1
|
Luchicchi A, Hart B, Frigerio I, van Dam AM, Perna L, Offerhaus HL, Stys PK, Schenk GJ, Geurts JJG. Axon-Myelin Unit Blistering as Early Event in MS Normal Appearing White Matter. Ann Neurol 2021; 89:711-725. [PMID: 33410190 PMCID: PMC8048993 DOI: 10.1002/ana.26014] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 12/19/2020] [Accepted: 01/03/2021] [Indexed: 02/04/2023]
Abstract
Objective Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease of unknown etiology. Although the prevalent view regards a CD4+‐lymphocyte autoimmune reaction against myelin at the root of the disease, recent studies propose autoimmunity as a secondary reaction to idiopathic brain damage. To gain knowledge about this possibility we investigated the presence of axonal and myelinic morphological alterations, which could implicate imbalance of axon‐myelin units as primary event in MS pathogenesis. Methods Using high resolution imaging histological brain specimens from patients with MS and non‐neurological/non‐MS controls, we explored molecular changes underpinning imbalanced interaction between axon and myelin in normal appearing white matter (NAWM), a region characterized by normal myelination and absent inflammatory activity. Results In MS brains, we detected blister‐like swellings formed by myelin detachment from axons, which were substantially less frequently retrieved in non‐neurological/non‐MS controls. Swellings in MS NAWM presented altered glutamate receptor expression, myelin associated glycoprotein (MAG) distribution, and lipid biochemical composition of myelin sheaths. Changes in tethering protein expression, widening of nodes of Ranvier and altered distribution of sodium channels in nodal regions of otherwise normally myelinated axons were also present in MS NAWM. Finally, we demonstrate a significant increase, compared with controls, in citrullinated proteins in myelin of MS cases, pointing toward biochemical modifications that may amplify the immunogenicity of MS myelin. Interpretation Collectively, the impaired interaction of myelin and axons potentially leads to myelin disintegration. Conceptually, the ensuing release of (post‐translationally modified) myelin antigens may elicit a subsequent immune attack in MS. ANN NEUROL 2021;89:711–725
Collapse
Affiliation(s)
- Antonio Luchicchi
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Bert't Hart
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands.,Department Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Irene Frigerio
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Laura Perna
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Herman L Offerhaus
- Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Peter K Stys
- Cummings School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Geert J Schenk
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Poerwoatmodjo A, Schenk GJ, Geurts JJG, Luchicchi A. Cysteine Proteases and Mitochondrial Instability: A Possible Vicious Cycle in MS Myelin? Front Cell Neurosci 2020; 14:612383. [PMID: 33335477 PMCID: PMC7736044 DOI: 10.3389/fncel.2020.612383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | | | - Antonio Luchicchi
- Division Clinical Neurosciences, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam Universitair Medische Centra (UMC), Location Vrije Universiteit (VU) Medical Center, MS Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Milward E, Kim KJ, Szklarczyk A, Nguyen T, Melli G, Nayak M, Deshpande D, Fitzsimmons C, Hoke A, Kerr D, Griffin JW, Calabresi PA, Conant K. Cleavage of myelin associated glycoprotein by matrix metalloproteinases. J Neuroimmunol 2007; 193:140-8. [PMID: 18063113 DOI: 10.1016/j.jneuroim.2007.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/12/2007] [Accepted: 11/02/2007] [Indexed: 01/03/2023]
Abstract
Derivative myelin associated glycoprotein (dMAG) results from proteolysis of transmembrane MAG and can inhibit axonal growth. We have tested the ability of certain matrix metalloproteinases (MMPs) elevated with inflammatory and demyelinating diseases to cleave MAG. We show MMP-2, MMP-7 and MMP-9, but not MMP-1, cleave recombinant human MAG. Cleavage by MMP-7 occurs at Leu 509, just distal to the transmembrane domain and, to a lesser extent, at Met 234. We also show that MMP-7 cleaves MAG expressed on the external surface of CHO cells, releasing fragments that accumulate in the medium over periods of up to 48 h or more and that are able to inhibit outgrowth by dorsal root ganglion (DRG) neurons. We conclude that MMPs may have the potential both to disrupt MAG dependent axon-glia communication and to generate bioactive fragments that can inhibit neurite growth.
Collapse
Affiliation(s)
- Elizabeth Milward
- School of Biomedical Sciences, The University of Newcastle and the Hunter Medical Research Institute, Callaghan, New South Wales 2308, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Thompson HJ, Marklund N, LeBold DG, Morales DM, Keck CA, Vinson M, Royo NC, Grundy R, McIntosh TK. Tissue sparing and functional recovery following experimental traumatic brain injury is provided by treatment with an anti-myelin-associated glycoprotein antibody. Eur J Neurosci 2007; 24:3063-72. [PMID: 17156367 PMCID: PMC2377452 DOI: 10.1111/j.1460-9568.2006.05197.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Axonal injury is a hallmark of traumatic brain injury (TBI) and is associated with a poor clinical outcome. Following central nervous system injury, axons regenerate poorly, in part due to the presence of molecules associated with myelin that inhibit axonal outgrowth, including myelin-associated glycoprotein (MAG). The involvement of MAG in neurobehavioral deficits and tissue loss following experimental TBI remains unexplored and was evaluated in the current study using an MAG-specific monoclonal antibody (mAb). Anesthetized rats (n=102) were subjected to either lateral fluid percussion brain injury (n=59) or sham injury (n=43). In surviving animals, beginning at 1 h post-injury, 8.64 microg anti-MAG mAb (n=33 injured, n=21 sham) or control IgG (n=26 injured, n=22 sham) was infused intracerebroventricularly for 72 h. One group of these rats (n=14 sham, n=11 injured) was killed at 72 h post-injury for verification of drug diffusion and MAG immunohistochemistry. All other animals were evaluated up to 8 weeks post-injury using tests for neurologic motor, sensory and cognitive function. Hemispheric tissue loss was also evaluated at 8 weeks post-injury. At 72 h post-injury, increased immunoreactivity for MAG was seen in the ipsilateral cortex, thalamus and hippocampus of brain-injured animals, and anti-MAG mAb was detectable in the hippocampus, fimbria and ventricles. Brain-injured animals receiving anti-MAG mAb showed significantly improved recovery of sensorimotor function at 6 and 8 weeks (P<0.01) post-injury when compared with brain-injured IgG-treated animals. Additionally, at 8 weeks post-injury, the anti-MAG mAb-treated brain-injured animals demonstrated significantly improved cognitive function and reduced hemispheric tissue loss (P<0.05) when compared with their brain-injured controls. These results indicate that MAG may contribute to the pathophysiology of experimental TBI and treatment strategies that target MAG may be suitable for further evaluation.
