1
|
Álvarez C, Jiménez-Ríos L, Iniesta-Pallarés M, Jurado-Flores A, Molina-Heredia FP, Ng CKY, Mariscal V. Symbiosis between cyanobacteria and plants: from molecular studies to agronomic applications. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6145-6157. [PMID: 37422707 PMCID: PMC10575698 DOI: 10.1093/jxb/erad261] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Nitrogen-fixing cyanobacteria from the order Nostocales are able to establish symbiotic relationships with diverse plant species. They are promiscuous symbionts, as the same strain of cyanobacterium is able to form symbiotic biological nitrogen-fixing relationships with different plants species. This review will focus on the different types of cyanobacterial-plant associations, both endophytic and epiphytic, and provide insights from a structural viewpoint, as well as our current understanding of the mechanisms involved in the symbiotic crosstalk. In all these symbioses, the benefit for the plant is clear; it obtains from the cyanobacterium fixed nitrogen and other bioactive compounds, such as phytohormones, polysaccharides, siderophores, or vitamins, leading to enhanced plant growth and productivity. Additionally, there is increasing use of different cyanobacterial species as bio-inoculants for biological nitrogen fixation to improve soil fertility and crop production, thus providing an eco-friendly, alternative, and sustainable approach to reduce the over-reliance on synthetic chemical fertilizers.
Collapse
Affiliation(s)
- Consolación Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Lucía Jiménez-Ríos
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Macarena Iniesta-Pallarés
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Fernando P Molina-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Carl K Y Ng
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Centre for Plant Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
2
|
Tsavkelova EA, Glukhareva ID, Volynchikova EA, Egorova MA, Leontieva MR, Malakhova DV, Kolomeitseva GL, Netrusov AI. Cyanobacterial Root Associations of Leafless Epiphytic Orchids. Microorganisms 2022; 10:microorganisms10051006. [PMID: 35630449 PMCID: PMC9144888 DOI: 10.3390/microorganisms10051006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/07/2022] Open
Abstract
The leafless orchids are rare epiphytic plants with extremely reduced leaves, and their aerial roots adopted for photosynthesis. The beneficial plant–microbial interactions contribute significantly to host nutrition, fitness, and growth. However, there are no data available on the bacterial associations, inhabiting leafless orchids. Here, we describe the diversity of cyanobacteria, which colonize the roots of greenhouse Microcoelia moreauae and Chiloschista parishii. The biodiversity and structure of the cyanobacterial community were analyzed using a complex approach, comprising traditional cultivable techniques, denaturing gradient gel electrophoresis (DGGE), and phylogenetic analysis, as well as the light and scanning electron microscopy (SEM). A wide diversity of associated bacteria colonize the root surface, forming massive biofilms on the aerial roots. The dominant populations of filamentous nitrogen-fixing cyanobacteria belonged to the orders Oscillatoriales, Synechococcales, and Nostocales. The composition of the cyanobacterial community varied, depending on the nitrogen supply. Two major groups prevailed under nitrogen-limiting conditions, belonging to Leptolyngbya sp. and Komarekiella sp. The latter was characterized by DGGE profiling and sequencing, as well as by its distinctive features of morphological plasticity. The leading role of these phototrophophic and diazotrophic cyanobacteria is discussed in terms of the epiphytic lifestyle of the leafless orchids.
