1
|
Reiner J, Berlin P, Wobar J, Schäffler H, Bannert K, Bastian M, Vollmar B, Jaster R, Lamprecht G, Witte M. Teduglutide Promotes Epithelial Tight Junction Pore Function in Murine Short Bowel Syndrome to Alleviate Intestinal Insufficiency. Dig Dis Sci 2020; 65:3521-3537. [PMID: 32072437 PMCID: PMC7661426 DOI: 10.1007/s10620-020-06140-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND In short bowel syndrome, epithelial surface loss results in impaired nutrient absorption and may lead to intestinal insufficiency or intestinal failure. Nucleotide oligomerization domain 2 (Nod2) dysfunction predisposes to the development of intestinal failure after intestinal resection and is associated with intestinal barrier defects. Epithelial barrier function is crucial for intestinal absorption and for intestinal adaptation in the short bowel situation. AIMS The aim of the study was to characterize the effects of the GLP-2 analogue Teduglutide in the small intestine in the presence and absence of Nod2 in a mouse model of short bowel syndrome. METHODS Mice underwent 40% ICR and were thereafter treated with Teduglutide versus vehicle injections. Survival, body weight, stool water, and sodium content and plasma aldosterone concentrations were determined. Intestinal and kidney tissue was examined with light and fluorescence microscopy, Ussing chamber studies and quantitative PCR in wild type and transgenic mice. RESULTS Teduglutide reduced intestinal failure incidence in Nod2 k.o. mice. In wt mice, Teduglutide attenuated intestinal insufficiency as indicated by reduced body weight loss and lower plasma aldosterone concentrations, lower stool water content, and lower stool sodium losses. Teduglutide treatment was associated with enhanced epithelial paracellular pore function and enhanced claudin-10 expression in tight junctions in the villus tips, where it colocalized with sodium-glucose cotransporter 1 (SGLT-1), which mediates Na-coupled glucose transport. CONCLUSIONS In the SBS situation, Teduglutide not only maximizes small intestinal mucosal hypertrophy but also partially restores small intestinal epithelial function through an altered distribution of claudin-10, facilitating sodium recirculation for Na-coupled glucose transport and water absorption.
Collapse
Affiliation(s)
- Johannes Reiner
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Peggy Berlin
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Jakob Wobar
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Holger Schäffler
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Karen Bannert
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Manuela Bastian
- Institute for Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany
| | - Robert Jaster
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Georg Lamprecht
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Maria Witte
- Department of General, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|
2
|
The Turning Point for Morphomechanical Remodeling During Complete Intestinal Obstruction in Rats Occurs After 12–24 h. Ann Biomed Eng 2018; 46:705-716. [DOI: 10.1007/s10439-018-1992-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
|
3
|
Słupecka M, Grzesiak P, Kwiatkowski J, Gajewska M, Kuwahara A, Kato I, Woliński J. The influence of enteral obestatin administration to suckling rats on intestinal contractility. Gen Comp Endocrinol 2017; 248:69-78. [PMID: 28212895 DOI: 10.1016/j.ygcen.2017.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 01/24/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022]
Abstract
This study investigated the effect of enteral administration of obestatin on the contractility of whole-thickness preparations of duodenum and middle jejunum, as well as on the morphology of the enteric nervous system (ENS). Suckling rats were assigned to 3 groups (n=12) treated with: C-saline solution; LO-obestatin (125nmol/kgb.wt); HO-obestatin (250nmol/kgb.wt). Saline solution or obestatin were administered twice daily, from the 14th to the 21st day of life. Sections were studied in an organ bath, for isometric recording in the presence of acetylocholine (ACh), atropine (ATR) and tetradotoxin (TTX). Thickness of intestinal muscularis layer, the number of interstitial cells of Cajal (ICC) were measured in the paraffin sections. The immunodetection of Muscarinic Acetylocholine Receptor 2 (M2 receptor) was performed in the intestinal segments. In both intestinal segments HO treatment decreased the amplitude of spontaneous contraction compared to that observed in the C group. In the middle jejunum, the LO treatment also decreased the amplitude. TTX and ATR had no effect on amplitude of spontaneous contraction in the jejunum of LO and HO-treated animals. Compared to the C group, duodenal sections from HO animals and middle jejunum sections from LO and HO groups displayed a lower amplitude in response to ACh and EFS evoked contraction. An increase in the thickness of the muscularis layer was observed in the duodenum of LO and HO groups whereas the number ICC did not change significantly after treatment with obestatin. Moreover, the enteral administration of obestatin did not effect significantly on the cytoplasmic expression of M2 receptor in the jejunum. Our study demonstrated that enteral administration of obestatin to suckling rats influences small intestine contractility in the segment specific manner.
