1
|
Michelena TM, Tian X, Zhou X, Meng Y. The impact on the activity of acetylcholinesterase of a polylysine-ApoE peptide carrier targeting the blood brain barrier. ACTA ACUST UNITED AC 2018. [DOI: 10.2131/fts.5.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Toby M. Michelena
- School of Natural, Applied and Health Science, Wenzhou-Kean University, China
| | - Xuechen Tian
- School of Natural, Applied and Health Science, Wenzhou-Kean University, China
| | - Xuan Zhou
- School of Natural, Applied and Health Science, Wenzhou-Kean University, China
| | - Yu Meng
- School of Natural, Applied and Health Science, Wenzhou-Kean University, China
| |
Collapse
|
2
|
Ringer C, Tune S, Bertoune MA, Schwarzbach H, Tsujikawa K, Weihe E, Schütz B. Disruption of calcitonin gene-related peptide signaling accelerates muscle denervation and dampens cytotoxic neuroinflammation in SOD1 mutant mice. Cell Mol Life Sci 2017; 74:339-358. [PMID: 27554772 PMCID: PMC11107523 DOI: 10.1007/s00018-016-2337-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Neuronal vacuolization and glial activation are pathologic hallmarks in the superoxide dismutase 1 (SOD1) mouse model of ALS. Previously, we found the neuropeptide calcitonin gene-related peptide (CGRP) associated with vacuolization and astrogliosis in the spinal cord of these mice. We now show that CGRP abundance positively correlated with the severity of astrogliosis, but not vacuolization, in several motor and non-motor areas throughout the brain. SOD1 mice harboring a genetic depletion of the βCGRP isoform showed reduced CGRP immunoreactivity associated with vacuolization, while motor functions, body weight, survival, and astrogliosis were not altered. When CGRP signaling was completely disrupted through genetic depletion of the CGRP receptor component, receptor activity-modifying protein 1 (RAMP1), hind limb muscle denervation, and loss of muscle performance were accelerated, while body weight and survival were not affected. Dampened neuroinflammation, i.e., reduced levels of astrogliosis in the brain stem already in the pre-symptomatic disease stage, and reduced microgliosis and lymphocyte infiltrations during the late disease phase were additional neuropathology features in these mice. On the molecular level, mRNA expression levels of brain-derived neurotrophic factor (BDNF) and those of the anti-inflammatory cytokine interleukin 6 (IL-6) were elevated, while those of several pro-inflammatory cytokines found reduced in the brain stem of RAMP1-deficient SOD1 mice at disease end stage. Our results thus identify an important, possibly dual role of CGRP in ALS pathogenesis.
Collapse
Affiliation(s)
- Cornelia Ringer
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Sarah Tune
- Department of Physiology, University of Lübeck, Lübeck, Germany
| | - Mirjam A Bertoune
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Eberhard Weihe
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany.
| | - Burkhard Schütz
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany.
| |
Collapse
|
3
|
Lau KM, Gong AGW, Xu ML, Lam CTW, Zhang LML, Bi CWC, Cui D, Cheng AWM, Dong TTX, Tsim KWK, Lin H. Transcriptional activity of acetylcholinesterase gene is regulated by DNA methylation during C2C12 myogenesis. Brain Res 2016; 1642:114-123. [PMID: 27021952 DOI: 10.1016/j.brainres.2016.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/25/2016] [Accepted: 03/15/2016] [Indexed: 12/26/2022]
Abstract
The expression of acetylcholinesterase (AChE), an enzyme hydrolyzes neurotransmitter acetylcholine at vertebrate neuromuscular junction, is regulated during myogenesis, indicating the significance of muscle intrinsic factors in controlling the enzyme expression. DNA methylation is essential for temporal control of myogenic gene expression during myogenesis; however, its role in AChE regulation is not known. The promoter of vertebrate ACHE gene carries highly conserved CG-rich regions, implying its likeliness to be methylated for epigenetic regulation. A DNA methyltransferase inhibitor, 5-azacytidine (5-Aza), was applied onto C2C12 cells throughout the myotube formation. When DNA methylation was inhibited, the promoter activity, transcript expression and enzymatic activity of AChE were markedly increased after day 3 of differentiation, which indicated the putative role of DNA methylation. By bisulfite pyrosequencing, the overall methylation rate was found to peak at day 3 during C2C12 cell differentiation; a SP1 site located at -1826bp upstream of mouse ACHE gene was revealed to be heavily methylated. The involvement of transcriptional factor SP1 in epigenetic regulation of AChE was illustrated here: (i) the SP1-driven transcriptional activity was increased in 5-Aza-treated C2C12 culture; (ii) the binding of SP1 onto the SP1 site of ACHE gene was fully blocked by the DNA methylation; and (iii) the sequence flanking SP1 sites of ACHE gene was precipitated by chromatin immuno-precipitation assay. The findings suggested the role of DNA methylation on AChE transcriptional regulation and provided insight in elucidating the DNA methylation-mediated regulatory mechanism on AChE expression during muscle differentiation.
Collapse
Affiliation(s)
- Kei M Lau
- Division of Life Science and Center of Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Amy G W Gong
- Division of Life Science and Center of Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Miranda L Xu
- Division of Life Science and Center of Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Candy T W Lam
- Division of Life Science and Center of Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Laura M L Zhang
- Division of Life Science and Center of Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Cathy W C Bi
- Division of Life Science and Center of Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - D Cui
- Division of Life Science and Center of Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Anthony W M Cheng
- Division of Life Science and Center of Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Tina T X Dong
- Division of Life Science and Center of Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Karl W K Tsim
- Division of Life Science and Center of Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China.
| | - Huangquan Lin
- Division of Life Science and Center of Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China.
| |
Collapse
|
4
|
Xu ML, Bi CWC, Cheng LKW, Mak S, Yao P, Luk WKW, Lau KKM, Cheng AWM, Tsim KWK. Reduced Expression of P2Y2 Receptor and Acetylcholinesterase at Neuromuscular Junction of P2Y1 Receptor Knock-out Mice. J Mol Neurosci 2015; 57:446-51. [PMID: 26036470 DOI: 10.1007/s12031-015-0591-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/25/2015] [Indexed: 02/04/2023]
Abstract
ATP is co-stored and co-released with acetylcholine (ACh) at the pre-synaptic vesicles in vertebrate neuromuscular junction (nmj). Several lines of studies demonstrated that binding of ATP to its corresponding P2Y1 and P2Y2 receptors in the muscle regulated post-synaptic gene expressions. To further support the notion that P2Y receptors are playing indispensable role in formation of post-synaptic specifications at the nmj, the knock-out mice of P2Y1 receptor (P2Y1R (-/-)) were employed here for analyses. In P2Y1R (-/-) mice, the expression of P2Y2 receptor in muscle was reduced by over 50 %, as compared to P2Y1R (+/+) mice. In parallel, the expression of acetylcholinesterase (AChE) in muscle was markedly decreased. In the analysis of the expression of anchoring subunits of AChE in P2Y1R (-/-) mice, the proline-rich membrane anchor (PRiMA) subunit was reduced by 60 %; while the collagen tail (ColQ) subunit was reduced by 50 %. AChE molecular forms in the muscle were not changed, except the amount of enzyme was reduced. Immuno-staining of P2Y1R (-/-) mice nmj, both AChE and AChR were still co-localized at the nmj, and the staining was diminished. Taken together our data demonstrated that P2Y1 receptor regulated the nmj gene expression.
