1
|
Cellular and Molecular Mechanisms of Recessive Hereditary Methaemoglobinaemia Type II. J Clin Med 2018; 7:jcm7100341. [PMID: 30309019 PMCID: PMC6210646 DOI: 10.3390/jcm7100341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/27/2022] Open
Abstract
Cytochrome b5 reductase 3 (CYB5R3) is a membrane-bound NADH-dependent redox enzyme anchored to the mitochondrial outer membrane, endoplasmic reticulum, and plasma membrane. Recessive hereditary methaemoglobinaemia (RHM) type II is caused by CYB5R3 deficiency and is an incurable disease characterized by severe encephalopathy with mental retardation, microcephaly, generalized dystonia, and movement disorders. Currently, the etiology of type II RHM is poorly understood and there is no treatment for encephalopathy associated with this disease. Defective CYB5R3 leads to defects in the elongation and desaturation of fatty acids and cholesterol biosynthesis, which are conventionally linked with neurological disorders of type II RHM. Nevertheless, this abnormal lipid metabolism cannot explain all manifestations observed in patients. Current molecular and cellular studies indicate that CYB5R3 deficiency has pleiotropic tissue effects. Its localization in lipid rafts of neurons indicates its role in interneuronal contacts and its presence in caveolae of the vascular endothelial membrane suggests a role in the modulation of nitric oxide diffusion. Its role in aerobic metabolism and oxidative stress in fibroblasts, neurons, and cardiomyocytes has been reported to be due to its ability to modulate the intracellular ratio of NAD⁺/NADH. Based on the new molecular and cellular functions discovered for CYB5R3 linked to the plasma membrane and mitochondria, the conventional conception that the cause of type II RHM is a lipid metabolism disorder should be revised. We hypothesized that neurological symptoms of the disease could be caused by disorders in the synapse, aerobic metabolism, and/or vascular homeostasis rather than in disturbances of lipid metabolism.
Collapse
|
2
|
Sikorska M, Lanthier P, Miller H, Beyers M, Sodja C, Zurakowski B, Gangaraju S, Pandey S, Sandhu JK. Nanomicellar formulation of coenzyme Q10 (Ubisol-Q10) effectively blocks ongoing neurodegeneration in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model: potential use as an adjuvant treatment in Parkinson's disease. Neurobiol Aging 2014; 35:2329-46. [PMID: 24775711 DOI: 10.1016/j.neurobiolaging.2014.03.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/13/2022]
Abstract
Although the support for the use of antioxidants, such as coenzyme Q(10) (CoQ(10)), to treat Parkinson's disease (PD) comes from the extensive scientific evidence, the results of conducted thus far clinical trials are inconclusive. It is assumed that the efficacy of CoQ(10) is hindered by insolubility, poor bioavailability, and lack of brain penetration. We have developed a nanomicellar formulation of CoQ(10) (Ubisol-Q(10)) with improved properties, including the brain penetration, and tested its effectiveness in mouse MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) model with the objectives to assess its potential use as an adjuvant therapy for PD. We used a subchronic MPTP model (5-daily MPTP injections), characterized by 50% loss of dopamine neurons over a period of 28 days. Ubisol-Q(10) was delivered in drinking water. Prophylactic application of Ubisol-Q(10), started 2 weeks before the MPTP exposure, significantly offset the neurotoxicity (approximately 50% neurons died in MPTP group vs. 17% in MPTP+ Ubisol-Q(10) group by day 28). Therapeutic application of Ubisol-Q(10), given after the last MPTP injection, was equally effective. At the time of intervention on day 5 nearly 25% of dopamine neurons were already lost, but the treatment saved the remaining 25% of cells, which otherwise would have died by day 28. This was confirmed by cell counts, analyses of striatal dopamine levels, and improved animals' motor skill on a beam walk test. Similar levels of neuroprotection were obtained with 3 different Ubisol-Q(10) concentrations tested, that is, 30 mg, 6 mg, or 3 mg CoQ(10)/kg body weight/day, showing clearly that high doses of CoQ(10) were not required to deliver these effects. Furthermore, the Ubisol-Q(10) treatments brought about a robust astrocytic activation in the brain parenchyma, indicating that astroglia played an active role in this neuroprotection. Thus, we have shown for the first time that Ubisol-Q(10) was capable of halting the neurodegeneration already in progress; however, to maintain it a continuous supplementation of Ubisol-Q(10) was required. The pathologic processes initiated by MPTP resumed if supplementation was withdrawn. We suggest that in addition to brain delivery of powerful antioxidants, Ubisol-Q(10) might have also supported subcellular oxidoreductase systems allowing them to maintain a favorable cellular redox status, especially in astroglia, facilitating their role in neuroprotection. Based on this data further clinical testing of this formulation in PD patients might be justifiable.