Collapse
Affiliation(s)
- M Słupecka
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland.
| | - P Grzesiak
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - J Kwiatkowski
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - M Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - A Kuwahara
- Laboratory of Physiology, Institute for Environmental Sciences and Graduate School of Nutritional and Enviromental Science, University of Shizuoka, Japan
| | - I Kato
- Department of Medical Biochemistry, Kobe Pharmaceutical University, Japan
| | - J Woliński
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| |
Collapse
|
4
|
Sun D, Zhao J, Liao D, Chen P, Gregersen H. Shear Modulus of the Partially Obstructed Rat Small Intestine. Ann Biomed Eng 2016; 45:1069-1082. [DOI: 10.1007/s10439-016-1739-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/17/2016] [Indexed: 12/11/2022]
|
5
|
Park C, Lee MY, Park PJ, Ha SE, Berent RM, Fuchs R, Miano JM, Becker LS, Sanders KM, Ro S. Serum Response Factor Is Essential for Prenatal Gastrointestinal Smooth Muscle Development and Maintenance of Differentiated Phenotype. J Neurogastroenterol Motil 2015; 21:589-602. [PMID: 26424044 PMCID: PMC4622142 DOI: 10.5056/jnm15063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/20/2015] [Accepted: 07/12/2015] [Indexed: 12/28/2022] Open
Abstract
Background/Aims Smooth muscle cells (SMCs) characteristically express serum response factor (SRF), which regulates their development. The role of SRF in SMC plasticity in the pathophysiological conditions of gastrointestinal (GI) tract is less characterized. Methods We generated SMC-specific Srf knockout mice and characterized the prenatally lethal phenotype using ultrasound biomicroscopy and histological analysis. We used small bowel partial obstruction surgeries and primary cell culture using cell-specific enhanced green fluorescent protein (EGFP) mouse lines to study phenotypic and molecular changes of SMCs by immunofluorescence, Western blotting, and quantitative polymerase chain reaction. Finally we examined SRF change in human rectal prolapse tissue by immunofluorescence. Results Congenital SMC-specific Srf knockout mice died before birth and displayed severe GI and cardiac defects. Partial obstruction resulted in an overall increase in SRF protein expression. However, individual SMCs appeared to gradually lose SRF in the hypertrophic muscle. Cells expressing low levels of SRF also expressed low levels of platelet-derived growth factor receptor alpha (PDGFRαlow) and Ki67. SMCs grown in culture recaptured the phenotypic switch from differentiated SMCs to proliferative PDGFRαlow cells. The immediate and dramatic reduction of Srf and Myh11 mRNA expression confirmed the phenotypic change. Human rectal prolapse tissue also demonstrated significant loss of SRF expression. Conclusions SRF expression in SMCs is essential for prenatal development of the GI tract and heart. Following partial obstruction, SMCs down-regulate SRF to transition into proliferative PDGFRαlow cells that may represent a phenotype responsible for their plasticity. These findings demonstrate that SRF also plays a critical role in the remodeling process following GI injury.
Collapse
Affiliation(s)
- Chanjae Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Moon Young Lee
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA.,Department of Physiology, Wonkwang Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do, Korea
| | - Paul J Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Robyn M Berent
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Robert Fuchs
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Laren S Becker
- Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
6
|
Haraux E, Canarelli JP, Khorsi H, Delanaud S, Bach V, Gay-Quéheillard J. In vitro smooth muscle contractility before and after relief of experimental obstruction in the rat: application to the surgical management of ileal dilatation. J Pediatr Surg 2014; 49:399-404. [PMID: 24650465 DOI: 10.1016/j.jpedsurg.2013.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/25/2013] [Accepted: 07/20/2013] [Indexed: 11/30/2022]
Abstract
PURPOSE Bowel dilatation occurs proximal to an obstruction and predisposes to intestinal dysmotility. The present study sought to determine whether or not changes in smooth muscle contractility and the thickness of the proximal, dilated bowel wall can be reversed following relief of the obstruction. MATERIALS AND METHODS Three groups of seven male Wistar rats were studied. In 8-week-old animals in a control group and a sham-operated group, a small segment of bowel (designated as R1 for controls and R2 for shams) was resected 5.0 cm from the cecum. In the third (operated) group, a narrow, isoperistaltic intestinal loop was created proximal to an end-to-end anastomosis of the ileum in 4-week-old animals. When these animals were 6 weeks old, the loop was re-anastomosed to the distal small bowel (after resection of the loop's distal portion, referred to as R3). Two weeks later, a small segment of bowel was resected proximal to the anastomosis (R4). We evaluated the thickness of the smooth muscle layers and the in vitro contractile responses of circular smooth muscle ileal strips (R1-R4) to electrical stimulation and pharmacological stimulation (with KCl, acetylcholine (ACh), substance P, N(G)-nitro-l-arginine methyl ester (L-NAME) and histamine). RESULTS The amplitudes of contraction in response to electrical and Ach-mediated stimulation were higher for R3 than for R4 (P<0.001), R1 and R2 (both P<0.05). Compared with R1 and R2, the smooth muscle layer was three times as thick in R3 (P<0.001) and 2.5 times as thick in R4 (P<0.01). CONCLUSION Our study provides evidence of the possible recovery of intestinal motility (in response to neurotransmitters involved in gut function) after the relief of an obstruction. If ileal motility can conceivably return to normal values, conservative surgical procedures in pediatric patients should be preferred (in order to leave a sufficient length of bowel and avoid short bowel syndrome).
