1
|
Alhumaid A, Liu F, Shan S, Jafari E, Nourin N, Somanath PR, Narayanan SP. Spermine oxidase inhibitor, MDL 72527, reduced neovascularization, vascular permeability, and acrolein-conjugated proteins in a mouse model of ischemic retinopathy. Tissue Barriers 2024:2347070. [PMID: 38682891 DOI: 10.1080/21688370.2024.2347070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Disruptions in polyamine metabolism have been identified as contributing factors to various central nervous system disorders. Our laboratory has previously highlighted the crucial role of polyamine oxidation in retinal disease models, specifically noting elevated levels of spermine oxidase (SMOX) in inner retinal neurons. Our prior research demonstrated that inhibiting SMOX with MDL 72527 protected against vascular injury and microglial activation induced by hyperoxia in the retina. However, the effects of SMOX inhibition on retinal neovascularization and vascular permeability, along with the underlying molecular mechanisms of vascular protection, remain incompletely understood. In this study, we utilized the oxygen-induced retinopathy (OIR) model to explore the impact of SMOX inhibition on retinal neovascularization, vascular permeability, and the molecular mechanisms underlying MDL 72527-mediated vasoprotection in the OIR retina. Our findings indicate that inhibiting SMOX with MDL 72527 mitigated vaso-obliteration and neovascularization in the OIR retina. Additionally, it reduced OIR-induced vascular permeability and Claudin-5 expression, suppressed acrolein-conjugated protein levels, and downregulated P38/ERK1/2/STAT3 signaling. Furthermore, our results revealed that treatment with BSA-Acrolein conjugates significantly decreased the viability of human retinal endothelial cells (HRECs) and activated P38 signaling. These observations contribute valuable insights into the potential therapeutic benefits of SMOX inhibition by MDL 72527 in ischemic retinopathy.
Collapse
Affiliation(s)
- Abdullah Alhumaid
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Fang Liu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Eissa Jafari
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Department of Pharmacy Practice, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Nadia Nourin
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
- Vascular Biology Center, Augusta University, Augusta, GA, USA
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| |
Collapse
|
2
|
Treatment with MDL 72527 Ameliorated Clinical Symptoms, Retinal Ganglion Cell Loss, Optic Nerve Inflammation, and Improved Visual Acuity in an Experimental Model of Multiple Sclerosis. Cells 2022; 11:cells11244100. [PMID: 36552864 PMCID: PMC9776605 DOI: 10.3390/cells11244100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple Sclerosis (MS) is a highly disabling neurological disease characterized by inflammation, neuronal damage, and demyelination. Vision impairment is one of the major clinical features of MS. Previous studies from our lab have shown that MDL 72527, a pharmacological inhibitor of spermine oxidase (SMOX), is protective against neurodegeneration and inflammation in the models of diabetic retinopathy and excitotoxicity. In the present study, utilizing the experimental autoimmune encephalomyelitis (EAE) model of MS, we determined the impact of SMOX blockade on retinal neurodegeneration and optic nerve inflammation. The increased expression of SMOX observed in EAE retinas was associated with a significant loss of retinal ganglion cells, degeneration of synaptic contacts, and reduced visual acuity. MDL 72527-treated mice exhibited markedly reduced motor deficits, improved neuronal survival, the preservation of synapses, and improved visual acuity compared to the vehicle-treated group. The EAE-induced increase in macrophage/microglia was markedly reduced by SMOX inhibition. Upregulated acrolein conjugates in the EAE retina were decreased through MDL 72527 treatment. Mechanistically, the EAE-induced ERK-STAT3 signaling was blunted by SMOX inhibition. In conclusion, our studies demonstrate the potential benefits of targeting SMOX to treat MS-mediated neuroinflammation and vision loss.
Collapse
|
3
|
Identification and Characterization of Novel Small-Molecule SMOX Inhibitors. Med Sci (Basel) 2022; 10:medsci10030047. [PMID: 36135832 PMCID: PMC9504029 DOI: 10.3390/medsci10030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
The major intracellular polyamines spermine and spermidine are abundant and ubiquitous compounds that are essential for cellular growth and development. Spermine catabolism is mediated by spermine oxidase (SMOX), a highly inducible flavin-dependent amine oxidase that is upregulated during excitotoxic, ischemic, and inflammatory states. In addition to the loss of radical scavenging capabilities associated with spermine depletion, the catabolism of spermine by SMOX results in the production of toxic byproducts, including H2O2 and acrolein, a highly toxic aldehyde with the ability to form adducts with DNA and inactivate vital cellular proteins. Despite extensive evidence implicating SMOX as a key enzyme contributing to secondary injury associated with multiple pathologic states, the lack of potent and selective inhibitors has significantly impeded the investigation of SMOX as a therapeutic target. In this study, we used a virtual and physical screening approach to identify and characterize a series of hit compounds with inhibitory activity against SMOX. We now report the discovery of potent and highly selective SMOX inhibitors 6 (IC50 0.54 μM, Ki 1.60 μM) and 7 (IC50 0.23 μM, Ki 0.46 μM), which are the most potent SMOX inhibitors reported to date. We hypothesize that these selective SMOX inhibitors will be useful as chemical probes to further elucidate the impact of polyamine catabolism on mechanisms of cellular injury.