Collapse
Affiliation(s)
- Marianna Sikorska
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Patricia Lanthier
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Harvey Miller
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Melissa Beyers
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Caroline Sodja
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Bogdan Zurakowski
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Sandhya Gangaraju
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor Essex Hall, Windsor, Ontario, Canada
| | - Jagdeep K Sandhu
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
Garrido I, Espinosa F, Alvarez-Tinaut MC. Apoplastic superoxide production and peroxidase activity by intact and excised axenically grown seedling roots of sunflower. PROTOPLASMA 2012; 249:1071-80. [PMID: 22101944 DOI: 10.1007/s00709-011-0350-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/09/2011] [Indexed: 05/05/2023]
Abstract
Excised and cold-preincubated sunflower seedling roots were compared with intact non-preincubated roots to test the effect of the injury stress and cold preincubation on the oxidative burst measured as apoplastic superoxide (O (2) (.-) ) generation and exocellular peroxidase (ECPOX) activity. Preincubated excised or intact roots released into the medium apoplastic proteins with peroxidase activity. Intact and excised roots responded to methyl jasmonate by an immediate oxidative burst that could not be induced by salicylic acid; both phytohormones also induced a slight and slow O (2)(.-) generation and ECPOX activity on excised roots, when added to the cold preincubation medium. The results with cyanide, azide, SHAM (ECPOX inhibitors) and diphenylene iodonium (inhibitor of trans-plasma membrane NAD(P)H-oxidases (NOX)-respiratory burst oxidase homologue in plants (RBOH), the trans-plasmamembrane nicotinamide adenine dinucleotide phosphate oxidase) are consistent with the hypothesis that different systems may be the origin of O (2) (.-) in intact and excised roots; ECPOX was an important component of them in both, together with NOX-RBOH in intact roots, but in excised roots the last one was replaced by an oxidase sensitive to the same inhibitors as the alternative mitochondrial oxidase. According to our hypothesis, these results could be explained if the electron flux would be deviated to different interconnected plasma membrane-redox systems, with different terminal oxidases, activated by different effectors or stresses.
Collapse
Affiliation(s)
- Inmaculada Garrido
- Plant Physiology, Extremadura University, Campus Avd. Elvas, 06071, Badajoz, Spain.
| | | | | |
Collapse
|
4
|
Thaler S, Fiedorowicz M, Grieb P, Wypych Z, Knap N, Borowik T, Zawada K, Kaminski J, Wozniak M, Rejdak R, Zrenner E, Schuettauf F. Neuroprotective effects of tempol acyl esters against retinal ganglion cell death in a rat partial optic nerve crush model. Acta Ophthalmol 2011; 89:e555-60. [PMID: 21645284 DOI: 10.1111/j.1755-3768.2011.02180.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of this study is to search for more effective derivatives of the superoxide dismutase mimetic tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl). Although tempol is neuroprotective in a rat partial optic nerve crush (PONC) model, relatively high doses are required to exert this effect. METHODS Tempol acyl esters with different-length fatty acids (tempol-C4, tempol-C8, tempol-C12 and tempol-C16) were synthesized and the following properties were evaluated: water-octanol partition coefficient, liposome-liposome energy transfer, and electron paramagnetic resonance (EPR). Brown Norway rats underwent PONC and received tempol or acyl esters intraperitoneally once daily for 7 consecutive days. We then compared the effects of tempol and its four esters on retinal ganglion cell (RGC) damage using a retrograde labelling method. RESULTS The water-octanol partition coefficient increased with increasing length of attached acyl chain. However, the energy of the liposome-liposome transfer seemed to be optimal for tempol-C8 and tempol-C12. The EPR signal was very similar for all tested compounds, suggesting similar efficiency of superoxide scavenging. Partial optic nerve crush in vehicle-treated animals reduced RGC numbers by approx. 59% when compared with sham-operated eyes. Tempol did not affect RGC loss at a dose of 1 mg/kg. In contrast, at molar doses equivalent to 1 mg/kg of tempol, tempol-C8 showed a significant neuroprotective effect, whereas tempol-C4, tempol-C12 and tempol-C16 did not act neuroprotectively. CONCLUSION Manipulating the hydrophobicity of tempol seems to be a promising tool for developing more potent neuroprotectants in the PONC degeneration model. However, the resulting compounds need further pharmacological evaluation.