Collapse
Affiliation(s)
- Miranda L Xu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Cathy W C Bi
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Lily K W Cheng
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Shinghung Mak
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Ping Yao
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Wilson K W Luk
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Kitty K M Lau
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Anthony W M Cheng
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Karl W K Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China.
| |
Collapse
|
5
|
Choi RC, Chen VP, Luk WK, Yung AW, Ng AH, Dong TT, Tsim KW. Expression of cAMP-responsive element binding proteins (CREBs) in fast- and slow-twitch muscles: A signaling pathway to account for the synaptic expression of collagen-tailed subunit (ColQ) of acetylcholinesterase at the rat neuromuscular junction. Chem Biol Interact 2013; 203:282-6. [DOI: 10.1016/j.cbi.2012.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/25/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
|
6
|
Chen VP, Choi RCY, Chan WKB, Leung KW, Guo AJY, Chan GKL, Luk WKW, Tsim KWK. The assembly of proline-rich membrane anchor (PRiMA)-linked acetylcholinesterase enzyme: glycosylation is required for enzymatic activity but not for oligomerization. J Biol Chem 2011; 286:32948-61. [PMID: 21795704 DOI: 10.1074/jbc.m111.261248] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetylcholinesterase (AChE) anchors onto cell membranes by a transmembrane protein PRiMA (proline-rich membrane anchor) as a tetrameric form in vertebrate brain. The assembly of AChE tetramer with PRiMA requires the C-terminal "t-peptide" in AChE catalytic subunit (AChE(T)). Although mature AChE is well known N-glycosylated, the role of glycosylation in forming the physiologically active PRiMA-linked AChE tetramer has not been studied. Here, several lines of evidence indicate that the N-linked glycosylation of AChE(T) plays a major role for acquisition of AChE full enzymatic activity but does not affect its oligomerization. The expression of the AChE(T) mutant, in which all N-glycosylation sites were deleted, together with PRiMA in HEK293T cells produced a glycan-depleted PRiMA-linked AChE tetramer but with a much higher K(m) value as compared with the wild type. This glycan-depleted enzyme was assembled in endoplasmic reticulum but was not transported to Golgi apparatus or plasma membrane.
Collapse
Affiliation(s)
- Vicky P Chen
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bansal I, Waghmare CK, Anand T, Gupta AK, Bhattacharya BK. Differential mRNA expression of acetylcholinesterase in the central nervous system of rats with acute and chronic exposure of sarin & physostigmine. J Appl Toxicol 2009; 29:386-94. [DOI: 10.1002/jat.1424] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Xie HQ, Choi RCY, Leung KW, Chen VP, Chu GKY, Tsim KWK. Transcriptional regulation of proline-rich membrane anchor (PRiMA) of globular form acetylcholinesterase in neuron: an inductive effect of neuron differentiation. Brain Res 2009; 1265:13-23. [PMID: 19368807 DOI: 10.1016/j.brainres.2009.01.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
Abstract
The transcriptional regulation of proline-rich membrane anchor (PRiMA), an anchoring protein of tetrameric globular form of acetylcholinesterase (G(4) AChE), was revealed in cultured cortical neurons during differentiation. The level of AChE(T) protein, total enzymatic activity and the amount of G(4) AChE were dramatically increased during the neuron differentiation. RT-PCR analyses revealed that the transcript encoding PRiMA was significantly up-regulated in the differentiated neurons. To investigate the transcriptional mechanism on PRiMA regulation, a reporter construct of human PRiMA promoter-tagged luciferase was employed in this study. Upon the neuronal differentiation in cortical neurons, a mitogen-activated protein (MAP) kinase-dependent pathway was stimulated: this signaling cascade was shown to regulate the transcriptional activity of PRiMA. In addition, both PRiMA and AChE(T) transcripts were induced by the over expression of an active mutant of Raf in the cultured neurons. The treatment of a MAP kinase inhibitor (U0126) significantly blocked the expression of PRiMA transcript and promoter-driven luciferase activity as induced by the differentiation of cortical neurons. These results suggested that a MAP kinase signaling pathway served as one of the transcriptional regulators in controlling PRiMA gene expression during the neuronal differentiation process.
Collapse
Affiliation(s)
- Heidi Q Xie
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
9
|
Transcriptional control of different subunits of AChE in muscles: Signals triggered by the motor nerve-derived factors. Chem Biol Interact 2008; 175:58-63. [DOI: 10.1016/j.cbi.2008.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/11/2008] [Accepted: 04/11/2008] [Indexed: 11/19/2022]
|
10
|
Lau FTC, Choi RCY, Xie HQ, Leung KW, Chen VP, Zhu JTT, Bi CWC, Chu GKY, Tsim KWK. Myocyte enhancer factor 2 mediates acetylcholine-induced expression of acetylcholinesterase-associated collagen ColQ in cultured myotubes. Mol Cell Neurosci 2008; 39:429-38. [PMID: 18718538 DOI: 10.1016/j.mcn.2008.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/16/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022] Open
Abstract
The collagenous protein (ColQ) characterizes the collagen-tailed forms of acetylcholinesterase (AChE) in vertebrate muscles. Two ColQ transcripts, ColQ-1 and ColQ-1a, driven by two distinct promoters are expressed differentially in mammalian slow- and fast-twitch muscles, respectively. Such expression patterns are determined by the contractile activity in different muscle fiber types. To reveal the regulatory role of muscular activity on ColQ expression, acetylcholine and nicotine were applied onto C2C12 muscle cells: the challenge increased the expression of ColQ-1/ColQ-1a mRNAs. The agonist challenge induced the phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). In parallel, over expression of an active mutant of CaMKII enhanced both ColQ-1/ColQ-1a mRNA levels in cultured C2C12 myotubes. Moreover, the over expression of myocyte enhancer factor 2 (MEF2), a downstream mediator of CaMKII, in the myotubes potentiated the CaMKII-induced ColQ expression. The current results reveal a signaling cascade that drives the expression profiles of ColQ in responding to activity challenge in cultured myotubes.
