1
|
Garbouchian A, Montgomery AC, Gilbert SP, Bentley M. KAP is the neuronal organelle adaptor for Kinesin-2 KIF3AB and KIF3AC. Mol Biol Cell 2022; 33:ar133. [PMID: 36200888 PMCID: PMC9727798 DOI: 10.1091/mbc.e22-08-0336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Kinesin-driven organelle transport is crucial for neuron development and maintenance, yet the mechanisms by which kinesins specifically bind their organelle cargoes remain undefined. In contrast to other transport kinesins, the neuronal function and specific organelle adaptors of heterodimeric Kinesin-2 family members KIF3AB and KIF3AC remain unknown. We developed a novel microscopy-based assay to define protein-protein interactions in intact neurons. The experiments found that both KIF3AB and KIF3AC bind kinesin-associated protein (KAP). These interactions are mediated by the distal C-terminal tail regions and not the coiled-coil domain. We used live-cell imaging in cultured hippocampal neurons to define the localization and trafficking parameters of KIF3AB and KIF3AC organelle populations. We discovered that KIF3AB/KAP and KIF3AC/KAP bind the same organelle populations and defined their transport parameters in axons and dendrites. The results also show that ∼12% of KIF3 organelles contain the RNA-binding protein adenomatous polyposis coli. These data point toward a model in which KIF3AB and KIF3AC use KAP as their neuronal organelle adaptor and that these kinesins mediate transport of a range of organelles.
Collapse
Affiliation(s)
- Alex Garbouchian
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Andrew C. Montgomery
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Susan P. Gilbert
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Marvin Bentley
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180,*Address correspondence to: Marvin Bentley ()
| |
Collapse
|
2
|
Chen X, Bai X, Liu H, Zhao B, Yan Z, Hou Y, Chu Q. Population Genomic Sequencing Delineates Global Landscape of Copy Number Variations that Drive Domestication and Breed Formation of in Chicken. Front Genet 2022; 13:830393. [PMID: 35391799 PMCID: PMC8980806 DOI: 10.3389/fgene.2022.830393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
Copy number variation (CNV) is an important genetic mechanism that drives evolution and generates new phenotypic variations. To explore the impact of CNV on chicken domestication and breed shaping, the whole-genome CNVs were detected via multiple methods. Using the whole-genome sequencing data from 51 individuals, corresponding to six domestic breeds and wild red jungle fowl (RJF), we determined 19,329 duplications and 98,736 deletions, which covered 11,123 copy number variation regions (CNVRs) and 2,636 protein-coding genes. The principal component analysis (PCA) showed that these individuals could be divided into four populations according to their domestication and selection purpose. Seventy-two highly duplicated CNVRs were detected across all individuals, revealing pivotal roles of nervous system (NRG3, NCAM2), sensory (OR), and follicle development (VTG2) in chicken genome. When contrasting the CNVs of domestic breeds to those of RJFs, 235 CNVRs harboring 255 protein-coding genes, which were predominantly involved in pathways of nervous, immunity, and reproductive system development, were discovered. In breed-specific CNVRs, some valuable genes were identified, including HOXB7 for beard trait in Beijing You chicken; EDN3, SLMO2, TUBB1, and GFPT1 for melanin deposition in Silkie chicken; and SORCS2 for aggressiveness in Luxi Game fowl. Moreover, CSMD1 and NTRK3 with high duplications found exclusively in White Leghorn chicken, and POLR3H, MCM9, DOCK3, and AKR1B1L found in Recessive White Rock chicken may contribute to high egg production and fast-growing traits, respectively. The candidate genes of breed characteristics are valuable resources for further studies on phenotypic variation and the artificial breeding of chickens.