Collapse
Affiliation(s)
- Sebastian Thaler
- Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Barth BM, Gustafson SJ, Kuhn TB. Neutral sphingomyelinase activation precedes NADPH oxidase-dependent damage in neurons exposed to the proinflammatory cytokine tumor necrosis factor-α. J Neurosci Res 2011; 90:229-42. [PMID: 21932365 DOI: 10.1002/jnr.22748] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 06/16/2011] [Accepted: 06/27/2011] [Indexed: 12/26/2022]
Abstract
Inflammation accompanied by severe oxidative stress plays a vital role in the orchestration and progression of neurodegeneration prevalent in chronic and acute central nervous system pathologies as well as in aging. The proinflammatory cytokine tumor necrosis factor-α (TNFα) elicits the formation of the bioactive ceramide by stimulating the hydrolysis of the membrane lipid sphingomyelin by sphingomyelinase activities. Ceramide stimulates the formation of reactive oxygen species (ROS) and apoptotic mechanisms in both neurons and nonneuronal cells, establishing a link between sphingolipid metabolism and oxidative stress. We demonstrated in SH-SY5Y human neuroblastoma cells and primary cortical neurons that TNFα is a potent stimulator of Mg(2+) -dependent neutral sphingomyelinase (Mg(2+) -nSMase) activity, and sphingomyelin hydrolysis, rather than de novo synthesis, was the predominant source of ceramide increases. Mg(2+) -nSMase activity preceded an accumulation of ROS by a neuronal NADPH oxidase (NOX). Notably, TNFα provoked an NOX-dependent oxidative damage to sphingosine kinase-1, which generates sphingosine-1-phosphate, a ceramide metabolite associated with neurite outgrowth. Indeed, ceramide and ROS inhibited neurite outgrowth of dorsal root ganglion neurons by disrupting growth cone motility. Blunting ceramide and ROS formation both rescued sphingosine kinase-1 activity and neurite outgrowth. Our studies suggest that TNFα-mediated activation of Mg(2+) -nSMase and NOX in neuronal cells not only produced the neurotoxic intermediates ceramide and ROS but also directly antagonized neuronal survival mechanisms, thus accelerating neurodegeneration.
Collapse
Affiliation(s)
- Brian M Barth
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | | | | |
Collapse
|
6
|
Gray JP, Eisen T, Cline GW, Smith PJS, Heart E. Plasma membrane electron transport in pancreatic β-cells is mediated in part by NQO1. Am J Physiol Endocrinol Metab 2011; 301:E113-21. [PMID: 21505151 PMCID: PMC3129843 DOI: 10.1152/ajpendo.00673.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide. Because the degree of metabolic function of β-cells (reflected by the level of insulin output) increases in a glucose-dependent manner between 4 and 10 mM glucose, PMET was evaluated under these conditions. PMET activity was present at 4 mM glucose and was further stimulated at 10 mM glucose. PMET activity at 10 mM glucose was inhibited by the application of the flavoprotein inhibitor diphenylene iodonium and various antioxidants. Overexpression of cytosolic NAD(P)H-quinone oxidoreductase (NQO1) increased PMET activity in the presence of 10 mM glucose while inhibition of NQO1 by its inhibitor dicoumarol abolished this activity. Mitochondrial inhibitors rotenone, antimycin A, and potassium cyanide elevated PMET activity. Regardless of glucose levels, PMET activity was greatly enhanced by the application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle. We propose a model for the role of PMET as a regulator of glycolytic flux and an important component of the metabolic machinery in β-cells.
