2719-24. [PMID: 16209868 DOI: 10.1016/j.jbiomech.2005.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 08/18/2005] [Indexed: 11/26/2022]
Abstract
We showed the capabilities and accuracy of atomic force microscopy (AFM) techniques for imaging and analyzing the corneal epithelium and the photoablated corneal stroma. Eight normal porcine corneas, half of which were ablated using a scanning-spot excimer laser, were examined. All the corneas were imaged in balanced salt solution after fixation in glutaraldehyde. In the normal untreated corneas we observed the epithelial surface showing the typical polygonal cells and presenting numerous microprojections. The superficial epithelial cells were classified in three types as a result of the anterior-surface roughness measurements. AFM images of the photoablated corneal specimens showed undulations and granule-like features on the ablated stromal surface, specific to 193-nm ArF laser irradiation. Nevertheless, the quantitative analysis confirmed the precision of excimer laser surgery in removing sub-micrometric amounts of tissue. AFM showed to be a high-resolved imaging tool for the scanning of both native as well as photoablated corneal specimens. Also, this technique permits precise topographic analysis of the corneal plane, in the nanometric scale, of which smoothness is an important physical characteristic and necessary to achieve an optimal optical quality of the eye.
Collapse
Affiliation(s)
- Marco Lombardo
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Italy.
| | | | | | | | | |
Collapse
|
47
|
Kang GM, Ko MK. Morphological Characteristics and Intercellular Connections of Corneal Keratocytes. KOREAN JOURNAL OF OPHTHALMOLOGY 2005; 19:213-8. [PMID: 16209284 DOI: 10.3341/kjo.2005.19.3.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate the morphological characteristics of keratocytes and the interconnection of keratocytes with adjacent keratocytes using the flat preparation method and scanning electron microscopy with a frontal section of the human corneal stroma. METHODS The thin, corneal collagen lamellae were carefully dissected from the cornea (n=7), which had been stained by the flat preparation method. The remaining tissue was fixed in 3% glutaraldehyde and observed by transmission electron microscopy following the frontal section. RESULTS The flat preparation revealed the corneal fibroblasts between the lamellae of the collagen fibers and showed that the ramifying cellular processes of the keratocytes were in contact with the cytoplasmic processes or cell bodies of neighboring fibroblasts. Two types of discrete subpopulations of keratocytes were identified: a smaller, cellular type of keratocyte with spindle-shaped nucleus with heterochromatin, and a larger, cellular type with a large indented nucleus with relatively scanty cytoplasm. Collagen fibers ran parallel to each other toward the fenestration of the cytoplasmic wall of the keratocyte. CONCLUSIONS These flat preparation method results showed that the keratocytes within the corneal stroma are interconnected with the adjacent keratocytes, which indicates the presence of a functional communicating network through the keratocyte circuits within the stroma. A smaller, cellular type of keratocyte with spindle-shaped nucleus was morphologically differentiated from a larger, cellular type with a large, indented nucleus by flat preparation and transmission electron microscopy.