Collapse
Affiliation(s)
- Xia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xue Bai
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Binbin Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Zhixun Yan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yali Hou
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
3
|
Ma H, Zhang F, Zhong Q, Hou J. METTL3-mediated m6A modification of KIF3C-mRNA promotes prostate cancer progression and is negatively regulated by miR-320d. Aging (Albany NY) 2021; 13:22332-22344. [PMID: 34537760 PMCID: PMC8507285 DOI: 10.18632/aging.203541] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/14/2021] [Indexed: 05/09/2023]
Abstract
The occurrence of distant metastasis is one of the leading causes of death in patients with prostate cancer (PCa). It is confirmed that kinesin protein is associated with a variety of malignancies, and the KIF3 family is related to cancer, but the relationship between KIF3C and prostate cancer is not clear. Our experiments have confirmed that KIF3C is highly expressed in prostate cancer tissues and cell lines. Further, functional tests have proven that KIF3C can promote the growth migration and invasion of PCa. We used Starbase 3.0 to discover that methyltransferase like 3 (METTL3) interacts with KIF3C. Our hypothesis and experiments concluded that METTL3 induced m6A modification on KIF3C, promoting the stabilization of KIF3C-mRNA by IGF2 binding protein 1 (IGF2BP1). The prediction that miR-320d inhibits KIF3C expression by targeting METTL3 using the miRmap website, was later confirmed experimentally. Further, a recovery experiment was used to confirm that miR-320d inhibited the progression of prostate cancer. KIF3C was overexpressed in prostate cancer, promoting its growth migration and invasion was induced by miR-320d/METTL3 in an m6A dependent process.
Collapse
Affiliation(s)
- Honggui Ma
- The Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215031, Jiangsu, China
| | - Facai Zhang
- The Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Quliang Zhong
- The Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Jianquan Hou
- The Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215031, Jiangsu, China
| |
Collapse
|
4
|
Liu H, Liu R, Hao M, Zhao X, Li C. Kinesin family member 3C (KIF3C) is a novel non-small cell lung cancer (NSCLC) oncogene whose expression is modulated by microRNA-150-5p (miR-150-5p) and microRNA-186-3p (miR-186-3p). Bioengineered 2021; 12:3077-3088. [PMID: 34193018 PMCID: PMC8806907 DOI: 10.1080/21655979.2021.1942768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study is aimed at investigating the biological function of kinesin family member 3 C (KIF3C) in non-small cell lung cancer (NSCLC) progression and its upstream regulatory mechanism. Quantitative real-time PCR, Western blot and immunohistochemistry were adopted to examine microRNA-150-5p (miR-150-5p), microRNA-186-3p (miR-186-3p) and kinesin family member 3 C (KIF3C) expression levels. NSCLC cell proliferation, migration, and invasion were detected through cell counting kit-8 (CCK-8) assay, EdU assay, and Transwell assay. The metastasis of NSCLC cells was evaluated utilizing a pulmonary metastasis model in nude mice in vivo. The targeted relationship among KIF3C 3ʹUTR, miR-186-3p, and miR-150-5p were verified by dual-luciferase reporter gene assays. It was confirmed that in NSCLC tissues and cells, KIF3C expression level was increased and KIF3C overexpression promoted NSCLC cell proliferation and metastasis. Additionally, miR-150-5p and miR-186-3p directly targeted KIF3C to repress its expression. Our data suggest that KIF3C, which is negatively regulated by miR-150-5p and miR-186-3p, is an oncogenic factor in NSCLC progression.
Collapse
Affiliation(s)
- Haiwang Liu
- Department of Pathology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Ran Liu
- Anesthesiology Department of Southern District, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Meiling Hao
- Department of Pathology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Xing Zhao
- Department of Pathology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Chunhui Li
- Department of Pathology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| |
Collapse
|
5
|
KIF3C Promotes Proliferation, Migration, and Invasion of Glioma Cells by Activating the PI3K/AKT Pathway and Inducing EMT. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6349312. [PMID: 33150178 PMCID: PMC7603552 DOI: 10.1155/2020/6349312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/06/2020] [Indexed: 01/01/2023]
Abstract
Kinesin superfamily protein 3C (KIF3C), a motor protein of the kinesin superfamily, is expressed in the central nervous system (CNS). Recently, several studies have suggested that KIF3C may act as a potential therapeutic target in solid tumors. However, the exact function and possible mechanism of the motor protein KIF3C in glioma remain unclear. In this study, a variety of tests including CCK-8, migration, invasion, and flow cytometry assays, and western blot were conducted to explore the role of KIF3C in glioma cell lines (U87 and U251). We found that overexpression of KIF3C in glioma cell lines promoted cell proliferation, migration, and invasion and suppressed apoptosis, while silencing of KIF3C reversed these effects. Ectopic KIF3C also increased the expression of N-cadherin, vimentin, snail, and slug to promote the epithelial-mesenchymal transition (EMT). Mechanistically, overexpression of KIF3C increased the levels of phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (p-AKT). These responses were reversed by KIF3C downregulation or AKT inhibition. Our results indicate that KIF3C promotes proliferation, migration, and invasion and inhibits apoptosis in glioma cells, possibly by activating the PI3K/AKT pathway in vitro. KIF3C might act as a potential biomarker or therapeutic target for further basic research or clinical management of glioma.