Collapse
Affiliation(s)
- Elena A. Tsavkelova
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
- Correspondence: ; Tel.: +7-(495)-939-4545
| | - Irina D. Glukhareva
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Elena A. Volynchikova
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Maria A. Egorova
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Maria R. Leontieva
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Dina V. Malakhova
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Galina L. Kolomeitseva
- The Stock Greenhouse, N.V. Tsitsin Main Botanical Garden RAS, Botanicheskaya Street 4, 127276 Moscow, Russia;
| | - Alexander I. Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| |
Collapse
|
3
|
Zanganeh F, Heidari A, Sepehr A, Rohani A. Bioaugmentation and bioaugmentation-assisted phytoremediation of heavy metal contaminated soil by a synergistic effect of cyanobacteria inoculation, biochar, and purslane (Portulaca oleracea L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6040-6059. [PMID: 34432211 DOI: 10.1007/s11356-021-16061-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
In recent decades, soil contamination with heavy metals has become an environmental crisis due to their long-term stability and adverse biological effects. Therefore, bioremediation is an eco-friendly technology to remediate contaminated soil, which the efficiency requires further research. This study was designed to comparatively investigate two strategies: bioaugmentation by using a cyanobacterial species (Oscillatoria sp.) and bioaugmentation-assisted phytoremediation by using Oscillatoria sp. and purslane (Portulaca oleracea L.) for the bioremediation of soil contaminated by heavy metals (Cr (III), Cr (VI), Fe, Al, and Zn). Various quantities of biochar (0.5, 2, and 5% (w/w)) were used as an amendment in the experiments to facilitate the remediation process. The results of the bioaugmentation test showed that applying biochar and cyanobacteria into contaminated soil significantly increased the chlorophyll a, nitrogen, and organic carbon contents. In contrast, the extractable fractions of Cr (III), Cr (VI), Zn, Al, and Fe declined compared with those of the control treatment. The highest reduction content (up to 87 %) in the extractable portion was obtained for Cr (VI). The development of longer root and hypocotyl lengths and vigour index from lettuces and radish seeds grown in the remediated soil confirmed the success of remediation treatments. Moreover, the findings of the bioaugmentation-assisted phytoremediation test displayed a reduction in the bioavailable fraction of Cr (III), Cr (VI), Zn, Al, and Fe. Cr (III) presented the highest reduction (up to 90 %) in metal bioavailability. With cyanobacteria inoculation and biochar addition, the shoot and root lengths of purslane grew 4.6 and 3-fold while the heavy metal accumulation decreased significantly. Besides, these treatments enhanced the tolerance index (TI) quantities of purslane whereas diminished its bioaccumulation coefficient (BAC) and bioconcentration factor (BCF) values. For all heavy metals (except Zn), translocation factor (TF) and BAC values were found to be less than 1.0 at all treatments, indicating the successful phytoextraction by the purslane. These results suggest that the purslane can be considered an excellent phytoextracting agent for soils contaminated with heavy metals.
Collapse
Affiliation(s)
- Fahimeh Zanganeh
- Department of Environmental Science, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ava Heidari
- Department of Environmental Science, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Adel Sepehr
- Department of Desert and Arid Zones Management, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Rohani
- Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102200] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Lee SM, Ryu CM. Algae as New Kids in the Beneficial Plant Microbiome. FRONTIERS IN PLANT SCIENCE 2021; 12:599742. [PMID: 33613596 PMCID: PMC7889962 DOI: 10.3389/fpls.2021.599742] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/13/2021] [Indexed: 05/08/2023]
Abstract
Previously, algae were recognized as small prokaryotic and eukaryotic organisms found only in aquatic habitats. However, according to a recent paradigm shift, algae are considered ubiquitous organisms, occurring in plant tissues as well as in soil. Accumulating evidence suggests that algae represent a member of the plant microbiome. New results indicate that plants respond to algae and activate related downstream signaling pathways. Application of algae has beneficial effects on plant health, such as plant growth promotion and disease control. Although accumulating evidence suggests that secreted compounds and cell wall components of algae induce physiological and structural changes in plants that protect against biotic and abiotic stresses, knowledge of the underlying mechanisms and algal determinants is limited. In this review, we discuss recent studies on this topic, and highlight the bioprotectant and biostimulant roles of algae as a new member of the plant beneficial microbiome for crop improvement.
Collapse
Affiliation(s)
- Sang-Moo Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
6
|
Vinoth M, Sivasankari S, Ahamed AKK, Al-Arjani ABF, Abd_Allah EF, Baskar K. Biological soil crust (BSC) is an effective biofertilizer on Vigna mungo (L.). Saudi J Biol Sci 2020; 27:2325-2332. [PMID: 32884414 PMCID: PMC7451670 DOI: 10.1016/j.sjbs.2020.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 11/03/2022] Open
Abstract
Biological soil crusts (BSC) (Cyanobacteria) play an important role in the soil nitrogen fixation and soil stabilization. However, limited researches were carried out about the diversity and distribution of Bio crust in sacred forests. The study aims to identify the distribution of cyanobacteria in biological soil crusts from different sacred groves of Ariyalur and Pudukottai, Tamil Nadu. We identified following microbes of Microcoleus, Scytonema, Anabaena and Nostoc in biological soil crust. A surface experiment was conducted for the efficacy of biological soil crusts on crops seedling growths. The efficacy was assessed by measuring the root & shoot length, dry & fresh weight of the plant, total chlorophyll, protein & carbohydrate content, with reducing sugar. The plant growth was higher in biocrust inoculated pot than the control. In corresponding nitrogenase activity was determined by the acetylene reduction assay, and phytohormones documentation was executed by the high-performance liquid chromatography. The results indicating that the biological soil crusts are the promising factors influencing the plant growth by plant growth-stimulating auxins and nitrogenase activity.