Collapse
Affiliation(s)
- Gu-Min Kang
- Department of Ophthalmology, College of Medicine, Hanyang University, Seoul, Korea
| | | |
Collapse
|
48
|
Kozák I, Trbolová A, Zibrín M, Komorová T, Kolodzyeiski L, Juhás T. Electron Microscopic Study of Anterior Lens Capsule Allotransplants in Chronic Corneal Ulcers. Cornea 2004; 23:797-803. [PMID: 15502481 DOI: 10.1097/01.ico.0000134195.71981.e2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE This study provides ultrastructural morphology and quantitative analysis of allotransplants of anterior lens capsule in the treatment of recurrent corneal ulcers. METHODS Mechanical ulcers of uniform size were created with a 6-mm corneal trephine in 9 eyes at one-third corneal depth in 6 white New Zealand male rabbits. Following initial epithelial regrowth, an identical injury was created in the same area of each cornea a second time. In 6 eyes (treated group), an anterior lens capsule from a healthy donor rabbit was sutured into the ulcer bed, followed by antibiotic/steroid drops 3 times daily for 1 week. The remaining 3 control eyes were allowed to heal without surgical intervention using the same antibiotic/steroid drops only. Slit-lamp examination, histopathology, and electron microscopic findings with hemidesmosome counts and size were recorded over a 3-month follow-up period. RESULTS The control injured group had discontinuous epithelial basement membrane with significant reduction in hemidesmosome count compared with noninjured controls (P<0.0001). The treated subgroup 7 days after surgery showed linear basement membrane with identifiable lamina lucida and densa and newly-formed hemidesmosomes, which were significantly more numerous than in the injured but nontreated group (P<0.0001). Numerous hemidesmosomes and firm adhesion of epithelium to underlying stroma were seen in this group with lens capsule allografts 3 months after surgery. The number and size of hemidesmosomes did not significantly differ between groups 7 days and 3 months after surgery. CONCLUSIONS On the ultrastructural level, anterior lens capsule allotransplants in mechanically induced corneal ulcer heal with continuously formed epithelial basement membrane and numerous hemidesmosomes. This enables significant reformation of hemidesmosomes that are identical in size to hemidesmosomes in healthy corneas and helps forming a stronger apposition for epithelial cells to underlying structures in eyes where epithelial basement membrane has been destroyed from chronic ulceration.
Collapse
Affiliation(s)
- Igor Kozák
- Department of Ophthalmology, P. J. Safárik University, Faculty of Medicine, Kosice, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
49
|
Brookes NH, Loh IP, Clover GM, Poole CA, Sherwin T. Involvement of corneal nerves in the progression of keratoconus. Exp Eye Res 2003; 77:515-24. [PMID: 12957150 DOI: 10.1016/s0014-4835(03)00148-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Keratoconus is a debilitating corneal thinning disease that principally develops in the second and third decades of life. Our group previously developed a novel approach to studying keratoconus, based on the observation that there is a gradient of damage across the keratoconic cone. We identified a number of cellular characteristics of keratoconus such as discrete incursions of fine cellular processes from the anterior keratocytes in association with localised indentation of the basal epithelium, and increased levels of the lysosomal enzymes Cathepsin B and G in aberrant keratocytes, located beneath compromised regions of Bowman's layer, but also deeper in the stroma. Enzyme activity by these cells seemed to be causing localised structural degradation of the anterior stroma, leading to near-complete destruction of both Bowman's layer and the stroma, often necessitating a full-thickness corneal graft for sight restoration. This current study extends our initial findings by investigating the role of corneal nerves passing between the stroma and epithelium at the sites of early degradative change observed previously, and may be facilitating the keratocyte-epithelial interactions in this disease. Cells in sections of normal and keratoconic human corneas were labelled with the fixable fluorescent viability dye 5-chloromethylfluorescein diacetate, antibodies to alpha-tubulin (nerves), alpha3beta1 integrin, Cathepsin B and G, and the nuclear dye DAPI, and then examined with a confocal microscope. Anterior keratocyte nuclei were seen wrapping around the nerves as they passed through the otherwise acellular Bowman's layer, and as the disease progressed and Bowman's layer degraded, these keratocytes were seen to express higher levels of Cathepsin B and G, and become displaced anteriorly into to the epithelium. Localised nerve thickenings also developed within the epithelium in association with Cathepsin B and G expression, and appeared to be very destructive to the cornea. Insight into the molecular mechanisms of keratoconic disease pathogenesis and progression can be gained from the process of extracellular matrix remodelling known from studies of connective tissues other than the cornea, and wound healing studies in the cornea. Further studies are required to determine how well this model fits the actual molecular basis of the pathogenesis of keratoconus.
Collapse
Affiliation(s)
- N H Brookes
- Department of Ophthalmology, Faculty of Medicine and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|