Collapse
|
6
|
KIF3C is associated with favorable prognosis in glioma patients and may be regulated by PI3K/AKT/mTOR pathway. J Neurooncol 2020; 146:513-521. [DOI: 10.1007/s11060-020-03399-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/03/2023]
|
7
|
Deeb SK, Guzik-Lendrum S, Jeffrey JD, Gilbert SP. The ability of the kinesin-2 heterodimer KIF3AC to navigate microtubule networks is provided by the KIF3A motor domain. J Biol Chem 2019; 294:20070-20083. [PMID: 31748411 PMCID: PMC6937563 DOI: 10.1074/jbc.ra119.010725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/17/2019] [Indexed: 01/13/2023] Open
Abstract
Heterodimeric kinesin family member KIF3AC is a mammalian kinesin-2 that is highly expressed in the central nervous system and has been implicated in intracellular transport. KIF3AC is unusual in that the motility characteristics of KIF3C when expressed as a homodimer are exceeding slow, whereas homodimeric KIF3AA, as well as KIF3AC, have much faster ATPase kinetics and single molecule velocities. Heterodimeric KIF3AC and homodimeric KIF3AA and KIF3CC are processive, although the run length of KIF3AC exceeds that of KIF3AA and KIF3CC. KIF3C is of particular interest because it exhibits a signature 25-residue insert of glycine and serine residues in loop L11 of its motor domain, and this insert is not present in any other kinesin, suggesting that it confers specific properties to mammalian heterodimeric KIF3AC. To gain a better understanding of the mechanochemical potential of KIF3AC, we pursued a single molecule study to characterize the navigation ability of KIF3AC, KIF3AA, and KIF3CC when encountering microtubule intersections. The results show that all three motors exhibited a preference to remain on the same microtubule when approaching an intersection from the top microtubule, and the majority of track switches occurred from the bottom microtubule onto the top microtubule. Heterodimeric KIF3AC and homodimeric KIF3AA displayed a similar likelihood of switching tracks (36.1 and 32.3%, respectively). In contrast, KIF3CC detached at intersections (67.7%) rather than switch tracks. These results indicate that it is the properties of KIF3A that contribute largely to the ability of KIF3AC to switch microtubule tracks to navigate intersections.
Collapse
Affiliation(s)
- Stephanie K Deeb
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Stephanie Guzik-Lendrum
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jasper D Jeffrey
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Susan P Gilbert
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
8
|
de Melo TP, de Camargo GMF, de Albuquerque LG, Carvalheiro R. Genome-wide association study provides strong evidence of genes affecting the reproductive performance of Nellore beef cows. PLoS One 2017; 12:e0178551. [PMID: 28562680 PMCID: PMC5451131 DOI: 10.1371/journal.pone.0178551] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/15/2017] [Indexed: 12/31/2022] Open
Abstract
Reproductive traits are economically important for beef cattle production; however, these traits are still a bottleneck in indicine cattle since these animals typically reach puberty at older ages when compared to taurine breeds. In addition, reproductive traits are complex phenotypes, i.e., they are controlled by both the environment and many small-effect genes involved in different pathways. In this study, we conducted genome-wide association study (GWAS) and functional analyses to identify important genes and pathways associated with heifer rebreeding (HR) and with the number of calvings at 53 months of age (NC53) in Nellore cows. A total of 142,878 and 244,311 phenotypes for HR and NC53, respectively, and 2,925 animals genotyped with the Illumina Bovine HD panel (Illumina®, San Diego, CA, USA) were used in GWAS applying the weighted single-step GBLUP (WssGBLUP) method. Several genes associated with reproductive events were detected in the 20 most important 1Mb windows for both traits. Significant pathways for HR and NC53 were associated with lipid metabolism and immune processes, respectively. MHC class II genes, detected on chromosome 23 (window 25-26Mb) for NC53, were significantly associated with pregnancy success of Nellore cows. These genes have been proved previously to be associated with reproductive traits such as mate choice in other breeds and species. Our results suggest that genes associated with the reproductive traits HR and NC53 may be involved in embryo development in mammalian species. Furthermore, some genes associated with mate choice may affect pregnancy success in Nellore cattle.