Collapse
|
4
|
The Involvement of Polyamines Catabolism in the Crosstalk between Neurons and Astrocytes in Neurodegeneration. Biomedicines 2022; 10:biomedicines10071756. [PMID: 35885061 PMCID: PMC9312548 DOI: 10.3390/biomedicines10071756] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022] Open
Abstract
In mammalian cells, the content of polyamines is tightly regulated. Polyamines, including spermine, spermidine and putrescine, are involved in many cellular processes. Spermine oxidase specifically oxidizes spermine, and its deregulated activity has been reported to be linked to brain pathologies involving neuron damage. Spermine is a neuromodulator of a number of ionotropic glutamate receptors and types of ion channels. In this respect, the Dach-SMOX mouse model overexpressing spermine oxidase in the neocortex neurons was revealed to be a model of chronic oxidative stress, excitotoxicity and neuronal damage. Reactive astrocytosis, chronic oxidative and excitotoxic stress, neuron loss and the susceptibility to seizure in the Dach-SMOX are discussed here. This genetic model would help researchers understand the linkage between polyamine dysregulation and neurodegeneration and unveil the roles of polyamines in the crosstalk between astrocytes and neurons in neuroprotection or neurodegeneration.
Collapse
|
5
|
Alfarhan M, Liu F, Shan S, Pichavaram P, Somanath PR, Narayanan SP. Pharmacological Inhibition of Spermine Oxidase Suppresses Excitotoxicity Induced Neuroinflammation in Mouse Retina. Int J Mol Sci 2022; 23:2133. [PMID: 35216248 PMCID: PMC8875684 DOI: 10.3390/ijms23042133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Polyamine oxidation plays a major role in neurodegenerative diseases. Previous studies from our laboratory demonstrated that spermine oxidase (SMOX, a member of the polyamine oxidase family) inhibition using MDL 72527 reduced neurodegeneration in models of retinal excitotoxicity and diabetic retinopathy. However, the mechanisms behind the neuroprotection offered by SMOX inhibition are not completely studied. Utilizing the experimental model of retinal excitotoxicity, the present study determined the impact of SMOX blockade in retinal neuroinflammation. Our results demonstrated upregulation in the number of cells positive for Iba-1 (ionized calcium-binding adaptor molecule 1), CD (Cluster Differentiation) 68, and CD16/32 in excitotoxicity-induced retinas, while MDL 72527 treatment reduced these changes, along with increases in the number of cells positive for Arginase1 and CD206. When retinal excitotoxicity upregulated several pro-inflammatory genes, MDL 72527 treatment reduced many of them and increased anti-inflammatory genes. Furthermore, SMOX inhibition upregulated antioxidant signaling (indicated by elevated Nrf2 and HO-1 levels) and reduced protein-conjugated acrolein in excitotoxic retinas. In vitro studies using C8-B4 cells showed changes in cellular morphology and increased reactive oxygen species formation in response to acrolein (a product of SMOX activity) treatment. Overall, our findings indicate that the inhibition SMOX pathway reduced neuroinflammation and upregulated antioxidant signaling in the retina.
Collapse
Affiliation(s)
- Moaddey Alfarhan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fang Liu
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | | | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
6
|
Fan J, Chen M, Wang X, Tian Z, Wang J, Fan D, Zeng J, Zhang K, Dai X. Targeting Smox Is Neuroprotective and Ameliorates Brain Inflammation in Cerebral Ischemia/Reperfusion Rats. Toxicol Sci 2019; 168:381-393. [PMID: 30576531 DOI: 10.1093/toxsci/kfy300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Spermine oxidase (Smox) is a member of the polyamine oxidases and has been demonstrated to be involved in ischemic brain damage. In this study, we found that Smox expression was increased in a rat middle cerebral artery occlusion (MCAO) model and in cultured primary neurons after oxygen-glucose deprivation and reoxygenation (OGD/R). Smox downregulation by the adeno-associated virus RNA interference system significantly reduced the MCAO-induced brain infarct volume and neurological deficits and decreased neuronal apoptosis and inflammatory reactions. In addition, significant microglial activation and increased IL-6 and TNF-α expression were observed in microglia treated with supernatant from neurons after OGD/R. However, a significant reduction in microglial activation as well as IL-6 and TNF-α expression was observed in microglia treated with supernatant from Smox downregulated neurons after OGD/R. Therefore, the results indicated that Smox is an important mediator of cerebral ischemia injury and may be a therapeutic target for cerebral ischemia patients.