Collapse
Affiliation(s)
- Mani Vinoth
- PG and Research Department of Botany, Jamal Mohamed College, Affiliated to Bharathidasan University, Tiruchirappalli 620020, Tamil Nadu, India
| | - Sivaprakasam Sivasankari
- Department of Biology, Gandhigram Rural Institute- DU, Gandhigram, Dindigul 624302, Tamil Nadu, India
| | - Abdul Kareem Khaleel Ahamed
- PG and Research Department of Botany, Jamal Mohamed College, Affiliated to Bharathidasan University, Tiruchirappalli 620020, Tamil Nadu, India
| | - Al-Bandari Fahad Al-Arjani
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Kathirvelu Baskar
- Department of Ecotoxicology, Ross Lifescience Pvt., Ltd., Pune, Maharastra 411026, India
| |
Collapse
|
7
|
Álvarez C, Navarro JA, Molina-Heredia FP, Mariscal V. Endophytic Colonization of Rice ( Oryza sativa L.) by the Symbiotic Strain Nostoc punctiforme PCC 73102. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1040-1045. [PMID: 32314946 DOI: 10.1094/mpmi-01-20-0015-sc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cyanobacteria are phototrophic microorganisms able to establish nitrogen-fixing symbiotic associations with representatives of all four of the major phylogenetic divisions of terrestrial plants. Despite increasing knowledge on the beneficial effects of cyanobacteria in rice fields, the information about the interaction between these microorganisms and rice at the molecular and structural levels is still limited. We have used the model nitrogen-fixing cyanobacterium Nostoc punctiforme to promote a long-term stable endophytic association with rice. Inoculation with this strain of hydroponic cultures of rice produces a fast adherence of the cyanobacterium to rice roots. At longer times, cyanobacterial growth in the proximity of the roots increased until reaching a plateau. This latter phase coincides with the intracellular colonization of the root epidermis and exodermis. Structural analysis of the roots revealed that the cyanobacterium use an apoplastic route to colonize the plant cells. Moreover, plant roots inoculated with N. punctiforme show both the presence of heterocysts and nitrogenase activity, resulting in the promotion of plant growth under nitrogen deficiency, thus providing benefits for the plant.
Collapse
Affiliation(s)
- Consolación Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, cicCartuja, Avda. Américo Vespucio 49, 41092 Seville, Spain
| | - José A Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, cicCartuja, Avda. Américo Vespucio 49, 41092 Seville, Spain
| | - Fernando P Molina-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, cicCartuja, Avda. Américo Vespucio 49, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Seville, Spain
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, cicCartuja, Avda. Américo Vespucio 49, 41092 Seville, Spain
| |
Collapse
|
8
|
Tkacz A, Pini F, Turner TR, Bestion E, Simmonds J, Howell P, Greenland A, Cheema J, Emms DM, Uauy C, Poole PS. Agricultural Selection of Wheat Has Been Shaped by Plant-Microbe Interactions. Front Microbiol 2020; 11:132. [PMID: 32117153 PMCID: PMC7015950 DOI: 10.3389/fmicb.2020.00132] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
The influence of wheat (modern wheat, both bread and pasta, their wild ancestors and synthetic hybrids) on the microbiota of their roots and surrounding soil is characterized. We isolated lines of bread wheat by hybridizing diploid (Aegilops tauschii) with tetraploid Triticum durum and crossed it with a modern cultivar of Triticum aestivum. The newly created, synthetic hybrid wheat, which recapitulate the breeding history of wheat through artificial selection, is found to support a microbiome enriched in beneficial Glomeromycetes fungi, but also in, potentially detrimental, Nematoda. We hypothesize that during wheat domestication this plant-microbe interaction diminished, suggesting an evolutionary tradeoff; sacrificing advantageous nutrient acquisition through fungal interactions to minimize interaction with pathogenic fungi. Increased plant selection for Glomeromycetes and Nematoda is correlated with the D genome derived from A. tauschii. Despite differences in their soil microbiota communities, overall wheat plants consistently show a low ratio of eukaryotes to prokaryotes. We propose that this is a mechanism for protection against soil-borne fungal disease and appears to be deeply rooted in the wheat genome. We suggest that the influence of plants on the composition of their associated microbiota is an integral factor, hitherto overlooked, but intrinsic to selection during wheat domestication.