Collapse
Affiliation(s)
- Faye T C Lau
- Department of Biology, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Choi RCY, Ting AKL, Lau FTC, Xie HQ, Leung KW, Chen VP, Siow NL, Tsim KWK. Calcitonin gene-related peptide induces the expression of acetylcholinesterase-associated collagen ColQ in muscle: a distinction in driving two different promoters between fast- and slow-twitch muscle fibers. J Neurochem 2007; 102:1316-28. [PMID: 17488278 DOI: 10.1111/j.1471-4159.2007.04630.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of a collagenous protein (ColQ) characterizes the collagen-tailed forms of acetylcholinesterase at vertebrate neuromuscular junctions (nmjs). Two ColQ transcripts as ColQ-1 and ColQ-1a, driven by two promoters: pColQ-1 and pColQ-1a, were found in mammalian slow- and fast-twitch muscles, respectively, which have distinct expression pattern in different muscle fibers. In this study, we show the differential expression of CoQ in different muscles is triggered by calcitonin gene-related peptide (CGRP), a known motor neuron-derived factor. Application of CGRP, or dibutyryl-cAMP (Bt(2)-cAMP), in cultured myotubes induced the expression of ColQ-1a transcript and promoter activity; however, the expression of ColQ-1 transcript did not respond to CGRP or Bt(2)-cAMP. The CGRP-induced gene activation was blocked by an adenylyl cyclase inhibitor or a dominant negative mutant of cAMP-responsive element (CRE) binding protein (CREB). Two CRE sites were mapped within the ColQ-1a promoter, and mutations of the CRE sites abolished the response of CGRP or Bt(2)-cAMP. In parallel, CGRP receptor complex was dominantly expressed at the nmjs of fast muscle but not of slow muscle. These results suggested that the expression of ColQ-1a at the nmjs of fast-twitch muscle was governed by a CGRP-mediated cAMP signaling mechanism.
Collapse
Affiliation(s)
- Roy C Y Choi
- Departments of Biology and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Choi RCY, Ting AKL, Lau FTC, Xie HQ, Leung KW, Chen VP, Siow NL, Tsim KWK. Calcitonin gene-related peptide induces the expression of acetylcholinesterase-associated collagen ColQ in muscle: a distinction in driving two different promoters between fast- and slow-twitch muscle fibers. J Neurochem 2007. [DOI: 10.1111/j.1471-4159.2007.4630.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Xie HQ, Choi RCY, Leung KW, Siow NL, Kong LW, Lau FTC, Peng HB, Tsim KWK. Regulation of a transcript encoding the proline-rich membrane anchor of globular muscle acetylcholinesterase. The suppressive roles of myogenesis and innervating nerves. J Biol Chem 2007; 282:11765-75. [PMID: 17324938 DOI: 10.1074/jbc.m608265200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional regulation of proline-rich membrane anchor (PRiMA), an anchoring protein of tetrameric globular form acetylcholinesterase (G(4) AChE), was revealed in muscle during myogenic differentiation under the influence of innervation. During myotube formation of C2C12 cells, the expression of AChE(T) protein and the enzymatic activity were dramatically increased, but the level of G(4) AChE was relatively decreased. This G(4) AChE in C2C12 cells was specifically recognized by anti-PRiMA antibody, suggesting the association of this enzyme with PRiMA. Reverse transcription-PCR analysis revealed that the level of PRiMA mRNA was reduced during the myogenic differentiation of C2C12 cells. Overexpression of PRiMA in C2C12 myotubes significantly increased the production of G(4) AChE. The oligomerization of G(4) AChE, however, did not require the intracellular cytoplasmic tail of PRiMA. After overexpressing the muscle regulatory factors, myogenin and MyoD, the expressions of PRiMA and G(4) AChE in cultured myotubes were markedly reduced. In addition, calcitonin gene-related peptide, a known motor neuron-derived factor, and muscular activity were able to suppress PRiMA expression in muscle; the suppression was mediated by the phosphorylation of a cAMP-responsive element-binding protein. In accordance with the in vitro results, sciatic nerve denervation transiently increased the expression of PRiMA mRNA and decreased the phosphorylation of cAMP-responsive element-binding protein as well as its activator calcium/calmodulin-dependent protein kinase II in muscles. Our results suggest that the expression of PRiMA, as well as PRiMA-associated G(4) AChE, in muscle is suppressed by muscle regulatory factors, muscular activity, and nerve-derived trophic factor(s).
Collapse
Affiliation(s)
- Heidi Q Xie
- Department of Biology and the Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Curtin BF, Pal N, Gordon RK, Nambiar MP. Forskolin, an inducer of cAMP, up-regulates acetylcholinesterase expression and protects against organophosphate exposure in neuro 2A cells. Mol Cell Biochem 2006; 290:23-32. [PMID: 16924422 DOI: 10.1007/s11010-005-9084-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 11/22/2005] [Indexed: 11/25/2022]
Abstract
Bioscavenger prophylactic therapy using purified human acetylcholinesterase (AChE) or butylcholinesterase (BChE) is a promising treatment for future protection against chemical warfare nerve agent exposure. Potential immune response due to the complex structure of cholinesterases, mutations, post-translational modifications, and genetic variation is a limiting factor against purified enzyme therapy. We investigated an alternative bioscavenger approach using forskolin, an inducer of intracellular cyclic AMP (cAMP), which activates AChE promoter and up-regulates its expression. A mouse neuronal cell line, Neuro 2A, was treated with various doses of forskolin and analysis of the expressed enzyme indicates that the AChE activity was significantly increased in cells exposed to repeated administration of the drug every other day for 7-10 days. Cholinesterase enzyme assays showed that the enzyme activity was increased approximately 2-fold for the extracellular enzyme and 3-fold for the intracellular enzyme. The optimal dose found for extracellular enzyme production was 12-24 microM forskolin, while the optimal dose for intracellular was 12 microM. In parallel with the rise in the AChE level, the morphology of forskolin-treated cells showed neurite growth with increasing doses. Forskolin treatment protects Neuro 2A cells from diisopropylflurophophate (DFP), a surrogate of the organophosphate chemical warfare agents soman and sarin, induced toxicity in Neuro 2A cells. These results indicate that transcriptional inducers, such as forskolin, can sufficiently up-regulate cellular AChE production and protect cells against organophosphate toxicity.