Collapse
Affiliation(s)
| | - Mei Chen
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | | | - Zhijie Tian
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | | | - Daogui Fan
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | | | - Kun Zhang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Xiaozhen Dai
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, Sichuan 610500, China
| |
Collapse
|
7
|
Pichavaram P, Palani CD, Patel C, Xu Z, Shosha E, Fouda AY, Caldwell RB, Narayanan SP. Targeting Polyamine Oxidase to Prevent Excitotoxicity-Induced Retinal Neurodegeneration. Front Neurosci 2019; 12:956. [PMID: 30686964 PMCID: PMC6335392 DOI: 10.3389/fnins.2018.00956] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
Dysfunction of retinal neurons is a major cause of vision impairment in blinding diseases that affect children and adults worldwide. Cellular damage resulting from polyamine catabolism has been demonstrated to be a major player in many neurodegenerative conditions. We have previously shown that inhibition of polyamine oxidase (PAO) using MDL 72527 significantly reduced retinal neurodegeneration and cell death signaling pathways in hyperoxia-mediated retinopathy. In the present study, we investigated the impact of PAO inhibition in limiting retinal neurodegeneration in a model of NMDA (N-Methyl-D-aspartate)-induced excitotoxicity. Adult mice (8–10 weeks old) were given intravitreal injections (20 nmoles) of NMDA or NMLA (N-Methyl-L-aspartate, control). Intraperitoneal injection of MDL 72527 (40 mg/kg body weight/day) or vehicle (normal saline) was given 24 h before NMDA or NMLA treatment and continued until the animals were sacrificed (varied from 1 to 7 days). Analyses of retinal ganglion cell (RGC) layer cell survival was performed on retinal flatmounts. Retinal cryostat sections were prepared for immunostaining, TUNEL assay and retinal thickness measurements. Fresh frozen retinal samples were used for Western blotting analysis. A marked decrease in the neuronal survival in the RGC layer was observed in NMDA treated retinas compared to their NMLA treated controls, as studied by NeuN immunostaining of retinal flatmounts. Treatment with MDL 72527 significantly improved survival of NeuN positive cells in the NMDA treated retinas. Excitotoxicity induced neurodegeneration was also demonstrated by reduced levels of synaptophysin and degeneration of inner retinal neurons in NMDA treated retinas compared to controls. TUNEL labeling studies showed increased cell death in the NMDA treated retinas. However, treatment with MDL 72527 markedly reduced these changes. Analysis of signaling pathways during excitotoxic injury revealed the downregulation of pro-survival signaling molecules p-ERK and p-Akt, and the upregulation of a pro-apoptotic molecule BID, which were normalized with PAO inhibition. Our data demonstrate that inhibition of polyamine oxidase blocks NMDA-induced retinal neurodegeneration and promotes cell survival, thus offering a new therapeutic target for retinal neurodegenerative disease conditions.
Collapse
Affiliation(s)
- Prahalathan Pichavaram
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,College of Allied Health Sciences, Augusta University, Augusta, GA, United States
| | - Chithra Devi Palani
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States
| | - Chintan Patel
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Zhimin Xu
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Esraa Shosha
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Abdelrahman Y Fouda
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Ruth B Caldwell
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,VA Medical Center, Augusta, GA, United States
| | - Subhadra Priya Narayanan
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,College of Allied Health Sciences, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States.,VA Medical Center, Augusta, GA, United States
| |
Collapse
|
8
|
Martinc B, Grabnar I, Vovk T. Antioxidants as a preventive treatment for epileptic process: a review of the current status. Curr Neuropharmacol 2014; 12:527-50. [PMID: 25977679 PMCID: PMC4428026 DOI: 10.2174/1570159x12666140923205715] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/29/2014] [Accepted: 09/22/2014] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is known as one of the most frequent neurological diseases, characterized by an enduring predisposition to generate epileptic seizures. Oxidative stress is believed to directly participate in pathways leading to neurodegeneration, which serves as the most important propagating factor, leading to the epileptic condition and cognitive decline. Moreover, there is also a growing body of evidence showing the disturbance of antioxidant system balance and consequently increased production of reactive species in patients with epilepsy. A meta-analysis, conducted in the present review confirms an association between epilepsy and increased lipid peroxidation. Furthermore, it was also shown that some of the antiepileptic drugs could potentially be responsible for additionally increased lipid peroxidation. Therefore, it is reasonable to propose that during the epileptic process neuroprotective treatment with antioxidants could lead to less sever structural damages, reduced epileptogenesis and milder cognitive deterioration. To evaluate this hypothesis studies investigating the neuroprotective therapeutic potential of various antioxidants in cells, animal seizure models and patients with epilepsy have been reviewed. Numerous beneficial effects of antioxidants on oxidative stress markers and in some cases also neuroprotective effects were observed in animal seizure models. However, despite these encouraging results, till now only a few antioxidants have been further applied to patients with epilepsy as an add-on therapy. Based on the several positive findings in animal models, a strong need for more carefully planned, randomized, double-blind, cross-over, placebo-controlled clinical trials for the evaluation of antioxidants efficacy in patients with epilepsy is warranted.