Collapse
Affiliation(s)
- Thaise Pinto de Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP – Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | | | - Lucia Galvão de Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP – Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
- National Council for Scientific and Technological Development (CNPq), Brasília, DF, Brazil
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP – Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
- National Council for Scientific and Technological Development (CNPq), Brasília, DF, Brazil
- * E-mail:
| |
Collapse
|
9
|
Guzik-Lendrum S, Rank KC, Bensel BM, Taylor KC, Rayment I, Gilbert SP. Kinesin-2 KIF3AC and KIF3AB Can Drive Long-Range Transport along Microtubules. Biophys J 2016; 109:1472-82. [PMID: 26445448 DOI: 10.1016/j.bpj.2015.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 12/14/2022] Open
Abstract
Mammalian KIF3AC is classified as a heterotrimeric kinesin-2 that is best known for organelle transport in neurons, yet in vitro studies to characterize its single molecule behavior are lacking. The results presented show that a KIF3AC motor that includes the native helix α7 sequence for coiled-coil formation is highly processive with run lengths of ∼1.23 μm and matching those exhibited by conventional kinesin-1. This result was unexpected because KIF3AC exhibits the canonical kinesin-2 neck-linker sequence that has been reported to be responsible for shorter run lengths observed for another heterotrimeric kinesin-2, KIF3AB. However, KIF3AB with its native neck linker and helix α7 is also highly processive with run lengths of ∼1.62 μm and exceeding those of KIF3AC and kinesin-1. Loop L11, a component of the microtubule-motor interface and implicated in activating ADP release upon microtubule collision, is significantly extended in KIF3C as compared with other kinesins. A KIF3AC encoding a truncation in KIF3C loop L11 (KIF3ACΔL11) exhibited longer run lengths at ∼1.55 μm than wild-type KIF3AC and were more similar to KIF3AB run lengths, suggesting that L11 also contributes to tuning motor processivity. The steady-state ATPase results show that shortening L11 does not alter kcat, consistent with the observation that single molecule velocities are not affected by this truncation. However, shortening loop L11 of KIF3C significantly increases the microtubule affinity of KIF3ACΔL11, revealing another structural and mechanistic property that can modulate processivity. The results presented provide new, to our knowledge, insights to understand structure-function relationships governing processivity and a better understanding of the potential of KIF3AC for long-distance transport in neurons.
Collapse
Affiliation(s)
- Stephanie Guzik-Lendrum
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Katherine C Rank
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin
| | - Brandon M Bensel
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Keenan C Taylor
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin.
| | - Susan P Gilbert
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.
| |
Collapse
|
10
|
Zhang P, Rayment I, Gilbert SP. Fast or Slow, Either Head Can Start the Processive Run of Kinesin-2 KIF3AC. J Biol Chem 2015; 291:4407-16. [PMID: 26710851 DOI: 10.1074/jbc.m115.705970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Indexed: 11/06/2022] Open
Abstract
Mammalian KIF3AC contains two distinct motor polypeptides and is best known for its role in organelle transport in neurons. Our recent studies showed that KIF3AC is as processive as conventional kinesin-1, suggesting that their ATPase mechanochemistry may be similar. However, the presence of two different motor polypeptides in KIF3AC implies that there must be a cellular advantage for the KIF3AC heterodimer. The hypothesis tested was whether there is an intrinsic bias within KIF3AC such that either KIF3A or KIF3C initiates the processive run. To pursue these experiments, a mechanistic approach was used to compare the pre-steady-state kinetics of KIF3AC to the kinetics of homodimeric KIF3AA and KIF3CC. The results indicate that microtubule collision at 11.4 μM(-1) s(-1) coupled with ADP release at 78 s(-1) are fast steps for homodimeric KIF3AA. In contrast, KIF3CC exhibits much slower microtubule association at 2.1 μM(-1) s(-1) and ADP release at 8 s(-1). For KIF3AC, microtubule association at 6.6 μM(-1) s(-1) and ADP release at 51 s(-1) are intermediate between the constants for KIF3AA and KIF3CC. These results indicate that either KIF3A or KIF3C can initiate the processive run. Surprisingly, the kinetics of the initial event of microtubule collision followed by ADP release for KIF3AC is not equivalent to 1:1 mixtures of KIF3AA plus KIF3CC homodimers at the same motor concentration. These results reveal that the intermolecular communication within the KIF3AC heterodimer modulates entry into the processive run regardless of whether the run is initiated by the KIF3A or KIF3C motor domain.