Collapse
Affiliation(s)
- Andrzej Tkacz
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Francesco Pini
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Thomas R Turner
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Eloïne Bestion
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Phil Howell
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Andy Greenland
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Jitender Cheema
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Emms
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
9
|
Rai S, Rai R, Singh PK, Rai LC. Alr2321, a multiple stress inducible glyoxalase I of Anabaena sp. PCC7120 detoxifies methylglyoxal and reactive species oxygen. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105238. [PMID: 31301544 DOI: 10.1016/j.aquatox.2019.105238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Abiotic stresses enhance the cellular level of reactive oxygen species (ROS) which consequently leads to toxic methylglyoxal (MG) production. Glyoxalases (GlyI & GlyII) catalyze the conversion of toxic MG into non-toxic lactic acid but their properties and functions have been overlooked in cyanobacteria. This is the first attempt to conduct a genome-wide analysis of GlyI protein (PF00903) from Anabaena sp. PCC7120. Out of total nine GlyI domain possessing proteins, only three (Alr2321, Alr4469, All1022) harbour conserve His/Glu/His/Glu metal binding site at their homologous position and are deficient in conserved region specific for Zn2+ dependent members. Their biochemical, structural and functional characterization revealed that only Alr2321 is a homodimeric Ni2+ dependent active GlyI with catalytic efficiency 11.7 × 106 M-1 s-1. It has also been found that Alr2321 is activated by various divalent metal ions and has maximum GlyI activity with Ni2+ followed by Co2+ > Mn2+ > Cu2+ and no activity with Zn2+. Moreover, the expression of alr2321 was found to be maximally up-regulated under heat (19 fold) followed by cadmium, desiccation, arsenic, salinity and UV-B stresses. BL21/pGEX-5X2-alr2321 showed improved growth under various abiotic stresses as compared to BL21/pGEX-5X2 by increased scavenging of intracellular MG and ROS levels. Taken together, these results suggest noteworthy links between intracellular MG and ROS, its detoxification by Alr2321, a member of GlyI family of Anabaena sp. PCC7120, in relation to abiotic stress.
Collapse
Affiliation(s)
- Shweta Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ruchi Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prashant Kumar Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - L C Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
10
|
Molecular and biochemical characterization of All0580 as a methylglyoxal detoxifying glyoxalase II of Anabaena sp. PCC7120 that confers abiotic stress tolerance in E. coli. Int J Biol Macromol 2019; 124:981-993. [DOI: 10.1016/j.ijbiomac.2018.11.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 12/13/2022]
|
11
|
Suárez-Moo PDJ, Vovides AP, Griffith MP, Barona-Gómez F, Cibrián-Jaramillo A. Unlocking a high bacterial diversity in the coralloid root microbiome from the cycad genus Dioon. PLoS One 2019; 14:e0211271. [PMID: 30726265 PMCID: PMC6364921 DOI: 10.1371/journal.pone.0211271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Cycads are among the few plants that have developed specialized roots to host nitrogen-fixing bacteria. We describe the bacterial diversity of the coralloid roots from seven Dioon species and their surrounding rhizosphere and soil. Using 16S rRNA gene amplicon sequencing, we found that all coralloid roots are inhabited by a broad diversity of bacterial groups, including cyanobacteria and Rhizobiales among the most abundant groups. The diversity and composition of the endophytes are similar in the six Mexican species of Dioon that we evaluated, suggesting a recent divergence of Dioon populations and/or similar plant-driven restrictions in maintaining the coralloid root microbiome. Botanical garden samples and natural populations have a similar taxonomic composition, although the beta diversity differed between these populations. The rhizosphere surrounding the coralloid root serves as a reservoir and source of mostly diazotroph and plant growth-promoting groups that colonize the coralloid endosphere. In the case of cyanobacteria, the endosphere is enriched with Nostoc spp and Calothrix spp that are closely related to previously reported symbiont genera in cycads and other early divergent plants. The data reported here provide an in-depth taxonomic characterization of the bacterial community associated with coralloid root microbiome. The functional aspects of the endophytes, their biological interactions, and their evolutionary history are the next research step in this recently discovered diversity within the cycad coralloid root microbiome.