Collapse
Affiliation(s)
| | | | - Tomaž Vovk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Kim HA, Lee KH, Lee BH. Neuroprotective effect of melatonin against kainic acid-induced oxidative injury in hippocampal slice culture of rats. Int J Mol Sci 2014; 15:5940-51. [PMID: 24722567 PMCID: PMC4013606 DOI: 10.3390/ijms15045940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 11/16/2022] Open
Abstract
Endogenous melatonin is a known free radical scavenger that removes reactive oxygen species (ROS), thus, alleviating oxidative stress. The purpose of this study was to demonstrate its effect against kainic acid (KA)-induced oxidative stress in organotypic hippocampal slice cultures (OHSCs). To observe neuroprotective effects of melatonin, different concentrations (0.01, 0.1 and 1 mM) of melatonin were administrated after KA treatment for 18 h in OHSCs of rat pups. Dose-response studies showed that neuronal cell death was significantly reduced after 0.1 and 1 mM melatonin treatments based on propidium iodide (PI) uptake and cresyl violet staining. The dichlorofluorescein (DCF) fluorescence which indicates ROS formation decreased more in the melatonin-treated group than in the KA group. The expression of 5-lipoxigenase (5-LO) and caspase-3 were reduced in the melatonin-treated groups compared to the KA group. These results suggest that melatonin may be an effective agent against KA-induced oxidative stress in the OHSC model.
Collapse
Affiliation(s)
- Hyung A Kim
- Department of Physiology, Brain Korea 21 Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea.
| | - Kyung Hee Lee
- Division of Health Science, Department of Dental Hygiene, Dongseo University, Busan 617-716, Korea.
| | - Bae Hwan Lee
- Department of Physiology, Brain Korea 21 Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea.
| |
Collapse
|
10
|
Cervelli M, Bellavia G, D'Amelio M, Cavallucci V, Moreno S, Berger J, Nardacci R, Marcoli M, Maura G, Piacentini M, Amendola R, Cecconi F, Mariottini P. A New Transgenic Mouse Model for Studying the Neurotoxicity of Spermine Oxidase Dosage in the Response to Excitotoxic Injury. PLoS One 2013; 8:e64810. [PMID: 23840306 PMCID: PMC3686797 DOI: 10.1371/journal.pone.0064810] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/18/2013] [Indexed: 11/18/2022] Open
Abstract
Spermine oxidase is a FAD-containing enzyme involved in polyamines catabolism, selectively oxidizing spermine to produce H2O2, spermidine, and 3-aminopropanal. Spermine oxidase is highly expressed in the mouse brain and plays a key role in regulating the levels of spermine, which is involved in protein synthesis, cell division and cell growth. Spermine is normally released by neurons at synaptic sites where it exerts a neuromodulatory function, by specifically interacting with different types of ion channels, and with ionotropic glutamate receptors. In order to get an insight into the neurobiological roles of spermine oxidase and spermine, we have deregulated spermine oxidase gene expression producing and characterizing the transgenic mouse model JoSMOrec, conditionally overexpressing the enzyme in the neocortex. We have investigated the effects of spermine oxidase overexpression in the mouse neocortex by transcript accumulation, immunohistochemical analysis, enzymatic assays and polyamine content in young and aged animals. Transgenic JoSMOrec mice showed in the neocortex a higher H2O2 production in respect to Wild-Type controls, indicating an increase of oxidative stress due to SMO overexpression. Moreover, the response of transgenic mice to excitotoxic brain injury, induced by kainic acid injection, was evaluated by analysing the behavioural phenotype, the immunodistribution of neural cell populations, and the ultrastructural features of neocortical neurons. Spermine oxidase overexpression and the consequently altered polyamine levels in the neocortex affects the cytoarchitecture in the adult and aging brain, as well as after neurotoxic insult. It resulted that the transgenic JoSMOrec mouse line is more sensitive to KA than Wild-Type mice, indicating an important role of spermine oxidase during excitotoxicity. These results provide novel evidences of the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain.