Collapse
Affiliation(s)
- Pengwei Zhang
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Ivan Rayment
- the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Susan P Gilbert
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| |
Collapse
|
11
|
Dimassi S, Labalme A, Ville D, Calender A, Mignot C, Boutry-Kryza N, de Bellescize J, Rivier-Ringenbach C, Bourel-Ponchel E, Cheillan D, Simonet T, Maincent K, Rossi M, Till M, Mougou-Zerelli S, Edery P, Saad A, Heron D, des Portes V, Sanlaville D, Lesca G. Whole-exome sequencing improves the diagnosis yield in sporadic infantile spasm syndrome. Clin Genet 2015; 89:198-204. [PMID: 26138355 DOI: 10.1111/cge.12636] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/13/2015] [Accepted: 06/29/2015] [Indexed: 12/25/2022]
Abstract
Infantile spasms syndrome (ISs) is characterized by clinical spasms with ictal electrodecrement, usually occurring before the age of 1 year and frequently associated with cognitive impairment. Etiology is widely heterogeneous, the cause remaining elusive in 40% of patients. We searched for de novo mutations in 10 probands with ISs and their parents using whole-exome sequencing (WES). Patients had neither consanguinity nor family history of epilepsy. Common causes of ISs were excluded by brain magnetic resonance imaging (MRI), metabolic screening, array-comparative genomic hybridization (CGH) and testing for mutations in CDKL5, STXBP1, and for ARX duplications. We found a probably pathogenic mutation in four patients. Missense mutations in SCN2A (p.Leu1342Pro) and KCNQ2 (p.Ala306Thr) were found in two patients with no history of epilepsy before the onset of ISs. The p.Asn107Ser missense mutation of ALG13 had been previously reported in four females with ISs. The fourth mutation was an in-frame deletion (p.Phe110del) in NR2F1, a gene whose mutations cause intellectual disability, epilepsy, and optic atrophy. In addition, we found a possibly pathogenic variant in KIF3C that encodes a kinesin expressed during neural development. Our results confirm that WES improves significantly the diagnosis yield in patients with sporadic ISs.
Collapse
Affiliation(s)
- S Dimassi
- Department of Medical Genetics, Lyon University Hospital, Lyon, France.,CNRS UMR 5292, INSERM U1028, CNRL, Lyon, France.,Claude Bernard Lyon I University, University of Lyon, Lyon, France.,Cytogenetics and Reproductive Biology Department, Farhat Hached University Teaching Hospital, Sousse, Tunisia.,Common Service Units for Research in Genetics, Faculty of Medicine of Sousse, Avenue Mohamed Karoui, University of Sousse, Tunisia
| | - A Labalme
- Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - D Ville
- Department of Neuropediatrics, Lyon University Hospital, Lyon, France
| | - A Calender
- Claude Bernard Lyon I University, University of Lyon, Lyon, France.,Department of Molecular Genetics, Lyon University Hospital, Lyon, France
| | - C Mignot
- Département de Génétique et Centre de Référence "Déficiences intellectuelles de causes rares", AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Department of Pediatric Neurophysiology, Amiens University Hospital, Amiens, France
| | - N Boutry-Kryza
- CNRS UMR 5292, INSERM U1028, CNRL, Lyon, France.,Claude Bernard Lyon I University, University of Lyon, Lyon, France.,Department of Molecular Genetics, Lyon University Hospital, Lyon, France
| | - J de Bellescize
- Epilepsy, Sleep and Pediatric Neurophysiology Department, Lyon University Hospital, Lyon, France
| | - C Rivier-Ringenbach
- Department of Pediatrics, Nord-Ouest Hospital, Villefranche-sur-Saone, France
| | - E Bourel-Ponchel
- Department of Pediatric Neurophysiology, Amiens University Hospital, Amiens, France
| | - D Cheillan
- Claude Bernard Lyon I University, University of Lyon, Lyon, France.,Service des Maladies Héréditaires du métabolisme, INSERM U1060, Lyon University Hospital, Lyon, France
| | - T Simonet
- Department of Cell Biotechnology, ENS Lyon, Lyon University Hospital, Lyon, France
| | - K Maincent
- Department of Pediatric Neurology, Hôpital Trousseau, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - M Rossi
- Department of Medical Genetics, Lyon University Hospital, Lyon, France.,CNRS UMR 5292, INSERM U1028, CNRL, Lyon, France
| | - M Till
- Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - S Mougou-Zerelli
- Cytogenetics and Reproductive Biology Department, Farhat Hached University Teaching Hospital, Sousse, Tunisia.,Common Service Units for Research in Genetics, Faculty of Medicine of Sousse, Avenue Mohamed Karoui, University of Sousse, Tunisia
| | - P Edery
- Department of Medical Genetics, Lyon University Hospital, Lyon, France.,CNRS UMR 5292, INSERM U1028, CNRL, Lyon, France.,Claude Bernard Lyon I University, University of Lyon, Lyon, France