Collapse
Affiliation(s)
- Hilaire J Thompson
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, The University of Pennsylvania, Philadelphia, PA, USA, and Department of Neurosurgery, Uppsala University Hospital, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The myelin-associated glycoprotein (MAG) is a type I transmembrane glycoprotein localized in periaxonal Schwann cell and oligodendroglial membranes of myelin sheaths where it functions in glia-axon interactions. It contains five immunoglobulin (Ig)-like domains and is in the sialic acid-binding subgroup of the Ig superfamily. It appears to function both as a ligand for an axonal receptor that is needed for the maintenance of myelinated axons and as a receptor for an axonal signal that promotes the differentiation, maintenance and survival of oligodendrocytes. Its function in the maintenance of myelinated axons may be related to its role as one of the white matter inhibitors of neurite outgrowth acting through a receptor complex involving the Nogo receptor and/or gangliosides containing 2,3-linked sialic acid. MAG is expressed as two developmentally regulated isoforms with different cytoplasmic domains that may activate different signal transduction pathways in myelin-forming cells. MAG contains a carbohydrate epitope shared with other glycoconjugates that is a target antigen in autoimmune peripheral neuropathy associated with IgM gammopathy and has been implicated in a dying back oligodendrogliopathy in multiple sclerosis.
Collapse
Affiliation(s)
- Richard H Quarles
- Myelin and Brain Development Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA.
| |
Collapse
|
6
|
Erb M, Flueck B, Kern F, Erne B, Steck AJ, Schaeren-Wiemers N. Unraveling the differential expression of the two isoforms of myelin-associated glycoprotein in a mouse expressing GFP-tagged S-MAG specifically regulated and targeted into the different myelin compartments. Mol Cell Neurosci 2006; 31:613-27. [PMID: 16442810 DOI: 10.1016/j.mcn.2005.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/22/2005] [Accepted: 12/01/2005] [Indexed: 12/29/2022] Open
Abstract
The two myelin-associated glycoprotein (MAG) isoforms are cell adhesion molecules that differ only in their cytoplasmic domains, but their specific roles are not well understood. In this study, we present a transgenic mouse line that specifically expresses GFP-tagged S-MAG correctly regulated and targeted into the myelin sheath allowing the specific discrimination of L- and S-MAG on the subcellular level. Here, we describe the differential expression pattern and spatial distribution of L- and S-MAG during development as well as in the adult central and peripheral nervous system. In peripheral nerves, where S-MAG is the sole isoform, we observed S-MAG concentrated in different ring-like structures such as periaxonal and abaxonal rings, and discs spanning through the compact myelin sheath perpendicular to the axon. In summary, our data provide new insight in the subcellular distribution of the two isoforms fundamental for the understanding of their specific functions in myelin formation and maintenance.
Collapse
Affiliation(s)
- Michael Erb
- Neurobiology, Department of Research, University Hospital Basel, Pharmacenter 7007, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
7
|
Giordana MT, Piccinini M, Palmucci L, Buccinnà B, Ramondetti C, Brusco A, Mongini T, Vaula G, Rinaudo MT. Myelin-associated glycoprotein is altered in a familial late-onset orthochromatic leukodystrophy. Brain Pathol 2005; 15:116-23. [PMID: 15912883 PMCID: PMC8095975 DOI: 10.1111/j.1750-3639.2005.tb00506.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Adult-onset dominant leukodystrophies are a heterogeneous group of rare disorders, whose etiology, pathogenesis and molecular background are still unknown. We report the neuropathological and biochemical investigations of the brains and their myelin proteins components in 2 members of an Italian family affected by an adult-onset autosomal dominant leukoencephalopathy. Clinical signs included spastic paraparesis, pseudobulbar syndrome, action tremor of head and hands, and moderate memory impairment. No mental deterioration or neuropathy was present. Onset was subacute (range 42-53 years) and progression spanned 4 to 7 years. The neuropathological phenotype overlapped that of orthochromatic leukodystrophies. The biochemical analysis revealed an abnormal myelin-associated glycoprotein (MAG); the defect was localized at the C-terminal domain of the L-MAG isoform, resulting in a protein approximately 5 kDa shorter than the normal counterpart. No mutation in the MAG gene-coding regions was uncovered, and linkage analysis formally excluded the entire MAG locus. We show that the identified MAG protein alteration is probably due to an abnormal post-translational event. Considering MAG function in the maintenance of myelin, the abnormal protein may have a role in the pathogenesis of this disease. This is the first report of a possible pathogenetic role of MAG in a hereditary disease affecting the central white matter.
Collapse
Affiliation(s)
- Maria Teresa Giordana
- Department of Neuroscience, Neurology, University of Turin, Via Cherasco 15, 10126 Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|