Collapse
Affiliation(s)
| | | | - Marcello D'Amelio
- Laboratory of Molecular Neuroembryology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Virve Cavallucci
- Laboratory of Molecular Neuroembryology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Sandra Moreno
- Dipartimento di Biologia, Università “Roma Tre,” Rome, Italy
| | - Joachim Berger
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Roberta Nardacci
- Istituto Nazionale per le Malattie Infettive, IRCCS “L. Spallanzani,” Rome, Italy
| | - Manuela Marcoli
- Dipartimento di Farmacia, Sez. Farmacologia e Tossicologia, Centro di Eccellenza per la Ricerca Biomedica CEBR, Università di Genova, Genoa, Italy
| | - Guido Maura
- Dipartimento di Farmacia, Sez. Farmacologia e Tossicologia, Centro di Eccellenza per la Ricerca Biomedica CEBR, Università di Genova, Genoa, Italy
| | - Mauro Piacentini
- Istituto Nazionale per le Malattie Infettive, IRCCS “L. Spallanzani,” Rome, Italy
| | - Roberto Amendola
- Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), Il Centro Ricerche Casaccia, Sezione Tossicologia e Scienze Biomediche (BAS-BIOTECMED), Rome, Italy
| | - Francesco Cecconi
- Laboratory of Molecular Neuroembryology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | | |
Collapse
|
11
|
Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH, Bach JH, Hong JS, Yoneda Y, Kim HC. Role of oxidative stress in epileptic seizures. Neurochem Int 2011; 59:122-37. [PMID: 21672578 PMCID: PMC3606551 DOI: 10.1016/j.neuint.2011.03.025] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 03/27/2011] [Accepted: 03/28/2011] [Indexed: 11/16/2022]
Abstract
Oxidative stress resulting from excessive free-radical release is likely implicated in the initiation and progression of epilepsy. Therefore, antioxidant therapies aimed at reducing oxidative stress have received considerable attention in epilepsy treatment. However, much evidence suggests that oxidative stress does not always have the same pattern in all seizures models. Thus, this review provides an overview aimed at achieving a better understanding of this issue. We summarize work regarding seizure models (i.e., genetic rat models, kainic acid, pilocarpine, pentylenetetrazol, and trimethyltin), oxidative stress as an etiologic factor in epileptic seizures (i.e., impairment of antioxidant systems, mitochondrial dysfunction, involvement of redox-active metals, arachidonic acid pathway activation, and aging), and antioxidant strategies for seizure treatment. Combined, this review highlights pharmacological mechanisms associated with oxidative stress in epileptic seizures and the potential for neuroprotection in epilepsy that targets oxidative stress and is supported by effective antioxidant treatment.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharamcology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea
| | - Won-Ki Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, South Korea
| | - Kwang-Ho Ko
- Pharmacology Laboratory, College of Pharmacy, Seoul National University, Seoul 143-701, South Korea
| | - Jae-Hyung Bach
- Neuropsychopharamcology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharamcology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| |
Collapse
|
12
|
Neuroprotective effects of FK506 against excitotoxicity in organotypic hippocampal slice culture. Neurosci Lett 2010; 474:126-130. [PMID: 20226231 DOI: 10.1016/j.neulet.2010.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/02/2010] [Accepted: 03/04/2010] [Indexed: 01/09/2023]
Abstract
FK506 has been originally classified as an immunosuppressant and is known to exhibit neurotrophic actions in vitro and protective effects on some neurological conditions. We investigated the neuroprotective effects of FK506 on kainic acid (KA)-induced neuronal death in organotypic hippocampal slice cultures (OHSCs). After an 18 h KA (5 microM) treatment, significantly neuronal death was detected in the CA3 region using propidium iodide staining. However, neuronal death was significantly prevented at 24 and 48 h after treatment with 0.1 microM FK506. Using cresyl violet staining, we also observed that an increased number of CA3 neurons survived in the 0.1 microM FK506 group compared to the KA only group. Based on the results of the Western blot analysis, the expressions of 5-lipoxygenase and caspase-3 were reduced 24h after 0.1 microM FK506 treatment. The levels of superoxide dismutase (SOD) and phospho-Akt expression were increased by treatment with 0.1 microM FK506. These results suggest that FK506 may have a positive role in protecting neurons against cell death in the KA injury model of OHSCs.