Collapse
Affiliation(s)
- Joshua P Gray
- United States Coast Guard Academy, New London, Connecticut, USA
| | | | | | | | | |
Collapse
|
7
|
Hyun DH, Mughal MR, Yang H, Lee JH, Ko EJ, Hunt ND, de Cabo R, Mattson MP. The plasma membrane redox system is impaired by amyloid β-peptide and in the hippocampus and cerebral cortex of 3xTgAD mice. Exp Neurol 2010; 225:423-9. [PMID: 20673763 DOI: 10.1016/j.expneurol.2010.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/24/2010] [Accepted: 07/21/2010] [Indexed: 01/16/2023]
Abstract
Membrane-associated oxidative stress has been implicated in the synaptic dysfunction and neuronal degeneration that occurs in Alzheimer's disease (AD), but the underlying mechanisms are unknown. Enzymes of the plasma membrane redox system (PMRS) provide electrons for energy metabolism and recycling of antioxidants. Here, we show that activities of several PMRS enzymes are selectively decreased in plasma membranes from the hippocampus and cerebral cortex of 3xTgAD mice, an animal model of AD. Our results that indicate the decreased PMRS enzyme activities are associated with decreased levels of coenzyme Q(10) and increased levels of oxidative stress markers. Neurons overexpressing the PMRS enzymes (NQO1 or cytochrome b5 reductase) exhibit increased resistance to amyloid β-peptide (Aβ). If and to what extent Aβ is the cause of the impaired PMRS enzymes in the 3xTgAD mice is unknown. Because these mice also express mutant tau and presenilin-1, it is possible that one or more of the PMRS could be adversely affected by these mutations. Nevertheless, the results of our cell culture studies clearly show that exposure of neurons to Aβ1-42 is sufficient to impair PMRS enzymes. The impairment of the PMRS in an animal model of AD, and the ability of PMRS enzyme activities to protect neurons against Aβ-toxicity, suggest enhancement PMRS function as a novel approach for protecting neurons against oxidative damage in AD and related disorders.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Department of Life Science, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Rao RP, Nalini K, Prakasa Rao J. Plasma membrane electron transport in frog blood vessels. J Biosci 2009; 34:849-52. [DOI: 10.1007/s12038-009-0099-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Samhan-Arias AK, Garcia-Bereguiain MA, Martin-Romero FJ, Gutierrez-Merino C. Clustering of plasma membrane-bound cytochrome b5 reductase within 'lipid raft' microdomains of the neuronal plasma membrane. Mol Cell Neurosci 2008; 40:14-26. [PMID: 17963686 DOI: 10.1016/j.mcn.2008.08.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/17/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022] Open
Abstract
Plasma membrane redox centres play a major role in neuronal defence against oxidative stress and survival. In cerebellar granule neurons in culture (CGN) a large pool of the flavoproteins are associated with the plasma membrane, and the intensity of CGN green/orange autofluorescence correlated with the levels of expression of cytochrome b(5) reductase. Regionalization of cytochrome b(5) reductase in the plasma membrane of CGN by fluorescence resonance energy transfer points out the close proximity between cytochrome b(5) reductase and the 'lipid raft' markers cholera toxin B and caveolin-2. This study unravels that membrane-bound cytochrome b(5) reductase is largely enriched at interneuronal contact sites in the neuronal soma and associated with 'lipid rafts' of the CGN plasma membrane. We also show that cytochrome b(5) reductase makes a large contribution to the NADH oxidase activity and to the red-shifted flavine fluorescence of purified rat brain synaptic plasma membranes. In conclusion, membrane-bound cytochrome b(5) reductase forms a large mesh of redox centres associated with the neuronal plasma membrane.
Collapse
Affiliation(s)
- Alejandro K Samhan-Arias
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, Avda. de Elvas, s/n. 06071-Badajoz, Spain
| | | | | | | |
Collapse
|
10
|
Audi SH, Merker MP, Krenz GS, Ahuja T, Roerig DL, Bongard RD. Coenzyme Q1 redox metabolism during passage through the rat pulmonary circulation and the effect of hyperoxia. J Appl Physiol (1985) 2008; 105:1114-26. [PMID: 18703762 DOI: 10.1152/japplphysiol.00177.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective was to evaluate the pulmonary disposition of the ubiquinone homolog coenzyme Q(1) (CoQ(1)) on passage through lungs of normoxic (exposed to room air) and hyperoxic (exposed to 85% O(2) for 48 h) rats. CoQ(1) or its hydroquinone (CoQ(1)H(2)) was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of CoQ(1)H(2) and CoQ(1) were measured. CoQ(1)H(2) appeared in the venous effluent when CoQ(1) was infused, and CoQ(1) appeared when CoQ(1)H(2) was infused. In normoxic lungs, CoQ(1)H(2) efflux rates when CoQ(1) was infused decreased by 58 and 33% in the presence of rotenone (mitochondrial complex I inhibitor) and dicumarol [NAD(P)H-quinone oxidoreductase 1 (NQO1) inhibitor], respectively. Inhibitor studies also revealed that lung CoQ(1)H(2) oxidation was via mitochondrial complex III. In hyperoxic lungs, CoQ(1)H(2) efflux rates when CoQ(1) was infused decreased by 23% compared with normoxic lungs. Based on inhibitor effects and a kinetic model, the effect of hyperoxia could be attributed predominantly to 47% decrease in the capacity of complex I-mediated CoQ(1) reduction, with no change in the other redox processes. Complex I activity in lung homogenates was also lower for hyperoxic than for normoxic lungs. These studies reveal that lung complexes I and III and NQO1 play a dominant role in determining the vascular concentration and redox status of CoQ(1) during passage through the pulmonary circulation, and that exposure to hyperoxia decreases the overall capacity of the lung to reduce CoQ(1) to CoQ(1)H(2) due to a depression in complex I activity.
