1
|
Zehra K, Banu A, Can E, Hülya C. Fisetin and/or capecitabine causes changes in apoptosis pathways in capecitabine-resistant colorectal cancer cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7913-7926. [PMID: 38748229 PMCID: PMC11449987 DOI: 10.1007/s00210-024-03145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 10/04/2024]
Abstract
Capecitabine is recommended as one of the first-line chemotherapy treatments for advanced or metastatic colorectal cancer. Researches have been conducted on capecitabine's impact on the viability of human colon cancer cells and its potential to induce apoptosis. However, even in cases initially responsive to treatment, the development of acquired resistance significantly limits its efficacy. Challenges still exist in effectively treating patients with chemotherapy, and developing new cytotoxic drugs is hindered by drug resistance. Fisetin alters the cell cycle, inducing apoptosis, inhibiting cancer cell proliferation, and enhancing the therapeutic effectiveness of chemotherapy drugs. This work aims to create a plan for reversing capecitabine resistance. For this purpose, the role of capecitabine and/or fisetin combinations in cell proliferation and apoptosis has been determined in both wild-type and capecitabine-resistant HT29 cells (CR/HT29). We developed capecitabine-resistant cell line from wild-type HT29 cells. This study demonstrated the effects of capecitabine, fisetin, and their combinations on both resistant and wild-type cells through experiments including cell survival skills, cell proliferation, wound healing, colony formation, hoechst staining, and western blot analysis. We established capecitabine-resistant cell lines. P-gp expression increased in CR/HT29 cells. Capecitabine effects on a CR/HT29 cells less than wild-type HT29 cells. The combination of fisetin and capecitabine in cell proliferation caused greater reductions in wild-type HT29 cells than in capecitabine-resistant cells. Fisetin has also additive effects on the apoptotic pathway in CR/HT29 cells. This study provides new perspectives on the combination of capecitabine and/or flavonoid treatment in resistant cells.
Collapse
Affiliation(s)
- Kanli Zehra
- Institute of Health Sciences, Marmara University, Basibuyuk-Maltepe, Istanbul, 34854, Turkey
| | - Aydin Banu
- School of Medicine, Department of Biophysics, Marmara University, Basic Medical Sciences Building, Maltepe, Istanbul, 34854, Turkey
| | - Erzik Can
- School of Medicine, Department of Medical Biology, Marmara University, Basic Medical Sciences Building, Maltepe, Istanbul, 34854, Turkey
| | - Cabadak Hülya
- School of Medicine, Department of Biophysics, Marmara University, Basic Medical Sciences Building, Maltepe, Istanbul, 34854, Turkey.
| |
Collapse
|
2
|
Lin CH, Tang LY, Wang LY, Chang CP. Thrombomodulin Improves Cognitive Deficits in Heat-Stressed Mice. Int J Neuropsychopharmacol 2024; 27:pyae027. [PMID: 38938182 PMCID: PMC11259854 DOI: 10.1093/ijnp/pyae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Thrombomodulin (TM) exerts anticoagulant and anti-inflammatory effects to improve the survival of patients with septic shock. Heat stroke resembles septic shock in many aspects. We tested whether TM would improve cognitive deficits and related causative factors in heat-stressed (HS) mice. METHODS Adult male mice were exposed to HS (33°C for 2 hours daily for 7 consecutive days) to induce cognitive deficits. Recombinant human soluble TM (1 mg/kg, i.p.) was administered immediately after the first HS trial and then once daily for 7 consecutive days. We performed the Y-maze, novel objective recognition, and passive avoidance tests to evaluate cognitive function. Plasma levels of lipopolysaccharide (LPS), high-mobility group box 1 (HMGB1), coagulation parameters, and both plasma and tissue levels of inflammatory and oxidative stress markers were biochemically measured. The duodenum and hippocampus sections were immunohistochemically stained. The intestinal and blood-brain barrier permeability were determined. RESULTS Compared with controls, HS mice treated with TM had lesser extents of cognitive deficits, exacerbated stress reactions, gut barrier disruption, endotoxemia, blood-brain barrier disruption, and inflammatory, oxidative, and coagulatory injury to heart, duodenum, and hippocampal tissues, and increased plasma HMGB1. In addition to reducing cognitive deficits, TM therapy alleviated all the abovementioned complications in heat-stressed mice. CONCLUSIONS The findings suggest that HS can lead to exacerbated stress reactions, endotoxemia, gut barrier disruption, blood-brain barrier disruption, hippocampal inflammation, coagulopathy, and oxidative stress, which may act as causative factors for cognitive deficits. TM, an anti-inflammatory, antioxidant, and anti-coagulatory agent, inhibited heat stress-induced cognitive deficits in mice.