Collapse
|
13
|
Zahedi K, Huttinger F, Morrison R, Murray-Stewart T, Casero RA, Strauss KI. Polyamine catabolism is enhanced after traumatic brain injury. J Neurotrauma 2010; 27:515-25. [PMID: 19968558 PMCID: PMC2867553 DOI: 10.1089/neu.2009.1097] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polyamines spermine and spermidine are highly regulated, ubiquitous aliphatic cations that maintain DNA structure and function as immunomodulators and as antioxidants. Polyamine homeostasis is disrupted after brain injuries, with concomitant generation of toxic metabolites that may contribute to secondary injuries. To test the hypothesis of increased brain polyamine catabolism after traumatic brain injury (TBI), we determined changes in catabolic enzymes and polyamine levels in the rat brain after lateral controlled cortical impact TBI. Spermine oxidase (SMO) catalyzes the degradation of spermine to spermidine, generating H2O2 and aminoaldehydes. Spermidine/spermine-N(1)-acetyltransferase (SSAT) catalyzes acetylation of these polyamines, and both are further oxidized in a reaction that generates putrescine, H2O2, and aminoaldehydes. In a rat cortical impact model of TBI, SSAT mRNA increased subacutely (6-24 h) after TBI in ipsilateral cortex and hippocampus. SMO mRNA levels were elevated late, from 3 to 7 days post-injury. Polyamine catabolism increased as well. Spermine levels were normal at 6 h and decreased slightly at 24 h, but were normal again by 72 h post-injury. Spermidine levels also decreased slightly (6-24 h), then increased by approximately 50% at 72 h post-injury. By contrast, normally low putrescine levels increased up to sixfold (6-72 h) after TBI. Moreover, N-acetylspermidine (but not N-acetylspermine) was detectable (24-72 h) near the site of injury, consistent with increased SSAT activity. None of these changes were seen in the contralateral hemisphere. Immunohistochemical confirmation indicated that SSAT and SMO were expressed throughout the brain. SSAT-immunoreactivity (SSAT-ir) increased in both neuronal and nonneuronal (likely glial) populations ipsilateral to injury. Interestingly, bilateral increases in cortical SSAT-ir neurons occurred at 72 h post-injury, whereas hippocampal changes occurred only ipsilaterally. Prolonged increases in brain polyamine catabolism are the likely cause of loss of homeostasis in this pathway. The potential for simple therapeutic interventions (e.g., polyamine supplementation or inhibition of polyamine oxidation) is an exciting implication of these studies.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Francis Huttinger
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ryan Morrison
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Tracy Murray-Stewart
- Department of Oncology, The Johns Hopkins University College of Medicine, Baltimore, Maryland
| | - Robert A. Casero
- Department of Oncology, The Johns Hopkins University College of Medicine, Baltimore, Maryland
| | - Kenneth I. Strauss
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
14
|
Polyamine metabolism in rat myocardial ischemia-reperfusion injury. Int J Cardiol 2009; 132:142-4. [DOI: 10.1016/j.ijcard.2007.07.163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Accepted: 07/07/2007] [Indexed: 01/04/2023]
|
15
|
Heat shock protein 70 expression in epilepsy suggests stress rather than protection. Acta Neuropathol 2008; 115:219-30. [PMID: 17929041 DOI: 10.1007/s00401-007-0297-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/29/2007] [Accepted: 09/13/2007] [Indexed: 01/23/2023]
Abstract
Although heat shock protein 70 (HSP70) has been suggested to be a stress marker or to play a protective role in brain injury, the relevance of its pathological expression in epilepsy is unclear. We investigated the expression of HSP70 in brain tissue from human temporal lobe epilepsy (TLE) patients and from kainic acid (KA)-induced seizure-related neuronal damage in vivo and in vitro. The human TLE tissue showed severe neuronal loss and gliosis in hippocampal CA3 area. The KA-induced neuronal damage was similar to pathological changes of the TLE hippocampus. An increased number of TUNEL-positive cells were observed at day 5 when compared with day 2 after seizure induction. Intense HSP70 immunofluorescence was observed in hippocampal CA3 pyramidal neurons of rat, 2 days following KA administration, which then declined in labeling by day 5. No HSP70 expression was found in Fluoro-Jade B positive dying neurons by double staining. Western blot analysis showed an increased level of p53 and Bax expression following KA treatment. In vitro, there was no apparent difference in the degree of apoptosis between HSP70 siRNA- and control empty vector-transfected primary neurons following KA treatment. Our results revealed that HSP70 was a useful indicator of stressed neurons in acute phase of epilepsy, but not associated with neuronal death, thereby suggesting that HSP70 played no role in neuroprotection during an epileptogenic state.