Collapse
Affiliation(s)
- Said H Audi
- Research Service 151, Zablocki VAMC, 5000 W. National Avenue, Milwaukee, WI 53295, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Akimov MG, Gretskaia NM, Shevchenko KV, Shevchenko VP, Miasoedov NF, Bobrov MI, Bezuglov VV. [New aspects of biosynthesis and metabolism of N-acyldopamines in rat tissues]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 33:648-52. [PMID: 18173129 DOI: 10.1134/s1068162007060118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Possible biosynthetic pathways of N-acyldopamines in rat tissues were compared. It was shown that an insignificant amount of the conjugation products was formed during the incubation of arachidonic acid and dopamine, whereas the substitution of tyrosine for dopamine resulted in the productive biosynthesis of N-arachidonoyldopamine. The biosynthesis presumably involves several closely conjugated enzymatic stages, and free fatty acids rather than their CoA esters served as the starting substrates. The decarboxylation stage probably precedes the stage of catechol system formation, because N-acetyltyramine (a probable intermediate) was easily oxidized by monophenol monooxygenase to N-acyldopamine, whereas N-acyltyrosine is hydrolyzed under these conditions. Biosynthesis of N-acyldopamines in a cell-free medium was accompanied by their methylation. The possibility of oxidative metabolism of N-acyldopamines, which could serve as co-substrates or inhibitors of different oxidoreductases, was shown for the first time.
Collapse
|
12
|
Merker MP, Audi SH, Lindemer BJ, Krenz GS, Bongard RD. Role of mitochondrial electron transport complex I in coenzyme Q1 reduction by intact pulmonary arterial endothelial cells and the effect of hyperoxia. Am J Physiol Lung Cell Mol Physiol 2007; 293:L809-19. [PMID: 17601793 DOI: 10.1152/ajplung.00448.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective was to determine the impact of intact normoxic and hyperoxia-exposed (95% O(2) for 48 h) bovine pulmonary arterial endothelial cells in culture on the redox status of the coenzyme Q(10) homolog coenzyme Q(1) (CoQ(1)). When CoQ(1) (50 microM) was incubated with the cells for 30 min, its concentration in the medium decreased over time, reaching a lower level for normoxic than hyperoxia-exposed cells. The decreases in CoQ(1) concentration were associated with generation of CoQ(1) hydroquinone (CoQ(1)H(2)), wherein 3.4 times more CoQ(1)H(2) was produced in the normoxic than hyperoxia-exposed cell medium (8.2 +/- 0.3 and 2.4 +/- 0.4 microM, means +/- SE, respectively) after 30 min. The maximum CoQ(1) reduction rate for the hyperoxia-exposed cells, measured using the cell membrane-impermeant redox indicator potassium ferricyanide, was about one-half that of normoxic cells (11.4 and 24.1 nmol x min(-1) x mg(-1) cell protein, respectively). The mitochondrial electron transport complex I inhibitor rotenone decreased the CoQ(1) reduction rate by 85% in the normoxic cells and 44% in the hyperoxia-exposed cells. There was little or no inhibitory effect of NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors on CoQ(1) reduction. Intact cell oxygen consumption rates and complex I activities in mitochondria-enriched fractions were also lower for hyperoxia-exposed than normoxic cells. The implication is that intact pulmonary endothelial cells influence the redox status of CoQ(1) via complex I-mediated reduction to CoQ(1)H(2), which appears in the extracellular medium, and that the hyperoxic exposure decreases the overall CoQ(1) reduction capacity via a depression in complex I activity.