Collapse
Affiliation(s)
- Bryan F Curtin
- Department of Biochemical Pharmacology, Division of Biochemistry, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| | | | | | | |
Collapse
|
15
|
Curtin BF, Tetz LM, Compton JR, Doctor BP, Gordon RK, Nambiar MP. Histone acetylase inhibitor trichostatin A induces acetylcholinesterase expression and protects against organophosphate exposure. J Cell Biochem 2006; 96:839-49. [PMID: 16149071 DOI: 10.1002/jcb.20591] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The biological effects of organophosphorous (OP) chemical warfare nerve agents (CWNAs) are exerted by inhibition of acetylcholinesterase (AChE), which prevents the hydrolysis of the neurotransmitter acetylcholine, leading to hypercholinergy, seizures/status epilepticus, respiratory/cardiovascular failure, and potentially death. Current investigations show that bioscavenger therapy using purified fetal bovine AChE in rodents and non-human primates and the more recently tested human butyrylcholinesterase, is a promising treatment for protection against multiple LD(50) CWNA exposures. Potential impediments, due to the complex structure of the enzyme, purification effort, resources, and cost have necessitated alternative approaches. Therefore, we investigated the effects of transcriptional inducers to enhance the expression of AChE to achieve sufficient protection against OP poisoning. Trichostatin A (TSA), an inhibitor of histone deacetylase that de-condenses the chromatin, thereby increasing the binding of transcription factors and mRNA synthesis, was evaluated for induction of AChE expression in various neuronal cell lines. Dose-response curves showed that a concentration of 333 nM TSA was optimal in inducing AChE expression. In Neuro-2A cells, TSA at 333 nM increased the extracellular AChE activity approximately 3-4 fold and intracellular enzyme activity 10-fold. Correlating with the AChE induction, TSA pre-treatment significantly protected the cells against exposure to the organophosphate diisopropylfluorophosphate, a surrogate for the chemical warfare agents soman and sarin. These studies indicate that transcriptional inducers such as TSA up-regulate AChE, which then can bioscavenge any organophosphates present, thereby protecting the cells from OP-induced cytotoxicity. In conclusion, transcriptional inducers are prospective new methods to protect against CWNA exposure.
Collapse
Affiliation(s)
- Bryan F Curtin
- Department of Biochemical Pharmacology, Division of Biochemistry, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910-7500, USA
| | | | | | | | | | | |
Collapse
|
16
|
Kim CH, Xiong WC, Mei L. Inhibition of MuSK expression by CREB interacting with a CRE-like element and MyoD. Mol Cell Biol 2005; 25:5329-38. [PMID: 15964791 PMCID: PMC1156998 DOI: 10.1128/mcb.25.13.5329-5338.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type I receptor-like protein tyrosine kinase MuSK is essential for the neuromuscular junction formation. MuSK expression is tightly regulated during development, but the underlying mechanisms were unclear. Here we identified a novel mechanism by which MuSK expression may be regulated. A cyclic AMP response element (CRE)-like element in the 5'-flanking region of the MuSK gene binds to CREB1 (CRE-binding protein 1). Mutation of this element increases the MuSK promoter activity, suggesting a role for CREB1 in attenuation of MuSK expression. Interestingly, CREB mutants unable to bind to DNA also inhibit MuSK promoter activity, suggesting a CRE-independent inhibitory mechanism. In agreement, CREB1 could inhibit a mutant MuSK transgene reporter whose CRE site was mutated. We provide evidence that CREB interacts directly with MyoD, a myogenic factor essential for MuSK expression in muscle cells. Suppression of CREB expression by small interfering RNA increases MuSK promoter activity. These results demonstrate an important role for CREB1 in the regulation of MuSK expression.
Collapse
Affiliation(s)
- Chang-Hoon Kim
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, CB2803, 1120 15th Street, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
17
|
Dakhama A, Park JW, Taube C, El Gazzar M, Kodama T, Miyahara N, Takeda K, Kanehiro A, Balhorn A, Joetham A, Loader JE, Larsen GL, Gelfand EW. Alteration of airway neuropeptide expression and development of airway hyperresponsiveness following respiratory syncytial virus infection. Am J Physiol Lung Cell Mol Physiol 2005; 288:L761-70. [PMID: 15608150 DOI: 10.1152/ajplung.00143.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms by which respiratory syncytial virus (RSV) infection causes airway hyperresponsiveness (AHR) are not fully established. We hypothesized that RSV infection may alter the expression of airway sensory neuropeptides, thereby contributing to the development of altered airway function. BALB/c mice were infected with RSV followed by assessment of airway function, inflammation, and sensory neuropeptide expression. After RSV infection, mice developed significant airway inflammation associated with increased airway resistance to inhaled methacholine and increased tracheal smooth muscle responsiveness to electrical field stimulation. In these animals, substance P expression was markedly increased, whereas calcitonin gene-related peptide (CGRP) expression was decreased in airway tissue. Prophylactic treatment with Sendide, a highly selective antagonist of the neurokinin-1 receptor, or CGRP, but not the CGRP antagonist CGRP(8–37), inhibited the development of airway inflammation and AHR in RSV-infected animals. Therapeutic treatment with CGRP, but not CGRP(8–37) or Sendide, abolished AHR in RSV-infected animals despite increased substance P levels and previously established airway inflammation. These data suggest that RSV-induced airway dysfunction is, at least in part, due to an imbalance in sensory neuropeptide expression in the airways. Restoration of this balance may be beneficial for the treatment of RSV-mediated airway dysfunction.
Collapse
Affiliation(s)
- Azzeddine Dakhama
- Department of Pediatrics, Division of Cell Biology, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jiang JXS, Choi RCY, Siow NL, Lee HHC, Wan DCC, Tsim KWK. Muscle induces neuronal expression of acetylcholinesterase in neuron-muscle co-culture: transcriptional regulation mediated by cAMP-dependent signaling. J Biol Chem 2003; 278:45435-44. [PMID: 12963741 DOI: 10.1074/jbc.m306320200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presynaptic motor neuron synthesizes and secretes acetylcholinesterase (AChE) at vertebrate neuromuscular junctions. In order to determine the retrograde role of muscle in regulating the expression of AChE in motor neuron, a chimeric co-culture of NG108-15 cell, a cholinergic cell line that resembles motor neuron, with chick myotube was established to mimic the neuromuscular contact in vitro. A DNA construct of human AChE promoter tagged with luciferase (pAChE-Luc) was stably transfected into NG108-15 cells. The co-culture with myotubes robustly stimulated the promoter activity as well as the endogenous expression of AChE in pAChE-Luc stably transfected NG108-15 cells. Muscle extract derived from chick embryos when applied onto pAChE-Luc-expressing NG108-15 cells induced expressions of AChE promoter and endogenous AChE. The cAMP-responsive element mutation on human AChE promoter blocked the muscle-induced AChE transcriptional activity in cultured NG108-15 cells either in co-culturing with myotube or in applying muscle extract. The accumulation of intracellular cAMP and the phosphorylation of cAMP-responsive element-binding protein in cultured NG108-15 cells were stimulated by applied muscle extract. Part of the muscle-induced signaling was mimicked by application of calcitonin gene-related peptide in cultured NG108-15 cells. These results suggest the muscle-induced neuronal AChE expression in the co-culture is mediated by a cAMP-dependent signaling.