Collapse
|
16
|
Fernandes AMAP, Maurer-Morelli CV, Campos CBL, Mello MLS, Castilho RF, Langone F. Fluoro-Jade, but not Fluoro-Jade B, stains non-degenerating cells in brain and retina of embryonic and neonatal rats. Brain Res 2005; 1029:24-33. [PMID: 15533312 DOI: 10.1016/j.brainres.2004.09.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2004] [Indexed: 11/15/2022]
Abstract
Fluoro-Jade (FJ) and Fluoro-Jade B (FJB) are fluorescein derivatives currently used to stain brain cells under degeneration. In this study, we investigated the FJ staining of nondegenerating cells in embryonic and neonatal rat brain and retina. In embryonic rat brain (embryonic day 15; E15), very intense staining of cells was observed. The number of FJ-stained cells and the intensity of staining decreased with increasing in animal age, being almost absent by postnatal day 16 (P16). Only a few cells in neonatal rat brain were in the process of cell death, as verified by the TUNEL technique. The FJ-stained cells in neonatal brain were positive for the neuronal marker neuronal nuclei antigen (NeuN). In retina, FJ stained mainly cells from the ganglion cell layer at P2 and the neuroblastic layer at P2 and P6. In contrast to FJ, FJB did not stain nondegenerating cells in embryonic and neonatal rats. These results show that in addition to staining degenerating brain cells, FJ also stains nondegenerating central nervous system cells in embryonic and neonatal stages.
Collapse
Affiliation(s)
- Anna M A P Fernandes
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
In humans, several pathologies involve the overproduction of reactive oxygen species. Metal-containing catalytic antioxidants have emerged as a novel class of potential therapeutic agents that scavenge a wide range of reactive oxygen species. There are three structural classes of manganese-containing catalytic antioxidants that have efficacy in several oxidative stress models of human disease. The classes are divided based on their in vitro selectivity towards the scavenging of superoxide. The selective catalytic antioxidants include the macrocyclics, whereas the non-selective catalytic antioxidants include the salens and porphyrins. Cardiovascular, neurodegenerative and inflammatory lung disorders are all potentially important targets for catalytic antioxidant therapy.
Collapse
Affiliation(s)
- Brian J Day
- National Jewish Medical & Research Center, K715, 1400 Jackson Street, Denver, CO 80206, USA.
| |
Collapse
|
18
|
Hayashi Y, Tanaka J, Morizumi Y, Kitamura Y, Hattori Y. Polyamine levels in brain and plasma after acute restraint or water-immersion restraint stress in mice. Neurosci Lett 2004; 355:57-60. [PMID: 14729234 DOI: 10.1016/j.neulet.2003.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the relationship between polyamines and stress, we measured polyamine levels in the frontal cortex, hippocampus, hypothalamus, and plasma of mice after acute restraint or water-immersion restraint stress. In all parts of the brain, putrescine levels were elevated (139-157% of the control) 24 h after water-immersion restraint stress. In the case of restraint, however, elevation of the putrescine level (130% of the control) was detected only in the frontal cortex. Spermidine and spermine levels were unchanged or slightly reduced (80-85% of the control) in the brain 6 and 24 h after water-immersion restraint stress. There was no change in plasma polyamine levels at any time subsequent to the stress. Pretreatment with diazepam (5 mg/kg, i.p.) completely blocked the stress-induced putrescine increases. These results indicate that the magnitude of the putrescine increase is dependent upon the intensity of the stressor, and suggest that polyamine metabolism is linked to psychological stress.
Collapse
Affiliation(s)
- Yasushi Hayashi
- Department of Foods and Human Nutrition, Faculty of Human Life Sciences, Notre Dame Seishin University, 2-16-9 Ifuku-cho, Okayama 700-8516, Japan.