Collapse
Affiliation(s)
- Marilyn P Merker
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | |
Collapse
|
13
|
Dmitriev LF. Shortage of lipid-radical cycles in membranes as a possible prime cause of energetic failure in aging and Alzheimer disease. Neurochem Res 2007; 32:1278-91. [PMID: 17541743 DOI: 10.1007/s11064-007-9322-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2006] [Accepted: 02/27/2007] [Indexed: 01/02/2023]
Abstract
Polyunsaturated fatty acids (PUFA) and alpha-tocopherol (alpha-TOH) are the most oxygen-sensitive constituents of cells. alpha-TOH is a member of the vitamin E family that is considered the most important lipophilic antioxidant in cell membranes. Its importance is emphasized by the involvement of oxidative stress in injury to the central nervous system and neurodegenerative diseases. Currently, alpha-TOH transfer protein (TTP), is believed to play a significant role in maintaining the vitamin status but the presence of alpha-TOH in membranes is required but not sufficient to protect the membranes against lipid hydroperoxides (LOOH) formation. The lipid-radical theory presented in this review considers the role of two membrane factors--alpha-tocopherol and cytochrome b5; these factors secure the functioning of lipid-radical cycles and the participation of lipid-radical reactions in the key membrane processes. The prominent intermembrane reaction realized via a protein-lipid interaction, during which electron transport from cytochrome b5--located in the outer membrane--to peroxyl radical (LOO*)--located in inner membrane--causes reduction of the peroxyl radical: cyt.b5red + LOO* --> cyt.b5ox + LOO(-). This secures an interaction of alpha-TOH with other intermediate, LOO(- )excepting the LOOH formation. The discussion will be focused on the consequences of ineffective electron transfer to LOO* and excessive oxidative pathway of metabolism of the PUFA (LOO* --> LOOH). Assuming the operation of cytochrome b5/alpha-tocopherol-controlled lipid-radical cycles and considering the role of the cycles in membrane bioenergetics we arrive at a model for effective function of adenine nucleotide translocator and ATP synthesis in mitochondria. This paper summarizes our experimental evidence that the oxidative and non-oxidative pathways of metabolism of PUFA via their respective intermediates occur in the cells. While this fact is not widely appreciated it may be relevant to elucidation of new mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leonid F Dmitriev
- Inst Exp Cardiology, Cardiology Research Center, Cherepkovskaya, Moscow, Russian Federation.
| |
Collapse
|
14
|
Yahong C, Ruxiu C, Ke Z. Study the effect of Vitamin K on intracellular NAD level in yeast by fluorescence spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2007; 67:235-9. [PMID: 17254841 DOI: 10.1016/j.saa.2006.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 07/04/2006] [Indexed: 05/13/2023]
Abstract
The intracellular NAD level plays a pivotal role in numerous biological processes such as rhythm, senescence, cancer and death. The study of the intracellular NAD level has been one of the "hotspots" in biomedical research. We investigated the effect of Vitamin K on intracellular NAD level in yeast by fluorescence spectrum in this paper. Plasma membrane redox system of yeast was found to be greatly promoted by the addition of Vitamin K(3) or Vitamin K(1). Ferricyanide reduction catalyzed by Vitamin K was accompanied by the decrease in intracellular NADH concentration and the increase in intracellular NAD level of yeast cells.
Collapse
Affiliation(s)
- Chen Yahong
- Department of Chemistry, Zhoukou Normal University, Zhoukou 466000, China
| | | | | |
Collapse
|
15
|
Sade H, Sarin A. Reactive oxygen species regulate quiescent T-cell apoptosis via the BH3-only proapoptotic protein BIM. Cell Death Differ 2004; 11:416-23. [PMID: 14713957 DOI: 10.1038/sj.cdd.4401347] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The survival of quiescent T cells in the peripheral immune system is dependent on signals transmitted from the extracellular environment. The requirement for survival factors is also manifested in vitro, providing a robust system to examine molecular mechanisms underlying T-cell death. We show that peripheral T cells cultured in the absence of survival factors accumulate reactive oxygen species (ROS), upregulate BIM (Bcl-2-interacting mediator of death) and inducible nitric oxide synthase (iNOS) expression, culminating in Fas-independent neglect-induced death (NID). We have examined ROS, iNOS and cytokine modulation of T-cell NID. Antioxidants inhibit BIM induction, caspase activation and apoptosis but do not promote cell cycle entry. iNOS-deficient T cells are protected from apoptosis, implicating iNOS in the regulation of NID via suppression of Bcl-x(L) expression and consequent inhibition of BIM activity. Finally, we show that the prosurvival cytokine IL-7 elevates Bcl-x(L) expression and transcriptionally regulates iNOS but not BIM expression in T cells.
Collapse
Affiliation(s)
- H Sade
- National Centre for Biological Sciences, UAS-GKVK Campus, Bangalore, India
| | | |
Collapse
|