| | - A Saad
- Cytogenetics and Reproductive Biology Department, Farhat Hached University Teaching Hospital, Sousse, Tunisia.,Common Service Units for Research in Genetics, Faculty of Medicine of Sousse, Avenue Mohamed Karoui, University of Sousse, Tunisia
| | - D Heron
- Département de Génétique et Centre de Référence "Déficiences intellectuelles de causes rares", AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,GRC-Génétique des Déficiences Intellectuelles de Causes rares, Université Pierre et Marie Curie, Paris, France
| | - V des Portes
- Department of Neuropediatrics, Lyon University Hospital, Lyon, France.,Department of Molecular Genetics, Lyon University Hospital, Lyon, France.,Reference Center for Tuberous Sclerosis and Rare Epileptic Syndromes, Lyon University Hospital, Lyon, France
| | - D Sanlaville
- Department of Medical Genetics, Lyon University Hospital, Lyon, France.,CNRS UMR 5292, INSERM U1028, CNRL, Lyon, France.,Claude Bernard Lyon I University, University of Lyon, Lyon, France
| | - G Lesca
- Department of Medical Genetics, Lyon University Hospital, Lyon, France.,CNRS UMR 5292, INSERM U1028, CNRL, Lyon, France.,Claude Bernard Lyon I University, University of Lyon, Lyon, France
| |
Collapse
|
12
|
Atherton J, Houdusse A, Moores C. MAPping out distribution routes for kinesin couriers. Biol Cell 2013; 105:465-87. [PMID: 23796124 DOI: 10.1111/boc.201300012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/17/2013] [Indexed: 12/14/2022]
Abstract
In the crowded environment of eukaryotic cells, diffusion is an inefficient distribution mechanism for cellular components. Long-distance active transport is required and is performed by molecular motors including kinesins. Furthermore, in highly polarised, compartmentalised and plastic cells such as neurons, regulatory mechanisms are required to ensure appropriate spatio-temporal delivery of neuronal components. The kinesin machinery has diversified into a large number of kinesin motor proteins as well as adaptor proteins that are associated with subsets of cargo. However, many mechanisms contribute to the correct delivery of these cargos to their target domains. One mechanism is through motor recognition of sub-domain-specific microtubule (MT) tracks, sign-posted by different tubulin isoforms, tubulin post-translational modifications, tubulin GTPase activity and MT-associated proteins (MAPs). With neurons as a model system, a critical review of these regulatory mechanisms is presented here, with a particular focus on the emerging contribution of compartmentalised MAPs. Overall, we conclude that - especially for axonal cargo - alterations to the MT track can influence transport, although in vivo, it is likely that multiple track-based effects act synergistically to ensure accurate cargo distribution.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | | | | |
Collapse
|
13
|
The kinesin-2 family member KIF3C regulates microtubule dynamics and is required for axon growth and regeneration. J Neurosci 2013; 33:11329-45. [PMID: 23843507 DOI: 10.1523/jneurosci.5221-12.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axon regeneration after injury requires the extensive reconstruction, reorganization, and stabilization of the microtubule cytoskeleton in the growth cones. Here, we identify KIF3C as a key regulator of axonal growth and regeneration by controlling microtubule dynamics and organization in the growth cone. KIF3C is developmentally regulated. Rat embryonic sensory axons and growth cones contain undetectable levels of KIF3C protein that is locally translated immediately after injury. In adult neurons, KIF3C is axonally transported from the cell body and is enriched at the growth cone where it preferentially binds to tyrosinated microtubules. Functionally, the interaction of KIF3C with EB3 is necessary for its localization at the microtubule plus-ends in the growth cone. Depletion of KIF3C in adult neurons leads to an increase in stable, overgrown and looped microtubules because of a strong decrease in the microtubule frequency of catastrophes, suggesting that KIF3C functions as a microtubule-destabilizing factor. Adult axons lacking KIF3C, by RNA interference or KIF3C gene knock-out, display an impaired axonal outgrowth in vitro and a delayed regeneration after injury both in vitro and in vivo. Murine KIF3C knock-out embryonic axons grow normally but do not regenerate after injury because they are unable to locally translate KIF3C. These data show that KIF3C is an injury-specific kinesin that contributes to axon growth and regeneration by regulating and organizing the microtubule cytoskeleton in the growth cone.