Collapse
Affiliation(s)
- Elodie Haraux
- Peritox Laboratory, EA4285-UMI 01, Jules Verne University of Picardie, 80000 Amiens, France; Paediatric Surgery Department, Amiens University Hospital, 80000 Amiens, France.
| | | | - Hafida Khorsi
- Peritox Laboratory, EA4285-UMI 01, Jules Verne University of Picardie, 80000 Amiens, France
| | - Stéphane Delanaud
- Peritox Laboratory, EA4285-UMI 01, Jules Verne University of Picardie, 80000 Amiens, France
| | - Véronique Bach
- Peritox Laboratory, EA4285-UMI 01, Jules Verne University of Picardie, 80000 Amiens, France
| | | |
Collapse
|
7
|
Kelly PA, Toolan D, Jahns H. Intestinal Adenocarcinoma in a Herd of Farmed Sika Deer (Cervus nippon). Vet Pathol 2014; 52:193-200. [DOI: 10.1177/0300985814521246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intestinal adenocarcinomas were identified in 76 adult deer from a closed herd of 193 breeding animals grazing pasture heavily infested with bracken fern ( Pteridium aquilinum). Tumors were observed postmortem in 32 animals with rapid weight loss, and similar neoplasms were detected in a further 44 clinically normal deer at “cull.” Tumors were located in distal ileum, cecum, and proximal colon and presented as single (26%) or multiple (74%), variably sized, pale-gray, firm, poorly circumscribed neoplasms with associated intestinal strictures. Histopathologically tumors were well-differentiated, locally infiltrative, low-grade adenocarcinomas of tubular (51%), mucinous (33.5%), or mixed (15.5%) types. Extraintestinal metastases were not observed. The high incidence of intestinal adenocarcinoma within this herd suggests a specific and novel syndrome, and genetic and/or environmental factors may be involved in the pathogenesis.
Collapse
Affiliation(s)
- P. A. Kelly
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - D. Toolan
- Department of Agriculture, Food, and the Marine, Regional Veterinary Laboratories, Kilkenny, Ireland
| | - H. Jahns
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Hansen CF, Bueter M, Theis N, Lutz T, Paulsen S, Dalbøge LS, Vrang N, Jelsing J. Hypertrophy dependent doubling of L-cells in Roux-en-Y gastric bypass operated rats. PLoS One 2013; 8:e65696. [PMID: 23776529 PMCID: PMC3679162 DOI: 10.1371/journal.pone.0065696] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/29/2013] [Indexed: 12/31/2022] Open
Abstract
Background and Aims Roux-en-Y gastric bypass (RYGB) leads to a rapid remission of type 2 diabetes mellitus (T2DM), but the underlying mode of action remains incompletely understood. L-cell derived gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are thought to play a central role in the anti-diabetic effects of RYGB; therefore, an improved understanding of intestinal endocrine L-cell adaptability is considered pivotal. Methods The full rostrocaudal extension of the gut was analyzed in rats after RYGB and in sham-operated controls ad libitum fed or food restricted to match the body weight of RYGB rats. Total number of L-cells, as well as regional numbers, densities and mucosa volumes were quantified using stereological methods. Preproglucagon and PYY mRNA transcripts were quantified by qPCR to reflect the total and relative hormone production capacity of the L-cells. Results RYGB surgery induced hypertrophy of the gut mucosa in the food exposed regions of the small intestine coupled with a doubling in the total number of L-cells. No changes in L-cell density were observed in any region regardless of surgery or food restriction. The total gene expression capacity of the entire gut revealed a near 200% increase in both PYY and preproglucagon mRNA levels in RYGB rats associated with both increased L-cell number as well as region-specific increased transcription per cell. Conclusions Collectively, these findings indicate that RYGB in rats is associated with gut hypertrophy, an increase in L-cell number, but not density, and increased PYY and preproglucagon gene expression. This could explain the enhanced gut hormone dynamics seen after RYGB.
Collapse
Affiliation(s)
- Carl Frederik Hansen
- Department of Histology, Gubra, Hørsholm, Denmark
- Department of Human Nutrition, University of Copenhagen, Frederiksberg, Denmark
| | - Marco Bueter
- Department of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
- Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Nadine Theis
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Thomas Lutz
- Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | | - Niels Vrang
- Department of Histology, Gubra, Hørsholm, Denmark
| | - Jacob Jelsing
- Department of Histology, Gubra, Hørsholm, Denmark
- * E-mail:
| |
Collapse
|
9
|
Hansen CF, Vrang N, Sangild PT, Jelsing J. Novel insight into the distribution of L-cells in the rat intestinal tract. Am J Transl Res 2013; 5:347-358. [PMID: 23634245 PMCID: PMC3633977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/30/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Gut secreted incretin hormones and gastric bypass surgery currently provides some of the most successful treatments for diabetes and obesity respectively. However, despite the evident importance of the gut endocrine system no information exists on the total number and distribution of different types of endocrine cells in the gut. Here we have used the established preclinical Zucker Diabetic Fatty (ZDF) rat model which displays elevated levels of GLP-1 to assess L-cell distribution and L-cell dynamics in the full rostro-caudal extension of the rat intestinal tract. METHODS Using mathematically unbiased stereology we provide total and regional estimates of gut volume, gut surface area and the total number of L-cells throughout the intestinal tract in obese ZDF rats and lean controls. RESULTS The total number of L-cells in the lean and obese ZDF gut is estimated to 4.8 and 10.9 million, respectively, coupled with a corresponding near doubling in total gut volume and total surface area. L-cell numbers were found to be distributed rather evenly throughout the jejunum, ileum and colon. CONCLUSION The present study provides the first stereological report of total L-cell number and L-cell distribution throughout the rat intestinal tract. In contrast to the currently held view, the majority of L-cells are actually located proximal to the traditionally defined ileum and colon.