Collapse
Affiliation(s)
- Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | | | - Lin-Yu Wang
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for General Education, Southern Taiwan University of Science and TechnologyTainan, Taiwan
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pediatrics
- Chi Mei Medical Center, Tainan, Taiwan
| | | |
Collapse
|
3
|
Fang W, Yin B, Fang Z, Tian M, Ke L, Ma X, Di Q. Heat stroke-induced cerebral cortex nerve injury by mitochondrial dysfunction: A comprehensive multi-omics profiling analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170869. [PMID: 38342446 DOI: 10.1016/j.scitotenv.2024.170869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
In recent years, global warming has led to frequent instances of extremely high temperatures during summer, arousing significant concern about the adverse effects of high temperature. Among these, heat stroke is the most serious, which has detrimental effects on the all organs of human body, especially on brain. However, the comprehensive pathogenesis leading to brain damage remains unclear. In this study, we constructed a mouse model of heat stroke and conducted multi-omics profiling to identify relevant pathogenesis induced by heat stroke. The mice were placed in a constant temperature chamber at 42 °C with a humidity of 50 %, and the criteria for success in modeling were that the rectal temperature reached 42 °C and that the mice were trembling. Then the mice were immediately taken out for further experiments. Firstly, we conducted cFos protein localization and identified the cerebral cortex, especially the anterior cingulate cortex as the region exhibiting the most pronounced damage. Secondly, we performed metabolomics, transcriptomics, and proteomics analysis on cerebral cortex. This multi-omics investigation unveiled noteworthy alterations in proteins and metabolites within pathways associated with neurotransmitter systems, heatstroke-induced mitochondrial dysfunction, encompassing histidine and pentose phosphate metabolic pathways, as well as oxidative stress. In addition, the cerebral cortex exhibited pronounced Reactive Oxygen Species (ROS) production, alongside significant downregulation of the mitochondrial outer membrane protein Tomm40 and mitochondrial permeability transition pore, implicating cerebral cortex mitochondrial dysfunction as the primary instigator of neural impairment. This study marks a significant milestone as the first to employ multi-omics analysis in exploring the molecular mechanisms underlying heat stroke-induced damage in cerebral cortex neurons. It comprehensively identifies all potentially impacted pathways by heat stroke, laying a solid foundation for ensuing research endeavors. Consequently, this study introduces a fresh angle to clinical approaches in heatstroke prevention and treatment, as well as establishes an innovative groundwork for shaping future-forward environmental policies.