Collapse
Affiliation(s)
- Joy X S Jiang
- Department of Biology and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
19
|
Rossi SG, Dickerson IM, Rotundo RL. Localization of the calcitonin gene-related peptide receptor complex at the vertebrate neuromuscular junction and its role in regulating acetylcholinesterase expression. J Biol Chem 2003; 278:24994-5000. [PMID: 12707285 DOI: 10.1074/jbc.m211379200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcitonin gene-related peptide (CGRP) is released by motor neurons where it exerts both short and long term effects on skeletal muscle fibers. In addition, sensory neurons release CGRP on the surrounding vasculature where it is in part responsible for local vasodilation following muscle contraction. Although CGRP-binding sites have been demonstrated in whole muscle tissue, the type of CGRP receptor and its associated proteins or its cellular localization within the tissue have not been described. Here we show that the CGRP-binding protein referred to as the calcitonin receptor-like receptor is highly concentrated at the avian neuromuscular junction together with its two accessory proteins, receptor activity modifying protein 1 and CGRP-receptor component protein, required for ligand specificity and signal transduction. Using tissue-cultured skeletal muscle we show that CGRP stimulates an increase in intracellular cAMP that in turn initiates down-regulation of acetylcholinesterase expression at the transcriptional level, and, more specifically, inhibits expression of the synaptically localized collagen-tailed form of the enzyme. Together, these studies suggest a specific role for CGRP released by spinal cord motoneurons in modulating synaptic transmission at the neuromuscular junction by locally inhibiting the expression of acetylcholinesterase, the enzyme responsible for terminating acetylcholine neurotransmission.
Collapse
Affiliation(s)
- Susana G Rossi
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Florida 33101, USA
| | | | | |
Collapse
|
20
|
ATP acts via P2Y1 receptors to stimulate acetylcholinesterase and acetylcholine receptor expression: transduction and transcription control. J Neurosci 2003. [PMID: 12805285 DOI: 10.1523/jneurosci.23-11-04445.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At the vertebrate neuromuscular junction ATP is known to stabilize acetylcholine in the synaptic vesicles and to be co-released with it. We have shown previously that a nucleotide receptor, the P2Y1 receptor, is localized at the junction, and we propose that this mediates a trophic role for synaptic ATP there. Evidence in support of this and on its mechanism is given here. With the use of chick or mouse myotubes expressing promoter-reporter constructs from genes of acetylcholinesterase (AChE) or of the acetylcholine receptor subunits, P2Y1 receptor agonists were shown to stimulate the transcription of each of those genes. The pathway to activation of the AChE gene was shown to involve protein kinase C and intracellular Ca 2+ release. Application of dominant-negative or constitutively active mutants, or inhibitors of specific kinases, showed that it further proceeds via some of the known intermediates of extracellular signal-regulated kinase phosphorylation. In both chick and mouse myotubes this culminates in activation of the transcription factor Elk-1, confirmed by gel mobility shift assays and by the nuclear accumulation of phosphorylated Elk-1. All of the aforementioned activations by agonist were amplified when the content of P2Y1 receptors was boosted by transfection, and the activations were blocked by a P2Y1-selective antagonist. Two Elk-1 binding site sequences present in the AChE gene promoter were jointly sufficient to drive ATP-induced reporter gene transcription. Thus ATP regulates postsynaptic gene expression via a pathway to a selective transcription factor activation.
Collapse
|
21
|
Damodaran TV, Jones KH, Patel AG, Abou-Donia MB. Sarin (nerve agent GB)-induced differential expression of mRNA coding for the acetylcholinesterase gene in the rat central nervous system. Biochem Pharmacol 2003; 65:2041-7. [PMID: 12787884 DOI: 10.1016/s0006-2952(03)00160-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We carried out a time-course study on the effects of a single intramuscular (i.m.) dose (0.5x LD(50)) of sarin (O-isopropyl methylphosphonofluoridate), also known as nerve agent GB, on the mRNA expression of acetylcholinesterase (AChE) in the brain of male Sprague-Dawley rats. Sarin inactivates the enzyme AChE which is responsible for the breakdown of the neurotransmitter acetylcholine (ACh), leading to its accumulation at ACh receptors and overstimulation of the cholinergic system. Rats were treated with 50 microg/kg of sarin (0.5x LD(50)) in 1 mL saline/kg and terminated at the following time points: 1 and 2 hr and 1, 3, and 7 days post-treatment. Control rats were treated with normal saline. Total RNA was extracted, and northern blots were hybridized with cDNA probes for AChE and 28S RNA (control). Poly-A RNA from both treated and control cortex was used for reverse transcription-polymerase chain reaction (RT-PCR)-based verification of the data from the northern blots. The results obtained indicate that a single (i.m.) dose of sarin (0.5x LD(50)) produced differential induction and persistence of AChE mRNA levels in different regions of the brain. Immediate induction of AChE transcripts was noted in the brainstem (126+/-6%), cortex (149+/-4%), midbrain (153+/-5%), and cerebellum (234+/-2%) at 1 hr. The AChE expression level, however, increased over time and remained elevated after a decline at 1 day in the previously shown more susceptible brainstem. The transcript levels remained elevated at a later time point (3 days) in the midbrain, after a dramatic decline at day 1 (110+/-2%). In the cortex, transcript levels came down to control values by day 1. The cerebellum also showed a decline of the elevated levels observed at 2 hr (275+/-2%) to control values by day 1. RT-PCR analysis of the AChE transcript at 30 min in the cortex showed an induction to 213+/-3% of the control level, confirming the expression pattern obtained by the northern blot data. The immediate induction followed by the complex pattern of the AChE mRNA time-course in the CNS may indicate that the activation of both cholinergic-related and unrelated functions of the gene plays an important role in the pathological manifestations of sarin-induced neurotoxicity.