Collapse
Affiliation(s)
- Carl Frederik Hansen
- Gubra ApsAgern Alle 1, 2970 Hørsholm
- Department of Human Nutrition, University of CopenhagenFrederiksberg,Denmark
| | | | - Per Torp Sangild
- Department of Human Nutrition, University of CopenhagenFrederiksberg,Denmark
| | | |
Collapse
|
10
|
Bertoni S, Saccani F, Gatti R, Rapalli A, Flammini L, Ballabeni V, Barocelli E. Accommodation and peristalsis are functional responses to obstruction in rat hypertrophic ileum. World J Gastroenterol 2013; 19:846-54. [PMID: 23430377 PMCID: PMC3574881 DOI: 10.3748/wjg.v19.i6.846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/13/2012] [Accepted: 09/22/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of chronic obstruction on enteric reflexes evoked by electrical stimulation (EFS) or intraluminal distension of the rat hypertrophic ileum.
METHODS: Motor responses to EFS and to intraluminal distension were studied in the absence and in the presence of various inhibitors of enteric mediators. Ileum segments from operated (chronic ileal obstruction), sham-operated (control) and normal rats were horizontally mounted, connected to a pressure transducer and intraluminally perfused. The effects of selective serotonin receptor (5-HTR) blockers were investigated on distension-induced responses. The cellular localization of 5-HT3Rs was also examined in control and hypertrophic tissues through confocal microscopy.
RESULTS: In non-obstructed segments, EFS elicited tetrodotoxin (TTX)-sensitive responses with high amplitude contraction followed by weak relaxation. In hypertrophic tissues, EFS lowered the baseline pressure and evoked TTX-sensitive contractions significantly larger than normal (P < 0.01) or control (P < 0.05), and devoid of any relaxation phase (P < 0.01 vs normal). Incubation with atropine and guanethidine [non-adrenergic non-cholinergic (NANC) conditions] did not modify intestinal tone in normal and control preparations, but reversed the accommodation produced by EFS in hypertrophic tissues, and depressed the amplitude of contractions in all types of tissues. L-NAME and α-chymotrypsin blocked residual NANC motility in all tissues and augmented intraluminal pressure in hypertrophic segments (P < 0.05 vs NANC conditions). Intraluminal distension of the intestinal wall evoked non-propulsive cycles of contractions and relaxations in non-obstructed tissues. In all hypertrophic segments, strong propulsive strokes, markedly wider (P < 0.001), and larger than normal (P < 0.001) or control (P < 0.05) were elicited. Both motor patterns were blocked under NANC conditions and with simultaneous incubation with L-NAME and α-chymotrypsin. In all types of tissues, incubation with ketanserin or GR125487 did not modify distension-induced motility. In contrast, blockade of 5-HT3Rs by ondansetron concentration-dependently inhibited motor responses in normal and control tissues, but only slightly impaired enteric reflexes in the hypertrophic preparations. Finally, confocal microscopy did not reveal a different cellular distribution of 5-HT3Rs in control and hypertrophic ileum.
CONCLUSION: Accommodation and distension-induced peristalsis of rat hypertrophic ileum are controlled by cholinergic and peptidergic transmission and are negligibly affected by 5-HT3Rs, which modulate distension-induced motility in non-obstructed tissues.
Collapse
|
11
|
Phasic and tonic smooth muscle function of the partially obstructed guinea pig intestine. J Biomed Biotechnol 2011; 2011:489720. [PMID: 22162636 PMCID: PMC3228609 DOI: 10.1155/2011/489720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/29/2011] [Indexed: 12/19/2022] Open
Abstract
This study was to generate phasic and tonic stress-strain curves for evaluation of smooth muscle function in the obstructed guinea pig jejunum. Partial and sham obstruction of the jejunum in guinea pigs was created surgically, with guinea pigs not being operated on served as normal controls. The animals survived 2, 4, 7, and 14 days, respectively. The jejunal segment was distended to 10 cm H2O. The pressure and outer diameter changes were recorded. Passive conditions were obtained by using papaverine. Total phasic, tonic, and passive circumferential stress and strain were computed from the diameter and pressure data with reference to the zero-stress-state geometry. The active phasic and tonic stresses were defined as the total phasic and tonic stress minus the passive stress. The thickness of intestinal muscle layers increased in a time-dependent manner after obstruction. The amplitude of passive, total phasic, total tonic, active phasic, and active tonic circumferential stresses increased as function of strain 7 days after obstruction. However, when normalized to muscle layer thickness, the amplitude of active stresses did not differ among the groups. In conclusion, the long-term-obstructed intestine exhibits increased total smooth muscle contraction force. However, the contraction force per smooth muscle unit did not increase.
Collapse
|
12
|
Zhao J, Liao D, Yang J, Gregersen H. Stress and strain analysis of contractions during ramp distension in partially obstructed guinea pig jejunal segments. J Biomech 2011; 44:2077-82. [PMID: 21632056 PMCID: PMC3150803 DOI: 10.1016/j.jbiomech.2011.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 04/15/2011] [Accepted: 05/11/2011] [Indexed: 12/21/2022]
Abstract
Previous studies have demonstrated morphological and biomechanical remodeling in the intestine proximal to an obstruction. The present study aimed to obtain stress and strain thresholds to initiate contraction and the maximal contraction stress and strain in partially obstructed guinea pig jejunal segments. Partial obstruction and sham operations were surgically created in mid-jejunum of male guinea pigs. The animals survived 2, 4, 7 and 14 days. Animals not being operated on served as normal controls. The segments were used for no-load state, zero-stress state and distension analyses. The segment was inflated to 10 cmH(2)O pressure in an organ bath containing 37°C Krebs solution and the outer diameter change was monitored. The stress and strain at the contraction threshold and at maximum contraction were computed from the diameter, pressure and the zero-stress state data. Young's modulus was determined at the contraction threshold. The muscle layer thickness in obstructed intestinal segments increased up to 300%. Compared with sham-obstructed and normal groups, the contraction stress threshold, the maximum contraction stress and the Young's modulus at the contraction threshold increased whereas the strain threshold and maximum contraction strain decreased after 7 days obstruction (P<0.05 and 0.01). In conclusion, in the partially obstructed intestinal segments, a larger distension force was needed to evoke contraction likely due to tissue remodeling. Higher contraction stresses were produced and the contraction deformation (strain) became smaller.