Collapse
Affiliation(s)
- Pablo de Jesús Suárez-Moo
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Andrew P. Vovides
- Instituto de Ecología, A.C., Red de Ecología Evolutiva, Xalapa, Veracruz, Mexico
| | - M. Patrick Griffith
- Montgomery Botanical Center, Coral Gables, Miami, Florida, United States of America
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Angélica Cibrián-Jaramillo
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| |
Collapse
|
12
|
Renuka N, Guldhe A, Prasanna R, Singh P, Bux F. Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv 2018; 36:1255-1273. [DOI: 10.1016/j.biotechadv.2018.04.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/09/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
|
13
|
Hussain A, Shah ST, Rahman H, Irshad M, Iqbal A. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. FRONTIERS IN PLANT SCIENCE 2015; 6:46. [PMID: 25699072 PMCID: PMC4318279 DOI: 10.3389/fpls.2015.00046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/16/2015] [Indexed: 05/18/2023]
Abstract
Nostoc is widely known for its ability to fix atmospheric nitrogen and the establishment of symbiotic relationship with a wide range of plants from various taxonomic groups. Several strains of Nostoc produce phytohormones that promote growth of its plant partners. Nostoc OS-1 was therefore selected for study because of the presence of putative ipdC gene that encodes a key enzyme to produce Indole-3-acetic acid (IAA). The results indicated that both cellular and released IAA was found high with increasing incubation time and reached to a peak value (i.e., 21 pmol mg(-1)ch-a) on the third week as determined by UPLC-ESI-MS/MS. Also the Nostoc OS-1 strain efficiently colonized the roots and promoted the growth of rice as well as wheat under axenic conditions and induced ipdC gene that suggested the possible involvement of IAA in these phenotypes. To confirm the impact of IAA on root colonization efficiency and plant promoting phenotypes of Nostoc OS-1, an ipdC knockout mutant was generated by homologous recombinant method. The amount of releasing IAA, in vitro growth, root colonization, and plant promoting efficiency of the ipdC knockout mutant was observed significantly lower than wild type strain under axenic conditions. Importantly, these phenotypes were restored to wild-type levels when the ipdC knockout mutant was complemented with wild type ipdC gene. These results together suggested that ipdC and/or synthesized IAA of Nostoc OS-1 is required for its efficient root colonization and plant promoting activity.
Collapse
Affiliation(s)
- Anwar Hussain
- Department of Botany, University College of Science Shankar Campus, Abdul Wali Khan University Mardan, MardanPakistan
| | - Syed T. Shah
- Nuclear Institute for Food and Agriculture, Tarnab PeshawarPakistan
| | - Hazir Rahman
- Department of Microbiology, Kohat University of Science and Technology, KohatPakistan
| | - Muhammad Irshad
- Department of Botany, University College of Science Shankar Campus, Abdul Wali Khan University Mardan, MardanPakistan
| | - Amjad Iqbal
- Department of Food Science, University College of Science Shankar Campus, Abdul Wali Khan University Mardan, MardanPakistan
| |
Collapse
|
14
|
Priya H, Prasanna R, Ramakrishnan B, Bidyarani N, Babu S, Thapa S, Renuka N. Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiol Res 2015; 171:78-89. [PMID: 25644956 DOI: 10.1016/j.micres.2014.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/17/2014] [Accepted: 12/26/2014] [Indexed: 12/31/2022]
Abstract
Rice plants are selective with their associations with bacteria that are beneficial for growth, nutrient uptake, exhibit induced resistance or antagonism towards pathogens. Cyanobacteria as bioinoculants are known to promote the growth and health of rice plants. The present investigation was aimed at understanding whether and how cyanobacterial (Calothrix elenkinii) inoculation influenced the rice plant growth and the culturable bacterial populations and identifying the dominant culturable "microbiome" members. The plant tissue extracts were used to enumerate populations of the culturable microbiome members using selected enrichment media with different nutrient levels. About 10-fold increases in population densities of culturable microbiome members in different media were recorded, with some isolates having metabolic potential for nitrogen fixation and phosphorus solubilization. Fatty acid methyl ester (FAME) analysis and 16S rRNA sequencing of selected microbial morphotypes suggested the predominance of the members of Bacillaceae. Significant increases in plant growth attributes, nitrogenase activity and indole acetic acid production, and activities of hydrolytic and defense enzymes were recorded in the Calothrix inoculated plants. The PCR-based analysis and scanning electron microscopic (SEM) observations confirmed the presence of inoculated cyanobacterium inside the plant tissues. This investigation illustrated that cyanobacterial inoculation can play significant roles in improving growth and metabolism of rice directly and interact with the beneficial members from the endophytic microbiome of rice seedlings synergistically.