Collapse
Affiliation(s)
- Tirupapuliyur V Damodaran
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, PO Box 3813, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
22
|
Kang BH, Jo I, Eun SY, Jo SA. Cyclic AMP-dependent protein kinase A and CREB are involved in neuregulin-induced synapse-specific expression of acetylcholine receptor gene. Biochem Biophys Res Commun 2003; 304:758-65. [PMID: 12727221 DOI: 10.1016/s0006-291x(03)00660-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuregulin is reported to stimulate synapse-specific transcription of acetylcholine receptor (AChR) genes in the skeletal muscle fiber by multiple signaling pathways such as ERK, PI3K, and JNK. The co-localization of PKA mRNA with AChR and ErbBs, receptors for neuregulin, at the confined region of synapse implicates the putative role of PKA in neuregulin-induced AChR gene expression. In the present study, we found that mRNA and protein of a regulatory subunit of PKA (PKARIalpha) were concentrated at synaptic sites of the rat sternomastoid muscle fiber, while those of ERK and PI3K were uniformly distributed throughout the muscle fiber. Neuregulin (100 ng/ml) increased both PKA activity in the nucleus and AChRdelta subunit gene transcription in cultured Sol8 myotubes. These increases were significantly blocked by a specific PKA inhibitor H-89 (100 nM) and an adenylcyclase inhibitor SQ 22536 (200 microM) (72.5% and 60.1%, respectively). Furthermore, neuregulin phosphorylated CREB, a well-known down-stream transcription factor of PKA. While H-89 inhibited CREB phosphorylation, H-89 and PD098059 (50 microM), a specific MEK1/2 inhibitor, did not inhibit the phosphorylation of ERK and CREB, respectively, suggesting no cross-talk between PKA and ERK pathways. In conclusion, neuregulin increases AChRdelta subunit gene transcription, in part, by the activation of PKA/CREB, an alternative route to the previously reported ERK signaling pathway.
Collapse
Affiliation(s)
- Byung-Hak Kang
- Department of Biomedical Sciences, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul 122-701, South Korea
| | | | | | | |
Collapse
|
23
|
Siow NL, Choi RCY, Cheng AWM, Jiang JXS, Wan DCC, Zhu SQ, Tsim KWK. A cyclic AMP-dependent pathway regulates the expression of acetylcholinesterase during myogenic differentiation of C2C12 cells. J Biol Chem 2002; 277:36129-36. [PMID: 12140295 DOI: 10.1074/jbc.m206498200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of acetylcholinesterase (AChE) is markedly increased during myogenic differentiation of C2C12 myoblasts to myotubes; the expression is mediated by intrinsic factor(s) during muscle differentiation. In order to analyze the molecular mechanisms regulating AChE expression during myogenic differentiation, a approximately 2.2-kb human AChE promoter tagged with a luciferase reporter gene, namely pAChE-Luc, was stably transfected into C2C12 cells. The profile of promoter-driven luciferase activity during myogenic differentiation of C2C12 myotubes was found to be similar to that of endogenous expression of AChE catalytic subunit. The increase of AChE expression was reciprocally regulated by a cAMP-dependent signaling pathway. The level of intracellular cAMP, the activity of cAMP-dependent protein kinase, the phosphorylation of cAMP-responsive element binding protein and the activity of cAMP- responsive element (CRE) were down-regulated during the myotube formation. Mutating the CRE site of human AChE promoter altered the original myogenic profile of the promoter activity and its suppressive response to cAMP. In addition, the suppressive effect of the CRE site is dependent on its location on the promoter. Therefore, our results suggest that a cAMP-dependent signaling pathway serves as a suppressive element in regulating the expression of AChE during early myogenesis.
Collapse
Affiliation(s)
- Nina L Siow
- Department of Biology and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Expression of the P2Y1 nucleotide receptor in chick muscle: its functional role in the regulation of acetylcholinesterase and acetylcholine receptor. J Neurosci 2002. [PMID: 11717356 DOI: 10.1523/jneurosci.21-23-09224.2001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vertebrate neuromuscular junctions, ATP is stored at the motor nerve terminals and is co-released with acetylcholine during neural stimulation. Here, we provide several lines of evidence that the synaptic ATP can act as a synapse-organizing factor to induce the expression of acetylcholinesterase (AChE) and acetylcholine receptor (AChR) in muscles, mediated by a metabotropic ATP receptor subtype, the P2Y(1) receptor. The activation of the P2Y(1) receptor by adenine nucleotides stimulated the accumulation of inositol phosphates and intracellular Ca(2+) mobilization in cultured chick myotubes. P2Y(1) receptor mRNA in chicken muscle is very abundant before hatching and again increases in the adult. The P2Y(1) receptor protein is shown to be restricted to the neuromuscular junctions and colocalized with AChRs in adult muscle (chicken, Xenopus, and rat) but not in the chick embryo. In chicks after hatching, this P2Y(1) localization develops over approximately 3 weeks. Denervation or crush of the motor nerve (in chicken or rat) caused up to 90% decrease in the muscle P2Y(1) transcript, which was restored on regeneration, whereas the AChR mRNA greatly increased. Last, mRNAs encoding the AChE catalytic subunit and the AChR alpha-subunit were induced when the P2Y(1) receptors were activated by specific agonists or by overexpression of P2Y(1) receptors in cultured myotubes; those agonists likewise induced the activity in the myotubes of promoter-reporter gene constructs for those subunits, actions that were blocked by a P2Y(1)-specific antagonist. These results provide evidence for a novel function of ATP in regulating the gene expression of those two postsynaptic effectors.
Collapse
|
25
|
da Costa VL, Lapa AJ, Godinho RO. Short- and long-term influences of calcitonin gene-related peptide on the synthesis of acetylcholinesterase in mammalian myotubes. Br J Pharmacol 2001; 133:229-36. [PMID: 11350858 PMCID: PMC1572779 DOI: 10.1038/sj.bjp.0704069] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The present study analyses the short- (15 min - 2 h) and long-term (24 - 48 h) influences of calcitonin gene-related peptide (CGRP) on acetylcholinesterase (AChE) expression in the rat cultured skeletal muscle and the signal transduction events underlying CGRP actions. To assess the effect of CGRP on AChE synthesis, myotubes were pre-exposed to the irreversible AChE inhibitor diisopropyl fluorophosphate (DFP) and treated with CGRP or forskolin, an adenylyl cyclase (AC) activator. Treatment of myotubes with 1 - 100 nM CGRP for 2 h increased by up to 42% the synthesis of catalytically active AChE with a parallel increase in the intracellular cyclic AMP. The stimulation of AChE synthesis induced by CGRP was mimicked by direct activation of AC with 3 - 30 microM forskolin. In contrast, pre-treatment of cultures with 100 nM CGRP for 20 h reduced by 37% the subsequent synthesis of AChE, resulting in a 15% decrease in total AChE activity after 48 h CGRP treatment. Moreover, 24 h treatment of myotubes with 100 nM CGRP reduced by 54% the accumulation of cyclic AMP induced by a subsequent CGRP treatment. These findings indicate that, in skeletal muscle cells, CGRP modulates the AChE expression in a time-dependent manner, initially stimulating the enzyme synthesis through a cyclic AMP-dependent mechanism. The decreased AChE synthesis observed after long-term CGRP treatment suggests that CGRP signalling system is subject to desensitization or down-regulation, that might function as an important adaptative mechanism of the muscle fibre in response to long-term changes in neuromuscular transmission.