Collapse
Affiliation(s)
- Jingbo Zhao
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | | | | | | |
Collapse
|
13
|
Guo X, Liu DH, Huang X, Lu HL, Wu YS, Han YF, Xu WX. Phenotype alterations of interstitial cells of Cajal in mice with partial intestinal obstruction. Shijie Huaren Xiaohua Zazhi 2011; 19:1886-1891. [DOI: 10.11569/wcjd.v19.i18.1886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate changes in mechanic and electrical activities in intestinal smooth muscle and the phenotypes of interstitial cells of Cajal (ICC) in mice with partial intestinal obstruction.
METHODS: A mouse model of partial mechanical ileal obstruction was induced by surgery. The histochemical technique was used to investigate morphological changes in the distended intestinal regions of model mice 14 d after surgical induction. Mechanic and electric activities were recorded in normal and distended intestinal circular muscle using conventional physiological and intracellular recording techniques. The expression of c-kit, an ICC phenotype marker, was examined by fluorescent immunohistochemistry.
RESULTS: Fourteen days after surgical induction, there was an increase in intestinal diameter and hypertrophy of the tunica muscularis. Decreased frequency and altered rhythm of spontaneous contractions of intestinal smooth muscle were noted. The amplitude and frequency of slow waves and resting membrane potential decreased significantly. The expression of ICC was significantly down-regulated.
CONCLUSION: The changes in spontaneous rhythmic contractions and the slow waves are associated with the phenotype alterations of ICC in mice with partial intestinal obstruction.
Collapse
|
14
|
3d Mechanical properties of the partially obstructed guinea pig small intestine. J Biomech 2011; 43:2079-86. [PMID: 20435312 DOI: 10.1016/j.jbiomech.2010.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 04/09/2010] [Accepted: 04/09/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Partial obstruction of the small intestine results in severe hypertrophy of smooth muscle cells, dilatation and functional denervation. Hypertrophy of the small intestine is associated with alteration of the wall structure and the mechanical properties. The aims of this study were to determine three dimensional material properties of the obstructed small intestine in guinea pigs and to obtain the 3D stress-strain distributions in the small intestinal wall. METHODS Partial obstruction of mid-jejunum was created surgically in five guinea pigs that were euthanized 2 weeks after the surgery. Ten-cm-long segments proximal to the obstruction site were used for the stretch-inflation mechanical test using a tri-axial test machine. The outer diameter, longitudinal force and the luminal pressure during the test were recorded simultaneously. An anisotropic exponential pseudo-strain energy density function was used as the constitutive equation to fit the experimental loading curve and for computation of the stress-strain distribution. RESULTS The wall thickness and the wall area increased significantly in the obstructed jejunum (P<0.001). The pressure-outer radius curves in the obstructed segments were translated to the left of the normal segments, indicating wall stiffening after the obstruction. The circumferential stress and the longitudinal stress through the wall were higher in the obstructed segments (P<0.02). This was independent of whether the zero-stress state or the no-load states were used as the reference state. CONCLUSION The mechanical behaviour of the obstructed small intestine can be described using a 3D constitutive model. The obstruction-induced biomechanical properties change was characterized by higher circumferential and longitudinal stresses in the wall and altered material constants in the 3D constitutive model.
Collapse
|
15
|
Biomechanical remodelling of obstructed guinea pig jejunum. J Biomech 2010; 43:1322-9. [PMID: 20189575 DOI: 10.1016/j.jbiomech.2010.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/18/2009] [Accepted: 01/21/2010] [Indexed: 01/19/2023]
Abstract
Data on morphological and biomechanical remodelling are needed to understand the mechanisms behind intestinal obstruction. The effect of partial obstruction on mechanical properties with reference to the zero-stress state and on the histomorphological properties of the guinea pig small intestine was determined in this study. Partial obstruction and sham operation were surgically created in mid-jejunum of guinea pigs. The animals survived 2, 4, 7, and 14 days. The age-matched guinea pigs that were not operated served as normal controls. The segment proximal to the obstruction site was used for histological analysis, no-load state and zero-stress state data, and distension test. The segment for distension was immersed in an organ bath and inflated to 10cm H(2)O. The outer diameter change during the inflation was monitored using a microscope with CCD camera. Circumferential stresses and strains were computed from the diameter, pressure and the zero-stress state data. The opening angle and absolute value of residual strain decreased (P<0.01 and P<0.001) whereas the wall thickness, wall cross-sectional area, and the wall stiffness increased after 7 days obstruction (P<0.05, P<0.01). Histologically, the muscle and submucosa layers, especially the circumferential muscle layer increased in thickness after obstruction. The opening angle and residual strain mainly depended on the thickness of the muscle layer whereas the wall stiffness mainly depended on the thickness of the submucosa layer. In conclusion, the histomorphological and biomechanical properties of small intestine (referenced for the first time to the zero-stress state) remodel proximal to the obstruction site in a time-dependent manner.
