1
|
Pifferi A, Chiaino E, Fernandez-Abascal J, Bannon AC, Davey GP, Frosini M, Valoti M. Exploring the Regulation of Cytochrome P450 in SH-SY5Y Cells: Implications for the Onset of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:7439. [PMID: 39000543 PMCID: PMC11242626 DOI: 10.3390/ijms25137439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Human individual differences in brain cytochrome P450 (CYP) metabolism, including induction, inhibition, and genetic variation, may influence brain sensitivity to neurotoxins and thus participate in the onset of neurodegenerative diseases. The aim of this study was to explore the modulation of CYPs in neuronal cells. The experimental approach was focused on differentiating human neuroblastoma SH-SY5Y cells into a phenotype resembling mature dopamine neurons and investigating the effects of specific CYP isoform induction. The results demonstrated that the differentiation protocols using retinoic acid followed by phorbol esters or brain-derived neurotrophic factor successfully generated SH-SY5Y cells with morphological neuronal characteristics and increased neuronal markers (NeuN, synaptophysin, β-tubulin III, and MAO-B). qRT-PCR and Western blot analysis showed that expression of the CYP 1A1, 3A4, 2D6, and 2E1 isoforms was detectable in undifferentiated cells, with subsequent increases in CYP 2E1, 2D6, and 1A1 following differentiation. Further increases in the 1A1, 2D6, and 2E1 isoforms following β-naphthoflavone treatment and 1A1 and 2D6 isoforms following ethanol treatment were evident. These results demonstrate that CYP isoforms can be modulated in SH-SY5Y cells and suggest their potential as an experimental model to investigate the role of CYPs in neuronal processes involved in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alice Pifferi
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Elda Chiaino
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Jesus Fernandez-Abascal
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera km 1, 41013 Sevilla, Spain;
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013 Seville, Spain
| | - Aoife C. Bannon
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity College Dublin, 3533645 Dublin, Ireland;
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| |
Collapse
|
2
|
Fernandez-Abascal J, Ripullone M, Valeri A, Leone C, Valoti M. β-Naphtoflavone and Ethanol Induce Cytochrome P450 and Protect towards MPP⁺ Toxicity in Human Neuroblastoma SH-SY5Y Cells. Int J Mol Sci 2018; 19:ijms19113369. [PMID: 30373287 PMCID: PMC6274691 DOI: 10.3390/ijms19113369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Cytochrome P450 (CYP) isozymes vary their expression depending on the brain area, the cell type, and the presence of drugs. Some isoforms are involved in detoxification and/or toxic activation of xenobiotics in central nervous system. However, their role in brain metabolism and neurodegeneration is still a subject of debate. We have studied the inducibility of CYP isozymes in human neuroblastoma SH-SY5Y cells, treated with β-naphtoflavone (β-NF) or ethanol (EtOH) as inducers, by qRT-PCR, Western blot (WB), and metabolic activity assays. Immunohistochemistry was used to localize the isoforms in mitochondria and/or endoplasmic reticulum (ER). Tetrazolium (MTT) assay was performed to study the role of CYPs during methylphenyl pyridine (MPP+) exposure. EtOH increased mRNA and protein levels of CYP2D6 by 73% and 60% respectively. Both β-NF and EtOH increased CYP2E1 mRNA (4- and 1.4-fold, respectively) and protein levels (64% both). The 7-ethoxycoumarin O-deethylation and dextromethorphan O-demethylation was greater in treatment samples than in controls. Furthermore, both treatments increased by 22% and 18%, respectively, the cell viability in MPP+-treated cells. Finally, CYP2D6 localized at mitochondria and ER. These data indicate that CYP is inducible in SH-SY5Y cells and underline this in vitro system for studying the role of CYPs in neurodegeneration.
Collapse
Affiliation(s)
- Jesus Fernandez-Abascal
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Mariantonia Ripullone
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Aurora Valeri
- Molecular Horizon srl, Via Montelino 32, Bettona, 06084 Perugia, Italy.