Collapse
Affiliation(s)
- Valter Luiz da Costa
- Department of Pharmacology (INFAR), Universidade Federal de São Paulo - Escola Paulista de Medicina, 04044-020 Rua Três de Maio 100, São Paulo, SP, Brazil
| | - Antonio José Lapa
- Department of Pharmacology (INFAR), Universidade Federal de São Paulo - Escola Paulista de Medicina, 04044-020 Rua Três de Maio 100, São Paulo, SP, Brazil
| | - Rosely O Godinho
- Department of Pharmacology (INFAR), Universidade Federal de São Paulo - Escola Paulista de Medicina, 04044-020 Rua Três de Maio 100, São Paulo, SP, Brazil
- Author for correspondence:
| |
Collapse
|
26
|
Choi RC, Siow NL, Zhu SQ, Wan DC, Wong YH, Tsim KW. The cyclic AMP-mediated expression of acetylcholinesterase in myotubes shows contrasting activation and repression between avian and mammalian enzymes. Mol Cell Neurosci 2001; 17:732-45. [PMID: 11312608 DOI: 10.1006/mcne.2001.0968] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP)-dependent signalling pathway has been proposed to regulate acetylcholinesterase (AChE) expression in chick muscle; however, its role in mammalian enzyme is not known. We provide several lines of evidence to suggest that the cAMP-mediated AChE expression in myotube is oppositely regulated between avian and mammalian enzymes. Human AChE promoter was tagged with luciferase, namely Hp-Luc, which was transfected into cultured chick myotubes. Application of cAMP and forskolin induced the expression of chick AChE but reduced human AChE promoter-driven luciferase activity. Transfection of cDNAs encoding active mutants of G proteins altered the intracellular cAMP level in myotubes as well as the expression of chick and human AChE. When the constitutively active forms of Activating Transcription Factor-1 (EWS/ATF-1 oncogene) were over expressed in Hp-Luc transfected myotubes, the expression of chick AChE transcript and protein increased from approximately 1.8- to approximately 2.5-fold, but the luciferase activity was decreased by over 60%. Overexpression of cAMP-responsive element binding protein (CREB) in Hp-Luc transfected myotubes markedly enhanced the cAMP-mediated AChE expression in up- and downregulated chick and human enzymes, respectively. In addition, CREB bound the CRE sequence of human AChE promoter. Mutation on the CRE site markedly enhanced the expression of the promoter-driven luciferase; however, its response to cAMP inhibition in cultured myotubes was still retained. These findings suggest that a cAMP-dependent pathway is contrasting activation and repression of AChE expression in chick and human muscles.
Collapse
Affiliation(s)
- R C Choi
- Department of Biology, Department of Biochemistry, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
27
|
Wan DC, Choi RC, Siow NL, Tsim KW. The promoter of human acetylcholinesterase is activated by a cyclic adenosine 3',5'-monophosphate-dependent pathway in cultured NG108-15 neuroblastoma cells. Neurosci Lett 2000; 288:81-5. [PMID: 10869820 DOI: 10.1016/s0304-3940(00)01200-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Different transcription elements have been proposed to play a role in the regulation of acetylcholinesterase (AChE) in muscle and neuron, and cyclic adenosine 3',5'-monophosphate (cAMP)-dependent pathway is one of them. In order to test the possible role of cAMP in regulating the expression of human AChE, an approximately 2.2 kb DNA fragment of human AChE promoter was linked up stream to a luciferase reporter. The chimeric DNA was transfected into cultured NG108-15 neuroblastoma cells. Application of Bt(2)-cAMP and forskolin increased the promoter driven luciferase activity over 2-fold in the transfected NG108-15 cells; the increase was parallel to the activation of endogenous AChE protein and enzymatic activity. The intracellular cAMP level was increased in the Galpha(sQL) (constitutively active mutant of Galpha(s)) cDNA transfected NG108-15 cells. The Galpha(sQL) cDNA transfected cells showed an increase of over 10-fold in the luciferase activity. In addition, a constitutively active mutant of activating transcription factor-1 (ATF-1) was able to turn on human AChE promoter by approximately 4-fold when they were co-expressed in the neuroblastoma cells. These results support the involvement of a cAMP-dependent pathway in regulating the expression of human AChE.
Collapse
Affiliation(s)
- D C Wan
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, China
| | | | | | | |
Collapse
|
28
|
Rosser BW, Farrar CM, Crellin NK, Andersen LB, Bandman E. Repression of myosin isoforms in developing and denervated skeletal muscle fibers originates near motor endplates. Dev Dyn 2000; 217:50-61. [PMID: 10679929 DOI: 10.1002/(sici)1097-0177(200001)217:1<50::aid-dvdy5>3.0.co;2-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During development of chicken pectoralis muscle, a neonatal myosin heavy-chain isoform is supplanted progressively by an adult isoform. This expression is under neuronal control. In this study we test the hypothesis that developmental myosin transformations are initiated near the motor endplate of each muscle fiber, thereafter progressing toward the fiber ends. By using immunocytochemical methods, pectoralis muscle from chickens aged 1-115 days after hatching were labeled by antibody against neonatal isoform. Ellipse minor axis and mean optical density of labeled and/or unlabeled fiber profiles from each bird were measured by computer image analysis. Acetylcholinesterase (AChE) activity was demonstrated histochemically. Using serial cross sections, we show that smaller fiber profiles are the tapered ends of larger fiber profiles. The largest fiber profiles (central regions of the fibers) were the first to lose their neonatal myosin during development. Motor endplates were localized by AChE activity to the central regions of the fibers. The pectoralis of mature chickens was denervated for 3, 7, 15, or 21 days. After 2 weeks' denervation, neonatal myosin is first reexpressed in the fiber ends. Dev Dyn 2000;217:50-61.