| | | | | | | | | |
Collapse
|
19
|
Liu R, Liu W, Doctrow SR, Baudry M. Iron toxicity in organotypic cultures of hippocampal slices: role of reactive oxygen species. J Neurochem 2003; 85:492-502. [PMID: 12675926 DOI: 10.1046/j.1471-4159.2003.01708.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Free iron has been assumed to potentiate oxygen toxicity by generating reactive oxygen species (ROS) via the iron-catalyzed Haber-Weiss reaction, leading to oxidative stress. ROS-mediated iron cytotoxicity may trigger apoptotic cell death. In the present study, we used iron treatment of organotypic cultures of hippocampal slices to study potential mechanisms involved in iron-induced neuronal damage. Exposure of mature hippocampal slices to ferrous sulfate resulted in concentration- and time-dependent cell death. After iron treatment, markers of ROS formation and lipid peroxidation, i.e. intensity of dichlorofluorescein (DCF) fluorescence and levels of thiobarbiturate reactive substances (TBARS), were significantly increased. Levels of cytochrome c were increased while levels of pro-caspase-9 and pro-caspase-3 were decreased in cytosolic fractions of iron-treated hippocampal slice cultures. Treatment of cultured slices with a synthetic catalytic ROS scavenger, EUK-134, provided between 50 and 70% protection against various parameters of cell damage and markers of oxidative stress. In addition, inhibition of caspase-3 activity by Ac-DEVDcho partially protected cells from iron toxicity. The combination of EUK-134 and Ac-DEVDcho resulted in an almost complete blockade of iron-induced damage. These results indicate that iron elicits cellular damage predominantly by oxidative stress, and that ROS-mediated iron toxicity may involve cytochrome c- and caspase-3-dependent apoptotic pathways.
Collapse
Affiliation(s)
- Ruolan Liu
- Neuroscience Program, University of Southern California, Los Angeles, California, USA
| | | | | | | |
Collapse
|
20
|
Pong K. Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin Biol Ther 2003; 3:127-39. [PMID: 12718737 DOI: 10.1517/14712598.3.1.127] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evidence of oxidative stress is apparent in both acute and chronic neurodegenerative diseases, such as stroke, Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Increased generation of reactive oxygen species simply overwhelm endogenous antioxidant defences, leading to subsequent oxidative damage and cell death. Tissue culture and animal models have been developed to mimic some of the biochemical changes and neuropathology found in these diseases. In doing so, it has been experimentally demonstrated that oxidative stress plays a critical role in neuronal cell death. Antioxidant enzymes, such as superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) have demonstrated therapeutic efficacy in models of neurodegeneration. However, delivery and stability issues have reduced the enthusiasm to clinically develop these proteins. Most recently, SOD mimetics, small molecules which mimic the activity of endogenous superoxide dismutase, have come to the forefront of antioxidant therapeutics. This review will examine the experimental evidence supporting the use of scavengers of superoxide anions in treating some neurodegenerative diseases, such as stroke, PD and ALS, but also the pitfalls that have met antioxidant molecules in clinical trials.
Collapse
Affiliation(s)
- Kevin Pong
- Department of Neuroscience, Wyeth Research, Princeton, NJ 08543, USA.
| |
Collapse
|
21
|
Seiler N, Duranton B, Raul F. The polyamine oxidase inactivator MDL 72527. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2002; 59:1-40. [PMID: 12458962 DOI: 10.1007/978-3-0348-8171-5_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyamine oxidase is a FAD-dependent amine oxidase, which is constitutively expressed in nearly all tissues of the vertebrate organism. In 1985, N1,N4-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72527) was designed as a selective enzyme-activated irreversible inhibitor of polyamine oxidase (EC 1.5.3.11). It inactivates, at micromolar concentration and time-dependently, the enzyme in cells, as well as in all organs of experimental animals, without inhibiting other enzymes of polyamine metabolism. MDL 72527 served during nearly two decades as a unique tool in the elucidation of the physiological roles of polyamine oxidase. The compound has anticancer and contragestational effects, and it improves the anticancer effect of the ornithine decarboxylase inactivator (D,L)-2-(difluoromethyl)ornithine (DFMO). Profound depletion of the polyamine pools of tumour cells and effects on different components of the immune defence system are responsible for the anticancer effects of MDL 72527/DFMO combinations. Recently a direct cytotoxic effect of MDL 72527 at concentrations above those required for polyamine oxidase inactivation was observed. The induction of apoptosis by MDL 72527 was ascribed to its lysosomotropic properties. Therapeutic potentials of the apoptotic effect of MDL 72527 need to be explored. Polyamine oxidase is the last enzyme of the polyamine interconversion pathway that awaits the detailed elucidation of its structure and regulation. MDL 72527 should be useful as a lead in the development of inactivators which are selective for the isoforms of polyamine oxidase. Isozyme-selective inhibitors will give more profound insights into and reveal a diversity of specific functions of polyamine oxidase.
Collapse
Affiliation(s)
- Nikolaus Seiler
- Laboratory of Nutritional Oncology, INSERM U-392, Institut de Recherche Contre les Cancers de l'Appareil Digestif (IRCAD), 1, Place de l'Hĵpital B.P. 426 67091 Strasbourg, France
| | | | | |
Collapse
|