| | - Cosima Leone
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
3
|
Ramsay RR, Majekova M, Medina M, Valoti M. Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration. Front Neurosci 2016; 10:375. [PMID: 27597816 PMCID: PMC4992697 DOI: 10.3389/fnins.2016.00375] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
HIGHLIGHTS Compounds that interact with multiple targets but minimally with the cytochrome P450 system (CYP) address the many factors leading to neurodegeneration.Acetyl- and Butyryl-cholineEsterases (AChE, BChE) and Monoamine Oxidases A/B (MAO A, MAO B) are targets for Multi-Target Designed Ligands (MTDL).ASS234 is an irreversible inhibitor of MAO A >MAO B and has micromolar potency against the cholinesterases.ASS234 is a poor CYP substrate in human liver, yielding the depropargylated metabolite.SMe1EC2, a stobadine derivative, showed high radical scavenging property, in vitro and in vivo giving protection in head trauma and diabetic damage of endothelium.Control of mitochondrial function and morphology by manipulating fission and fusion is emerging as a target area for therapeutic strategies to decrease the pathological outcome of neurodegenerative diseases. Growing evidence supports the view that neurodegenerative diseases have multiple and common mechanisms in their aetiologies. These multifactorial aspects have changed the broadly common assumption that selective drugs are superior to "dirty drugs" for use in therapy. This drives the research in studies of novel compounds that might have multiple action mechanisms. In neurodegeneration, loss of neuronal signaling is a major cause of the symptoms, so preservation of neurotransmitters by inhibiting the breakdown enzymes is a first approach. Acetylcholinesterase (AChE) inhibitors are the drugs preferentially used in AD and that one of these, rivastigmine, is licensed also for PD. Several studies have shown that monoamine oxidase (MAO) B, located mainly in glial cells, increases with age and is elevated in Alzheimer (AD) and Parkinson's Disease's (PD). Deprenyl, a MAO B inhibitor, significantly delays the initiation of levodopa treatment in PD patients. These indications underline that AChE and MAO are considered a necessary part of multi-target designed ligands (MTDL). However, both of these targets are simply symptomatic treatment so if new drugs are to prevent degeneration rather than compensate for loss of neurotransmitters, then oxidative stress and mitochondrial events must also be targeted. MAO inhibitors can protect neurons from apoptosis by mechanisms unrelated to enzyme inhibition. Understanding the involvement of MAO and other proteins in the induction and regulation of the apoptosis in mitochondria will aid progress toward strategies to prevent the loss of neurons. In general, the oxidative stress observed both in PD and AD indicate that antioxidant properties are a desirable part of MTDL molecules. After two or more properties are incorporated into one molecule, the passage from a lead compound to a therapeutic tool is strictly linked to its pharmacokinetic and toxicity. In this context the interaction of any new molecules with cytochrome P450 and other xenobiotic metabolic processes is a crucial point. The present review covers the biochemistry of enzymes targeted in the design of drugs against neurodegeneration and the cytochrome P450-dependent metabolism of MTDLs.
Collapse
Affiliation(s)
- Rona R. Ramsay
- Biomedical Sciences Research Complex, University of St. AndrewsSt. Andrews, UK
| | - Magdalena Majekova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of SciencesBratislava, Slovakia
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and BIFI, Universidad de ZaragozaZaragoza, Spain
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università degli Studi di SienaSiena, Italy
| |
Collapse
|
4
|
Yamazoe Y, Ito K, Yoshinari K. Construction of a CYP2E1-template system for prediction of the metabolism on both site and preference order. Drug Metab Rev 2012; 43:409-39. [PMID: 22017508 DOI: 10.3109/03602532.2011.624103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have constructed an in silico system for the prediction of CYP2E1-mediated reaction using a two-dimensional template derived from substrate structures. Although CYP2E1 prefers small-size molecules for the substrates, the enzyme mediates oxidations of large-size molecules, such as benzo[a]pyrene. Overlays of these substrates, to assemble their sites of oxidation into a specific area, suggested a range of regions frequently occupied. The region, having a benzo[a]pyrene-like shape, was thus used as a CYP2E1 template. In this system, atoms in substrates, except for hydrogen atoms, were placed on corners of honeycomb structures of the template after having expanded the structures. Using published data for the metabolism on more than 80 substrates of CYP2E1, the core template was further refined to verify the adjacent area and to define the relative contribution of template positions for the catalysis. The positions on the template were classified into four different point (0-3) groups, depending on relative usage. In addition, we set independent points (-5 to 3) for specific positions to incorporate three-dimensional or functional information. Total scores from both position-occupancy and -function points were calculated for all the orientations of possible conformers of test substrates, and the scores were found to predict the relative abundance (i.e., order) as well as the regioselectivity of human CYP2E1 reactions with high fidelities.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| | | | | |
Collapse
|
5
|
Woodland C, Huang TT, Gryz E, Bendayan R, Fawcett JP. Expression, Activity and Regulation of CYP3A in Human and Rodent Brain. Drug Metab Rev 2008; 40:149-68. [DOI: 10.1080/03602530701836712] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Gervasini G, Carrillo JA, Benitez J. Potential role of cerebral cytochrome P450 in clinical pharmacokinetics: modulation by endogenous compounds. Clin Pharmacokinet 2004; 43:693-706. [PMID: 15301574 DOI: 10.2165/00003088-200443110-00001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cytochrome P450 (CYP) enzymes catalyse phase I metabolic reactions of psychotropic drugs. The main isoenzymes responsible for this biotransformation are CYP1A2, CYP2D6, CYP3A and those of the subfamily CYP2C. Although these enzymes are present in the human brain, their specific role in this tissue remains unclear. However, because CYP enzymatic activities have been reported in the human brain and because brain microsomes have been shown to metabolise the same probe substrates used to assess specific hepatic CYP activities and substrates of known hepatic CYPs, local drug metabolism is believed to be likely. There are also indications that CYP2D6 is involved in the metabolism of endogenous substrates in the brain. This, along with the fact that several neurotransmitters modulate CYP enzyme activities in human liver microsomes, indicates that CYP enzymes present in brain could be under various regulatory mechanisms and that those mechanisms could influence drug pharmacokinetics and, hence, drug response. In this paper we review the presence of CYP1A2, CYP2C9, CYP2D6 and CYP3A in brain, as well as the possible existence of local brain metabolism, and discuss the putative implications of endogenous modulation of these isoenzymes by neurotransmitters.
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Pharmacology and Psychiatry, Medical School, University of Extremadura, Badajoz, Spain
| | | | | |
Collapse
|