Collapse
Affiliation(s)
- Himani Priya
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India.
| | | | - Ngangom Bidyarani
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Santosh Babu
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Shobit Thapa
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Nirmal Renuka
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| |
Collapse
|
15
|
Bidyarani N, Prasanna R, Chawla G, Babu S, Singh R. Deciphering the factors associated with the colonization of rice plants by cyanobacteria. J Basic Microbiol 2014; 55:407-19. [PMID: 25515189 DOI: 10.1002/jobm.201400591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/02/2014] [Indexed: 11/06/2022]
Abstract
Cyanobacteria-rice plant interactions were analyzed using a hydroponics experiment. The activity of plant defense and pathogenesis-related enzymes, scanning electron microscopy, growth, nitrogen fixation (measured as ARA), and DNA fingerprinting assays proved useful in illustrating the nature of associations of cyanobacteria with rice plants. Microscopic analyses revealed the presence of short filaments and coiled masses of filaments of cyanobacteria near the epidermis and cortex of roots and shoot tissues. Among the six cyanobacterial strains employed, Calothrix sp. (RPC1), Anabaena laxa (RPAN8), and Anabaena azollae (C16) were the best performing strains, in terms of colonization in roots and stem. These strains also enhanced nitrogen fixation and stimulated the activity of plant defense/cell wall-degrading enzymes. A significantly high correlation was also recorded between the elicited plant enzymes, growth, and ARA. DNA fingerprinting using highly iterated palindromic sequences (HIP-TG) further helped in proving the establishment of inoculated organisms in the roots/shoots of rice plants. This study illustrated that the colonization of cyanobacteria in the plant tissues is facilitated by increased elicitation of plant enzymes, leading to improved plant growth, nutrient mobilization, and enhanced plant fitness. Such strains can be promising candidates for developing "cyanobacteria colonized-nitrogen-fixing rice plants" in the future.
Collapse
Affiliation(s)
- Ngangom Bidyarani
- Division of Microbiology, Indian Agricultural Research Institute (IARI), New Delhi, India
| | | | | | | | | |
Collapse
|
16
|
Hosoda K, Habuchi M, Suzuki S, Miyazaki M, Takikawa G, Sakurai T, Kashiwagi A, Sueyoshi M, Matsumoto Y, Kiuchi A, Mori K, Yomo T. Adaptation of a cyanobacterium to a biochemically rich environment in experimental evolution as an initial step toward a chloroplast-like state. PLoS One 2014; 9:e98337. [PMID: 24874568 PMCID: PMC4038495 DOI: 10.1371/journal.pone.0098337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 05/01/2014] [Indexed: 11/29/2022] Open
Abstract
Chloroplasts originated from cyanobacteria through endosymbiosis. The original cyanobacterial endosymbiont evolved to adapt to the biochemically rich intracellular environment of the host cell while maintaining its photosynthetic function; however, no such process has been experimentally demonstrated. Here, we show the adaptation of a model cyanobacterium, Synechocystis sp. PCC 6803, to a biochemically rich environment by experimental evolution. Synechocystis sp. PCC 6803 does not grow in a biochemically rich, chemically defined medium because several amino acids are toxic to the cells at approximately 1 mM. We cultured the cyanobacteria in media with the toxic amino acids at 0.1 mM, then serially transferred the culture, gradually increasing the concentration of the toxic amino acids. The cells evolved to show approximately the same specific growth rate in media with 0 and 1 mM of the toxic amino acid in approximately 84 generations and evolved to grow faster in the media with 1 mM than in the media with 0 mM in approximately 181 generations. We did not detect a statistically significant decrease in the autotrophic growth of the evolved strain in an inorganic medium, indicating the maintenance of the photosynthetic function. Whole-genome resequencing revealed changes in the genes related to the cell membrane and the carboxysome. Moreover, we quantitatively analyzed the evolutionary changes by using simple mathematical models, which evaluated the evolution as an increase in the half-maximal inhibitory concentration (IC50) and estimated quantitative characteristics of the evolutionary process. Our results clearly demonstrate not only the potential of a model cyanobacterium to adapt to a biochemically rich environment without a significant decrease in photosynthetic function but also the properties of its evolutionary process, which sheds light of the evolution of chloroplasts at the initial stage.