Collapse
Affiliation(s)
- B W Rosser
- Department of Anatomy and Cell Biology, University of Saskatchewan, College of Medicine, Saskatoon, Saskatchewan, Canada.
| | | | | | | | | |
Collapse
|
29
|
Fu AK, Cheung WM, Ip FC, Ip NY. Identification of genes induced by neuregulin in cultured myotubes. Mol Cell Neurosci 1999; 14:241-53. [PMID: 10576892 DOI: 10.1006/mcne.1999.0784] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The formation of the neuromuscular junction (NMJ) involves a series of inductive interactions between motor neurons and muscle fibers. The neural signals proposed to induce the mRNA expression of acetylcholine receptors in muscle include neuregulin (NRG). In the present study, we have employed RNA fingerprinting by arbitrarily primed PCR analysis to identify the differentially expressed transcripts following NRG treatment in cultured myotubes. Nine partial cDNA fragments were isolated; the mRNA expression of eight of these genes was found to be up-regulated by NRG. The spatial and temporal expression profiles of these NRG-regulated genes in rat tissues during development suggest potential functional roles during the formation of NMJ in vivo. Our findings not only allowed the identification of novel genes, but also suggested possible functions for some known genes that are consistent with their potential roles at the NMJ. Furthermore, the identification of G-protein beta1 subunit and G-protein-coupled receptor as NRG-regulated genes has provided the first demonstration that activation of the NRG signaling pathway can induce the expression of components in the G-protein signaling cascade.
Collapse
Affiliation(s)
- A K Fu
- Department of Biology and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, China
| | | | | | | |
Collapse
|
30
|
Yang JF, Zhou H, Choi RC, Ip NY, Peng HB, Tsim KW. A cysteine-rich form of Xenopus neuregulin induces the expression of acetylcholine receptors in cultured myotubes. Mol Cell Neurosci 1999; 13:415-29. [PMID: 10383827 DOI: 10.1006/mcne.1999.0759] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neuregulin-1 (NRG-1) has diverse functions in neural development, and one of them is to up regulate the expression of acetylcholine receptors (AChRs) at muscle fibers during the formation of neuromuscular junctions. NRG-1 has two prominent alternative splicing sites at the N-terminus; it could be an immunoglobulin (Ig)-like domain named Ig-NRG-1 or an apolar cysteine-rich domain (CRD) named CRD-NRG-1. cDNAs encoding Xenopus CRD-NRG-1 were isolated by cross-hybridization with Xenopus Ig-NRG-1 cDNA fragment. The amino acid sequence of Xenopus CRD-NRG-1 is 45 to 70% identical to the human, rat, and chick homologs. Similar to Ig-NRG-1, two variation sites within CRD-NRG-1 were identified at the spacer domain with 0 or 43 amino acids inserted and at the C-terminus of the EGF-like domain to derive either alpha or beta isoform. Two transcripts encoding CRD-NRG-1, approximately 7.5 and approximately 9.0 kb, were revealed in adult brain and spinal cord, but the expression in muscle was below the detectable level. The recombinant Xenopus CRD-NRG-1 when applied onto cultured myotubes was able to induce the tyrosine phosphorylation of ErbB receptors and the expression of AChR. The AChR-inducing activity of CRD-NRG-1 was precipitated by anti-NRG-1 antibody but not by heparin. In situ hybridization showed a strong expression of CRD-NRG-1 mRNA in developing brain, spinal cord, and myotomal muscles of Xenopus embryo. Similar to the results in other species, both CRD-NRG-1 and Ig-NRG-1 may play a role in the developing Xenopus neuromuscular junctions.
Collapse
Affiliation(s)
- J F Yang
- Department of Biology and Biotechnology Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
31
|
Boudreau-Larivière C, Jasmin BJ. Calcitonin gene-related peptide decreases expression of acetylcholinesterase in mammalian myotubes. FEBS Lett 1999; 444:22-6. [PMID: 10037141 DOI: 10.1016/s0014-5793(99)00015-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nerve-derived trophic factors are known to modulate expression of acetylcholinesterase (AChE) in skeletal muscle fibers, yet the precise identity of these factors remains elusive. In the present study, we treated mouse C2 myotubes with calcitonin gene-related peptide (CGRP). Compared to non-treated myotubes, cell-associated AChE activity levels were decreased by approximately 60% after 48 h of treatment. A parallel reduction in AChE total protein levels was also observed as determined by Western blot analysis. The reduction in AChE activity was due to a decrease in the levels of the G1 molecular form and to an elimination of G1. By contrast, levels of secreted AChE remained unchanged following CGRP treatment. Finally, the overall decrease in AChE activity was accompanied by a reduction in AChE transcripts which could not be attributed to changes in the transcriptional rate of the ACHE gene.
Collapse
MESH Headings
- Acetylcholinesterase/genetics
- Acetylcholinesterase/metabolism
- Animals
- Blotting, Western
- Calcitonin Gene-Related Peptide/pharmacology
- Cell Differentiation/drug effects
- Cell Line
- Down-Regulation/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Mice
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- C Boudreau-Larivière
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ont., Canada
| | | |
Collapse
|
32
|
Tsim K. The signaling pathway of calcitonin gene-related peptide-induced acetylcholinesterase expression in muscle is mediated by cyclic AMP. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0928-4257(99)80121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Choi RC, Yam SC, Hui B, Wan DC, Tsim KW. Over-expression of acetylcholinesterase stimulates the expression of agrin in NG108-15 cells. Neurosci Lett 1998; 248:17-20. [PMID: 9665653 DOI: 10.1016/s0304-3940(98)00320-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Several lines of evidence suggest the non-cholinergic functions of acetylcholinesterase (AChE) in promoting neurite outgrowth of cultured neurons and in inducing the postsynaptic specializations of developing neuromuscular junctions. In order to support the hypothesis, a cholinergic synapse-forming cell line NG108-15 was over-expressed with chick AChE by cDNA transfection. The transfected NG108-15 cells secreted a approximately 105-kDa protein, recognized by anti-AChE antibody in Western blot analysis, corresponding to the chick AChE catalytic subunit. Over 80% of the recombinant enzyme were secreted into the conditioned medium and they were enzymatically active. In the NG108-15 cell-muscle co-cultures, the AChR-aggregating activity of NG108-15 cells was increased by the over-expression of AChE. The increase in AChR-aggregating activity of the transfected NG108-15 cells paralleled with the increase in agrin and neurofilament expression of the transfected cells as determined by their corresponding antibodies. However, the intracellular cAMP level remained unchanged in the AChE over-expressed NG108-15 cells. These results support the hypothesis that AChE could play a role in promoting neuron differentiation.
Collapse
Affiliation(s)
- R C Choi
- Department of Biology and Biotechnology Research Institute, The Hong Kong University of Science and Technology, Kowloon, China
| | | | | | | | | |
Collapse
|