Collapse
|
16
|
Sugár IP, Sealfon SC. Model of autocrine/paracrine signaling in epithelial layer: geometrical regulation of intercellular communication. J Phys Chem B 2009; 113:10946-56. [PMID: 19601596 DOI: 10.1021/jp903518x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An autocrine/paracrine signaling model in epithelial layers is described. The axially symmetric model of the epithelial layer explicitly considers the microvilli of the epithelial cells and the gaps between nearest neighbor microvilli. Ligand trapping site distribution functions and probability of autocrine signaling are calculated for different epithelial geometries and ligand sources by numerically solving the inhomogeneous stationary diffusion equation, the Poisson equation. In general, the global characteristics of the trapping site distribution curves are similar to the ones obtained for a planar epithelial model, and the superimposed small periodical changes of the curves reflect the details of the epithelial geometry. However, when ligands are emitted into a narrow gap between nearest neighbor microvilli the probability of local trapping is particularly high, causing a locally large deviation from the overall behavior of the trapping site distribution curves. If the microvilli of the cell are closely packed, then the probability of paracrine signaling is about 0.2. However, this probability jumps to about 0.5 if the cell is able to slightly loosen the tight packing, for example, by decreasing the diameter of the microvilli by only 2%. On the basis of our calculations, alteration of microvillus geometry represents a mechanism by which epithelial cells can efficiently regulate intercellular signaling.
Collapse
Affiliation(s)
- István P Sugár
- Department of Neurology and Center for Translational Systems Biology, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
17
|
Bertoni S, Ballabeni V, Flammini L, Gobbetti T, Impicciatore M, Barocelli E. Intestinal chronic obstruction affects motor responsiveness of rat hypertrophic longitudinal and circular muscles. Neurogastroenterol Motil 2008; 20:1234-42. [PMID: 18684211 DOI: 10.1111/j.1365-2982.2008.01174.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Extensive morphological and neurochemical changes have been experimentally and clinically documented in the hypertrophied intestine located orally to a chronic partial stenosis of the lumen. Functional studies revealed not only disruption of the interdigestive motor complex in vivo and decreased efficiency of contraction but also preservation of the peristaltic reflex in vitro. Given the critical role played in intestinal peristalsis by the coordinated activity of the longitudinal (LM) and circular muscle (CM), this work focuses on the motor responses of LM and CM isolated from rat hypertrophied ileum following mechanical obstruction. Maximal contractions to both receptor (acetylcholine and substance P) and non-receptor (K+) mediated stimuli were up to 10-fold increased in hypertrophic CM rings compared with control tissues, while a higher potency of substance P was revealed in both hypertrophied muscle layers. Relaxations to vasoactive intestinal polypeptide and 8-Br-cGMP were more intense on prostaglandin F(2alpha)-contracted hypertrophic LM strips compared with control tissues and a general tendency towards increased relaxation was shared also by hypertrophic CM basal tone. The present results collectively suggest that hypertrophic growth leads to hyperresponsiveness to contractile agents, particularly evident in the CM, and to increased sensitivity to relaxing mediators, especially exhibited by the LM. In this regard, the complementary role exerted by each muscle layer and the plasticity of the intestinal tissue could both come into play to preserve the intestinal functions in a changing environment.
Collapse
Affiliation(s)
- S Bertoni
- Department of Pharmacological, Biological and Applied Chemical Sciences, University of Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
18
|
A light and scanning electron microscope study of the albino rat ileum after partial obstruction. Ann Anat 2008; 190:531-40. [PMID: 19022638 DOI: 10.1016/j.aanat.2008.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/05/2008] [Accepted: 07/27/2008] [Indexed: 11/22/2022]
Abstract
PURPOSE Induction of an obstruction could be resorted to as a definitive line of management in some cases of short bowel syndrome (SBS). The goal of this study has been to elucidate histological and morphometric alterations in the albino rat ileum after surgically induced partial obstruction. METHODS AND MATERIALS Thirty adult male albino rats (240-250 g) were used in this investigation. They were divided into two equal groups: control and experimental. Small pieces of the ileum of the control and experimental animals were processed for histological and scanning electron microscope study. RESULTS The ileum of the experimental animals proximal to the site of obstruction showed an apparent enlargement in the Peyer's patches and an increase in the thickness of both the mucosa and muscle layers. The villi showed significant elongation and thickening. Both widening and deepening of the crypts were detected. There was an apparent increase in the goblet cell number and lymphocytic infiltration in both the corium and submucosa. In scanning electron microscopic examination, the microvilli showed scattered areas of shortening and irregular orientation. The surface was more frequently interrupted by goblet cell orifices. CONCLUSIONS Partial ileal obstruction resulted in hypertrophy of the ileal wall with considerable structural alterations oral to the obstruction site. Thus, the procedure apparently increased the absorptive surface area together with reduction in the speed of intestinal transit. These effects could support taking this technique into consideration as one of the suggested lines of treatment of some cases of SBS to eliminate the patient's need for parenteral nutrition and all of its associated complications.