Collapse
Affiliation(s)
- Kazufumi Hosoda
- Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan
| | - Masumi Habuchi
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Shingo Suzuki
- Quantitative Biology Center, RIKEN, Suita, Osaka, Japan
| | - Mikako Miyazaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Go Takikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Takahiro Sakurai
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Akiko Kashiwagi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Makoto Sueyoshi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Yusuke Matsumoto
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Ayako Kiuchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kotaro Mori
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tetsuya Yomo
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Suita, Osaka, Japan
| |
Collapse
|
17
|
Hussain A, Hamayun M, Shah ST. Root colonization and phytostimulation by phytohormones producing entophytic Nostoc sp. AH-12. Curr Microbiol 2013; 67:624-30. [PMID: 23794014 DOI: 10.1007/s00284-013-0408-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/19/2013] [Indexed: 01/07/2023]
Abstract
Nostoc, a nitrogen-fixing cyanobacterium, has great potential to make symbiotic associations with a wide range of plants and benefit its hosts with nitrogen in the form of nitrates. It may also use phytohormones as a tool to promote plant growth. Phytohormones [cytokinin (Ck) and IAA] were determined in the culture of an endophytic Nostoc isolated from rice roots. The strain was able to accumulate as well as release phytohormones to the culture media. Optimum growth conditions for the production of zeatin and IAA were a temperature of 25 °C and a pH of 8.0. Time-dependent increase in the accumulation and release of phytohormones was recorded. To evaluate the impact of cytokinins, an ipt knockout mutant in the background of Nostoc was generated by homologous recombination method. A sharp decline (up to 80 %) in the zeatin content was observed in the culture of mutant strain Nostoc AHM-12. Association of the mutant and wild type strain with rice and wheat roots was studied under axenic conditions. The efficacy of Nostoc to colonize plant root was significantly reduced (P < 0.05) as a result of ipt inactivation as evident by low chlorophyll a concentration in the roots. In contrast to the mutant strain, wild type strain showed good association with the roots and enhanced several growth parameters, such as fresh weight, dry weight, shoot length, and root length of the crop plants. The study clearly demonstrated that Ck is a tool of endophytic Nostoc to colonize plant root and promote its growth.
Collapse
Affiliation(s)
- Anwar Hussain
- Department of Botany, University College of Science, Abdul Wali Khan University Mardan, Shankar Campus, Mardan, Pakistan,
| | | | | |
Collapse
|
18
|
Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. ANNALS OF BOTANY 2013; 111:743-67. [PMID: 23478942 PMCID: PMC3631332 DOI: 10.1093/aob/mct048] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. SCOPE Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. CONCLUSIONS Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.
Collapse
Affiliation(s)
- Carole Santi
- Université de Perpignan, Via Domitia, Avenue Paul Alduy, 66100 Perpignan, France
| | - Didier Bogusz
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| | - Claudine Franche
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
19
|
Adams DG, Duggan PS. Signalling in Cyanobacteria–Plant Symbioses. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
DTAF: an efficient probe to study cyanobacterial-plant interaction using confocal laser scanning microscopy (CLSM). J Ind Microbiol Biotechnol 2010; 38:249-55. [DOI: 10.1007/s10295-010-0820-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
|
21
|
Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiol (Praha) 2009; 54:43-51. [DOI: 10.1007/s12223-009-0007-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/07/2008] [Indexed: 11/30/2022]
|
22
|
Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik BD. Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 2009; 49:89-97. [PMID: 23100756 PMCID: PMC3450053 DOI: 10.1007/s12088-009-0009-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 02/21/2008] [Indexed: 10/21/2022] Open
Abstract
This investigation was undertaken to characterize the abundance and genera-wise diversity of cyanobacteria in the rice rhizosphere and nitrogen-fixing ability of the isolated strains. The cyanobacterial strains belonging to the genera Nostoc and Anabaena comprised 80% of the rhizosphere isolates, which were also efficient in enhancing the germination and growth of wheat seeds and exhibited significantly high protein accumulation and IAA production. Distinct profiles for the cyanobacterial strains were obtained on amplification with extended Hip 1 primer - HipTG, indicative of the diversity among these strains. Our investigation helped in identifying promising cyanobacterial isolates from the rhizosphere of rice, which can be utilized in developing efficient plant growth promoting cyanobacterial inoculants.