Collapse
|
14
|
Dang R, Zhu JQ, Tan FQ, Wang W, Zhou H, Yang WX. Molecular characterization of a KIF3B-like kinesin gene in the testis of Octopus tankahkeei (Cephalopoda, Octopus). Mol Biol Rep 2011; 39:5589-98. [PMID: 22183304 DOI: 10.1007/s11033-011-1363-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 12/12/2011] [Indexed: 01/03/2023]
Abstract
KIF3B is known for maintaining and assembling cilia and flagellum. To date, the function of KIF3B and its relationship with KIF3A during spermiogenesis in the cephalopod Octopus tankahkeei remains unknown. In the present study, we characterized a gene encoding a homologue of rat KIF3B in the O. tankahkeei testis and examined its temporal and spatial expression pattern during spermiogenesis. The cDNA of KIF3B was obtained with degenerate and RACE PCR and the distribution pattern of ot-kif3b were observed with RT-PCR. The morphological development during spermiogenesis was illustrated by histological and transmission electron microscopy and mRNA expression of ot-kif3b was observed by in situ hybridization. The 2,365 nucleotides cDNA consisted of a 102 bp 5' untranslated region (UTR), a 2,208 bp open reading frame (ORF) encoding a protein of 736 amino acids, and a 55 bp 3' UTR. Multiple alignments revealed that the putative Ot-KIF3B shared 68, 68, 69, 68, and 67% identity with that of Homo sapiens, Mus musculus, Gallus gallus, Danio rerio, and Xenopus laevis, respectively, along with high identities with Ot-KIF3A in fundamental structures. Ot-kif3b transcripts appeared gradually in early spermatids, increased in intermediate spermatids and maximized in drastically remodeled and final spermatids. The kif3b gene is identified and its expression pattern is demonstrated for the first time in O. tankahkeei. Compared to ot-kif3a reported by our laboratory before, our data suggested that the putative heterodimeric motor proteins Ot-KIF3A/B may be involved in intraspermatic transport and might contribute to structural changes during spermiogenesis.
Collapse
Affiliation(s)
- Ran Dang
- Faculty of Life Science and Bioengineering, Ningbo University, 315211, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
McCarthy MJ, Leckband SG, Kelsoe JR. Pharmacogenetics of lithium response in bipolar disorder. Pharmacogenomics 2011; 11:1439-65. [PMID: 21047205 DOI: 10.2217/pgs.10.127] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bipolar disorder (BD) is a serious mental illness with well-established, but poorly characterized genetic risk. Lithium is among the best proven mood stabilizer therapies for BD, but treatment responses vary considerably. Based upon these and other findings, it has been suggested that lithium-responsive BD may be a genetically distinct phenotype within the mood disorder spectrum. This assertion has practical implications both for the treatment of BD and for understanding the neurobiological basis of the illness: genetic variation within lithium-sensitive signaling pathways may confer preferential treatment response, and the involved genes may underlie BD in some individuals. Presently, the mechanism of lithium is reviewed with an emphasis on gene-expression changes in response to lithium. Within this context, findings from genetic-association studies designed to identify lithium response genes in BD patients are evaluated. Finally, a framework is proposed by which future pharmacogenetic studies can incorporate advances in genetics, molecular biology and bioinformatics in a pathway-based approach to predicting lithium treatment response.
Collapse
Affiliation(s)
- Michael J McCarthy
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
16
|
Ganesan AK, Kho Y, Kim SC, Chen Y, Zhao Y, White MA. Broad spectrum identification of SUMO substrates in melanoma cells. Proteomics 2007; 7:2216-21. [PMID: 17549794 DOI: 10.1002/pmic.200600971] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like phosphorylation, protein sumoylation likely represents a dynamic PTM to alter protein function in support of cell regulatory systems. The broad-spectrum impact of transient or chronic engagement of signal transduction cascades on protein sumoylation has not been explored. Here, we find that epidermal growth factor (EGF) stimulation evokes a rapid alteration in small ubiquitin modifier (SUMO) target selection, while oncogene expression alters steady-state SUMO-protein profiles. A proteomic SUMO target analysis in melanoma cells identified proteins involved in cellular signaling, growth control, and neural differentiation.