Collapse
|
19
|
Chen J, Chen H, Sanders KM, Perrino BA. Regulation of SRF/CArG-dependent gene transcription during chronic partial obstruction of murine small intestine. Neurogastroenterol Motil 2008; 20:829-42. [PMID: 18557893 PMCID: PMC8320440 DOI: 10.1111/j.1365-2982.2008.01149.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Intestinal obstructions lead to a variety of motility disorders. Small intestine smooth muscles undergo dramatic phenotypic changes in response to obstruction, but the underlying molecular mechanisms are unknown. Using RT-PCR, ChIP, Re-ChIP, and Western blots, we examined the effect of small bowel mechanical obstruction on smooth muscle gene expression. Obstruction caused a transient hyperplasia, followed by a prolonged hypertrophic response of small intestine smooth muscle cells. Smooth muscle myosin heavy chain (MHC), alpha-actin, and gamma-actin expression decreased initially, and then increased as hypertrophy developed. Myocardin expression decreased initially and then increased, while kruppel-like factors (KLF)4 and KLF5 expression increased initially, and then decreased. Serum response factor (SRF) expression decreased initially, and then recovered to sham-operated levels as hypertrophy developed. SRF binding to smooth muscle MHC and alpha-actin promoters decreased initially, but then increased above sham-operated levels as hypertrophy developed. Elk-1 binding to smooth muscle myosin heavy chain and alpha-actin promoters increased initially, and then decreased to sham-operated levels as hypertrophy developed. c-fos expression increased initially, which was associated with increased SRF/Elk-1 binding to the c-fos promoter. The Elk-1 phosphorylation inhibitor U-0126 inhibited the increase in c-fos expression. These findings indicate a dynamic response of small intestine smooth muscles to bowel obstruction involving switching between differentiated, proliferative, and hypertrophic phenotypes. These results suggest that changes in the expression and interactions between SRF, myocardin, Elk-1, and c-fos play key roles in the phenotypic switching of small intestine smooth muscles in response to mechanical obstruction.
Collapse
Affiliation(s)
- J Chen
- Department of Physiology and Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
20
|
Storkholm JH, Zhao J, Villadsen GE, Gregersen H. Spontaneous and bolus-induced motility in the chronically obstructed guinea-pig small intestine in vitro. Dig Dis Sci 2008; 53:413-20. [PMID: 17562174 DOI: 10.1007/s10620-007-9865-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 05/01/2007] [Indexed: 12/23/2022]
Abstract
Partial obstruction of the small intestine results in dysmotility and morphometric changes proximal to the site of obstruction. However, our understanding of the relation between the morphometric remodeling and change in the motility pattern during chronic obstruction is sparse. The aim of this study was to investigate the effect of partial chronic intestinal obstruction on motility, morphology, and collagen content proximal and distal to the site of obstruction. Twenty guinea-pigs with partial intestinal obstruction and eight sham-operated controls lived for four weeks. Spontaneous and bolus-induced motility was recorded in isolated intestinal segments proximal and distal to the site of obstruction using a perfused low-compliance pressure-measuring system in vitro. After the motility experiments, the specimens were fixed at 2 kPa luminal distension pressure and sampled for histomorphometric determination of luminal radius, layer thickness, and wall thickness. Total wall collagen was also determined. The area under the curve (AUC) of spontaneous contractions and the amplitude, frequency, and AUC for the bolus-induced motility were higher in the proximal segments of the banded animals compared to distal segments and to the intestinal segments in the control animals (P < 0.05). The radius-to-thickness ratio was lowest in the proximal segments of the obstructed animals (P < 0.01). The collagen content was three times higher proximal to the site of obstruction when compared to distal locations and to the controls (P < 0.01). The AUC at 2 ml bolus injections plotted against the radius-to-thickness ratio showed a strong association (r = 0.97 for control, and r = 0.99 for obstruction, P < 0.01). No correlation was found between the collagen content and AUC. In conclusion, partial intestinal obstruction in guinea pigs caused pronounced changes in morphology and motility. An association was found between the radius-to-thickness ratio and bolus-induced motility.
Collapse
Affiliation(s)
- Jan Henrik Storkholm
- Center of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, DK-9100 Aalborg, Denmark
| | | | | | | |
Collapse
|
21
|
Storkholm JH, Zhao J, Villadsen GE, Hager H, Jensen SL, Gregersen H. Biomechanical remodeling of the chronically obstructed Guinea pig small intestine. Dig Dis Sci 2007; 52:336-46. [PMID: 17219069 DOI: 10.1007/s10620-006-9431-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/05/2006] [Indexed: 01/29/2023]
Abstract
Small intestinal obstruction is a frequently encountered clinical problem. To understand the mechanisms behind obstruction and the clinical consequences, data are needed on the relation between the morphologic and biomechanical remodeling that takes place in the intestinal wall during chronic obstruction. We sought to determine the effect of partial obstruction on mechanical and morphologic properties of the guinea pig small intestine. Partial obstruction was created surgically in 2 groups of animals living for 2 and 4 weeks. Controls were sham operated and lived for 4 weeks. A combined impedance planimetry-high-frequency ultrasound system was designed to measure the luminal cross-sectional area and wall thickness. These measures were used to compute the circumferential stress and strain of the excised intestinal segments. The incremental elastic modulus was obtained by using nonlinear fitting of the stress-strain curve. Histologic analysis and the measurements of total wall collagen were also performed. The luminal cross-sectional area, wall thickness, and elastic modulus in circumferential direction increased in a time-dependent manner proximal to the obstruction site (P < 0.01), whereas no differences in these parameters were found distal to the obstruction site (P > 0.25). The circumferential stress-strain curves of the proximal segments in 2- and 4-week groups shifted to the left, indicating the intestinal wall became stiffer. Histologic examination revealed a massive increase in the thickness of the muscle layer especially the circular smooth muscle layer (P < 0.05). The collagen content proximal to the obstruction site was significantly larger in the partially obstructed animals compared to controls (P < 0.05). No difference was found distal to the obstruction site. Strong correlation was found between the collagen content and the elastic modulus at stress levels of 70 kPa stress (P < 0.01) and 10 kPa (P < 0.05) proximal to the obstruction site suggesting that the alteration of collagen has great impact on the mechanical remodeling. The morphologic and biomechanical remodeling likely influence the function of the intestine affected by partial obstructed intestine.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena
- Chronic Disease
- Collagen/metabolism
- Disease Models, Animal
- Elasticity
- Electric Impedance
- Gastrointestinal Motility
- Guinea Pigs
- Intestinal Obstruction/metabolism
- Intestinal Obstruction/pathology
- Intestinal Obstruction/physiopathology
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Intestine, Small/physiopathology
- Intestine, Small/surgery
- Male
- Models, Biological
- Muscle, Smooth/metabolism
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Muscle, Smooth/surgery
- Nonlinear Dynamics
- Peristalsis
- Pressure
- Random Allocation
- Stress, Mechanical
- Tensile Strength
- Time Factors
- Ultrasonics
Collapse
|
22
|
Bertoni S, Gabella G, Ballabeni V, Ghirardi A, Impicciatore M, Barocelli E. Plasticity of rat small intestine after removal of a chronic mechanical obstruction. Neurogastroenterol Motil 2006; 18:862-72. [PMID: 16918766 DOI: 10.1111/j.1365-2982.2006.00818.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic intestinal obstruction is associated with morphological changes and functional disorders clinically reported and experimentally documented in laboratory animals. In contrast, little is known about the properties of the hypertrophied intestine after removal of the obstruction. In the present study, we removed the ileal obstruction previously applied to the ileum of rats and, after 1 or 2 weeks, studied in vitro the motor responses of de-obstructed segments of intestine to pharmacological or electrical field stimulation (EFS). By 2 weeks after de-obstruction, maximal contractile responses to receptor (acetylcholine) and non-receptor (K(+)) mediated stimuli were comparable in operated and control tissues; furthermore, the loss of sensitivity to nitric oxide (NO) unmasked in obstructed tissues was, after de-obstruction, replaced by supersensitivity to exogenous NO and vasoactive intestinal polypeptide, probably acting through cyclic nucleotide-independent pathways. Despite the complete recovery of smooth muscle responses, neurogenic contractions remained impaired in de-obstructed tissue; however, the equal contribution of cholinergic/peptidergic components to EFS responses could represent a sign of gradual but delayed recovery of enteric neurotransmission.
Collapse
Affiliation(s)
- S Bertoni
- Department of Pharmacological, Biological and Applied Chemical Sciences, University of Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Chaudhury A, Shariff A, Srinivas M, Sabherwal U. Changes in nitrergic innervation of defunctionalized rat colon after diversion colostomy. Neurogastroenterol Motil 2004; 16:475-87. [PMID: 15306003 DOI: 10.1111/j.1365-2982.2004.00565.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
After 45 days of complete diversion colostomy in male Wistar rats, morphometry of soma and nuclei of NADPH diaphorase positive cells of the myenteric plexus was evaluated. There was a significant (P < 0.0001) diminution in the area, perimeter and volume-weighted mean volume of soma and nuclei of nitrergic myenteric neurones in the defunctionalized colon. In addition, there was a significant reduction in the neuronal density of the myenteric neurones, and increased distance between the ganglia. In addition, there was myenteric glial atrophy. Atrophy of colonic myenteric neurones was accompanied by significant reduction (P < 0.001) in the volume fraction of the muscularis externa, the prime targets of these neurones. The disturbances in the microecology of the colon may jeopardize the finely orchestrated functioning of the components of the Enteric nervous system (ENS) leading to colonic dysfunction. Our observations, by extrapolation, may explain the bowel dysmotility in humans after restoration of colonic continuity after colostomy.
Collapse
Affiliation(s)
- A Chaudhury
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110-029, India
| | | | | | | |
Collapse
|
24
|
Bertoni S, Gabella G, Ghizzardi P, Ballabeni V, Impicciatore M, Lagrasta C, Arcari ML, Barocelli E. Motor responses of rat hypertrophic intestine following chronic obstruction. Neurogastroenterol Motil 2004; 16:365-74. [PMID: 15198659 DOI: 10.1111/j.1365-2982.2004.00510.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present work aims at investigating the changes in motor responsiveness of rat intestine hypertrophied by chronic mechanical obstruction. Motor responses to pharmacological agents and electrical field stimulation (EFS) were studied in hypertrophic ileal segments excised from rats subjected to experimental stenosis (n = 20) and compared with responses of control tissues from sham-operated animals (n = 20). Spontaneous motility and contractile responses to exogenous agents (KCl, acetylcholine and substance P) and EFS (10-s trains every minute, 120 mA, 0.5 ms, 1-10 Hz) were increased in hypertrophic longitudinal segments; however, normalization of motor responses to tissue wet weight revealed a remarkable reduction of contractile efficiency in hypertrophied tissues coupled with a loss of sensitivity to nitric oxide-mediated relaxation. Furthermore, EFS under non-adrenergic non-cholinergic (NANC) conditions unveiled a major role of the cholinergic component over the peptidergic one in the neurogenic contraction of hypertrophic intestine. On the whole, hypertrophic intestinal growth emerges as a dynamic process entailing adaptation of smooth muscle and neuronal structures to the increased functional load imposed by lumen obstruction.
Collapse
Affiliation(s)
- S Bertoni
- Department of Pharmacological, Biological and Applied Chemical Sciences, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|