Collapse
Affiliation(s)
- Radha Prasanna
- Centre for Conservation and Utilization of Blue-Green Algae, Indian Agricultural Research Institute (IARI), New Delhi, 110 012 India
| | - Pranita Jaiswal
- Centre for Conservation and Utilization of Blue-Green Algae, Indian Agricultural Research Institute (IARI), New Delhi, 110 012 India
| | - Saswati Nayak
- Centre for Conservation and Utilization of Blue-Green Algae, Indian Agricultural Research Institute (IARI), New Delhi, 110 012 India
| | - Anjuli Sood
- Centre for Conservation and Utilization of Blue-Green Algae, Indian Agricultural Research Institute (IARI), New Delhi, 110 012 India
| | | |
Collapse
|
23
|
Nilsson M, Rasmussen U, Bergman B. Cyanobacterial chemotaxis to extracts of host and nonhost plants. FEMS Microbiol Ecol 2006; 55:382-90. [PMID: 16466377 DOI: 10.1111/j.1574-6941.2005.00043.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Chemotaxis may be important when forming cyanobacterial symbioses. However, knowledge of cyanobacterial attraction towards plants and factors affecting chemotaxis is limited. Chemo-attraction was observed in Nostoc strains 8964:3 and PCC 73102 towards exudate or crushed extract of the natural hosts Gunnera manicata, Cycas revoluta and Blasia pusilla, and the nonhost plants Trifolium repens, Arabidopsis thaliana and Oryza sativa. As all tested plant extracts generated chemotaxis, the possibility to attract cyanobacteria may be widespread in plants. Chemotaxis was reduced by increased temperature and darkness and was stimulated by phosphorous and iron starvation and elevated salt concentration. Sugars (arabinose, galactose, and glucose) had a positive effect on chemotaxis, whereas flavonoids (chrysin and naringenin) and amino acids (methionine, glycine, serine, phenylalanine, glutamine, and lysine) had no effect.
Collapse
Affiliation(s)
- Malin Nilsson
- Department of Botany, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
24
|
BEHL RK, NARULA N, VASUDEVA M, SATO A, SHINANO T, OSAKI M. Harnessing wheat genotype × Azotobacter strain interactions for sustainable wheat production in semi arid tropics. TROPICS 2006. [DOI: 10.3759/tropics.15.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Rishi Kumar BEHL
- Department of Plant Breeding, CCS Haryana Agricultural University
| | - Neeru NARULA
- Department of Microbiology, CCS Haryana Agricultural University
| | | | - Atsuya SATO
- Department of Plant Nutrition, Hokkaido University,
| | - Takuro SHINANO
- Creative Research Initiative Sousei, Hokkaido University
| | | |
Collapse
|
25
|
Nilsson M, Rasmussen U, Bergman B. Competition among symbiotic cyanobacterialNostocstrains forming artificial associations with rice (Oryza sativa). FEMS Microbiol Lett 2005; 245:139-44. [PMID: 15796991 DOI: 10.1016/j.femsle.2005.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 02/22/2005] [Accepted: 03/02/2005] [Indexed: 11/26/2022] Open
Abstract
Competition among four symbiotically competent Nostoc strains, colonizing rice roots, was examined using hetR-DGGE (denaturing gradient gel electrophoresis) as strain identification. Although mixed in various combinations, only one strain at a time associated with the rice roots. Nostoc strain 8964:3 was the most competitive and our data suggest that its competitive fitness was dependent on rapid hormogonial spreading as displayed on agar plates. Furthermore, rice roots induced hormogonia in all tested Nostoc strains, but only Nostoc strain 9104 showed positive chemotaxis towards the root. Inhibition of growth of competing cyanobacterial strains was not apparent.
Collapse
Affiliation(s)
- Malin Nilsson
- Department of Botany, Stockholm University, Lilla Frescati vägen 5, S-10691 Stockholm, Sweden.
| | | | | |
Collapse
|
26
|
Root-based N2-fixing symbioses: Legumes, actinorhizal plants, Parasponia sp. and cycads. PLANT ECOPHYSIOLOGY 2005. [DOI: 10.1007/1-4020-4099-7_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|