Collapse
Affiliation(s)
- Anand K Ganesan
- Department of Dermatology, University of California, Irvine, CA 92697-2400, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Li GN, Livi LL, Gourd CM, Deweerd ES, Hoffman-Kim D. Genomic and morphological changes of neuroblastoma cells in response to three-dimensional matrices. ACTA ACUST UNITED AC 2007; 13:1035-47. [PMID: 17439391 DOI: 10.1089/ten.2006.0251] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Advances in neural tissue engineering require a comprehensive understanding of neuronal growth in 3 dimensions. This study compared the gene expression of SH-SY5Y human neuroblastoma cells cultured in 3-dimensional (3D) with those cultured in 2-dimensional (2D) environments. Microarray analysis demonstrated that, in response to varying matrix geometry, SH-SY5Y cells exhibited differential expression of 1,766 genes in collagen I, including those relevant to cytoskeleton, extracellular matrix, and neurite outgrowth. Cells extended longer neurites in 3D collagen I cultures than in 2D. Real-time reverse transcriptase polymerase chain reaction experiments and morphological analysis comparing collagen I and Matrigel tested whether the differential growth and gene expression reflected influences of culture dimension or culture material. SH-SY5Y neuroblastoma cells responded to geometry by differentially regulating cell spreading and genes associated with actin in similar patterns for both materials; however, neurite outgrowth and the expression of the gene encoding for neurofilament varied with the type of material. Electron microscopy and mechanical analysis showed that collagen I was more fibrillar than Matrigel, with larger inter-fiber distance and higher stiffness. Taken together, these results suggest complex cell-material interactions, in which the dimension of the culture material influences gene expression and cell spreading and the structural and mechanical properties of the culture material influence gene expression and neurite outgrowth.
Collapse
Affiliation(s)
- Grace N Li
- Center for Biomedical Engineering, Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
18
|
Gurkan C, Lapp H, Alory C, Su AI, Hogenesch JB, Balch WE. Large-scale profiling of Rab GTPase trafficking networks: the membrome. Mol Biol Cell 2005; 16:3847-64. [PMID: 15944222 PMCID: PMC1182321 DOI: 10.1091/mbc.e05-01-0062] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rab GTPases and SNARE fusion proteins direct cargo trafficking through the exocytic and endocytic pathways of eukaryotic cells. We have used steady state mRNA expression profiling and computational hierarchical clustering methods to generate a global overview of the distribution of Rabs, SNAREs, and coat machinery components, as well as their respective adaptors, effectors, and regulators in 79 human and 61 mouse nonredundant tissues. We now show that this systems biology approach can be used to define building blocks for membrane trafficking based on Rab-centric protein activity hubs. These Rab-regulated hubs provide a framework for an integrated coding system, the membrome network, which regulates the dynamics of the specialized membrane architecture of differentiated cells. The distribution of Rab-regulated hubs illustrates a number of facets that guides the overall organization of subcellular compartments of cells and tissues through the activity of dynamic protein interaction networks. An interactive website for exploring datasets comprising components of the Rab-regulated hubs that define the membrome of different cell and organ systems in both human and mouse is available at http://www.membrome.org/.
Collapse
Affiliation(s)
- Cemal Gurkan
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Recent research on kinesin motors has outlined the diversity of the superfamily and defined specific cargoes moved by kinesin family (KIF) members. Owing to the difficulty of purifying large amounts of native motors, much of this work has relied on recombinant proteins expressed in vitro. This approach does not allow ready determination of the complement of kinesin motors present in a given tissue, the relative amounts of different motors, or comparison of their native activities. To address these questions, we isolated nucleotide-dependent, microtubule-binding proteins from 13-day chick embryo brain. Proteins were enriched by microtubule affinity purification, then subjected to velocity sedimentation to separate the 20S dynein/dynactin pool from a slower sedimenting KIF containing pool. Analysis of the latter pool by anion exchange chromatography revealed three KIF species: kinesin I (KIF5), kinesin II (KIF3), and KIF1C (Unc104/KIF1). The most abundant species, kinesin I, exhibited the expected long range microtubule gliding activity. By contrast, KIF1C did not move microtubules. Kinesin II, the second most abundant KIF, could be fractionated into two pools, one containing predominantly A/B isoforms and the other containing A/C isoforms. The two motor species had similar activities, powering microtubule gliding at slower speeds and over shorter distances than kinesin I.
Collapse
Affiliation(s)
- Matthew A Berezuk
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|