Collapse
Affiliation(s)
- Wen Fang
- Division of Sports Science& Physical Education, Tsinghua University, Beijing, China; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Bo Yin
- School of Medicine, Tsinghua University, Beijing, China
| | - Zijian Fang
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Mengyi Tian
- School of Medicine, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Limei Ke
- School of Medicine, Tsinghua University, Beijing, China
| | - Xindong Ma
- Division of Sports Science& Physical Education, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Fang W, Liu L, Yin B, Ke L, Su Y, Liu F, Ma X, Di Q. Heat exposure intervention, anxiety level, and multi-omic profiles: A randomized crossover study. ENVIRONMENT INTERNATIONAL 2023; 181:108247. [PMID: 37871510 DOI: 10.1016/j.envint.2023.108247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Climate change has led to the frequent occurrence of high-temperature weather, which has various adverse effects on health, ranging from blood metabolism to systemic organ function. In particular, the sequelae of heat stress injury in most people are related to the nervous system. However, the mechanisms between heat stress and mental health conditions, especially heat stress and anxiety, remain unclear. OBJECTIVE We attempted to elucidate the effect of heat exposure intervention on anxiety levels in the population and its mechanism. METHODS We first carried out a randomized controlled trial in 20 college students in Beijing, China, to observe the results of the effects of heat exposure intervention on human anxiety. Then, we collected blood samples before and after heat exposure experiment and used metabolomic and transcriptomic approaches to quantify serum metabolites and ELISA measurements to explore the underlying mechanisms. RESULTS We found that even 1.5-hour heat exposure intervention significantly increased anxiety levels. Heat stress-induced anxiety was mediated by the activation of the HPA axis, inflammation, oxidative stress, and subsequently unbalanced neurotransmitters. Metabolites such as BDNF, GABA, and glucocorticoids released by the adrenal glands are biomarkers of heat stress-induced anxiety. CONCLUSIONS We have demonstrated a causal link between heat stress and anxiety, explored possible biological pathway between heat stress and anxiety. Heat stress can cause the activation of the HPA axis and lead to changes in the body's metabolism, resulting in a series of changes such as inflammation and oxidative stress, leading to anxiety. This study reveals hidden health cost of climate change that has been underexplored, and also reminds us the importance of immediate climate actions.
Collapse
Affiliation(s)
- Wen Fang
- Division of Sports Science & Physical Education, Tsinghua University, Beijing, China
| | - Linfeng Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Bo Yin
- School of Medicine, Tsinghua University, Beijing, China
| | - Limei Ke
- School of Medicine, Tsinghua University, Beijing, China
| | - Yao Su
- National Protein Science Facility, School of Life Science Tsinghua University, Beijing China
| | - Fang Liu
- National Protein Science Facility, School of Life Science Tsinghua University, Beijing China
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Zhu X, Huang J, Wu Y, Zhao S, Chai X. Effect of Heat Stress on Hippocampal Neurogenesis: Insights into the Cellular and Molecular Basis of Neuroinflammation-Induced Deficits. Cell Mol Neurobiol 2023; 43:1-13. [PMID: 34767143 PMCID: PMC11415162 DOI: 10.1007/s10571-021-01165-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 01/07/2023]
Abstract
Heat stress is known to result in neuroinflammation, neuronal damage, and disabilities in learning and memory in animals and humans. It has previously been reported that cognitive impairment caused by neuroinflammation may at least in part be mediated by defective hippocampal neurogenesis, and defective neurogenesis has been linked to aberrantly activated microglial cells. Moreover, the release of cytokines within the brain has been shown to contribute to the disruption of cognitive functions in several conditions following neuroinflammation. In this review, we summarize evolving evidence for the current understanding of inflammation-induced deficits in hippocampal neurogenesis, and the resulting behavioral impairments after heat stress. Furthermore, we provide valuable insights into the molecular and cellular mechanisms underlying neuroinflammation-induced deficits in hippocampal neurogenesis, particularly relating to cognitive dysfunction following heat stress. Lastly, we aim to identify potential mechanisms through which neuroinflammation induces cognitive dysfunction, and elucidate how neuroinflammation contributes to defective hippocampal neurogenesis. This review may therefore help to better understand the relationship between hippocampal neurogenesis and heat stress.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Jian Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xuejun Chai
- College of Basic Medicine, Xi'An Medical University, Xi'An, 710021, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Zhang Y, Yang D, Nie J, Dai J, Wu H, Zheng JC, Zhang F, Fang Y. Transcranial Nongenetic Neuromodulation via Bioinspired Vesicle-Enabled Precise NIR-II Optical Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208601. [PMID: 36305036 DOI: 10.1002/adma.202208601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Regulating the activity of specific neurons is essentially important in neurocircuit dissection and neuropathy therapy. As a recently developed strategy, nanomaterial-enabled nongenetic neuromodulations that realize remote physical stimuli have made vast progress and shown great clinical potential. However, minimal invasiveness and high spatiotemporal resolution are still challenging for nongenetic neuromodulation. Herein, a second near-infrared (NIR-II)-light-induced transcranial nongenetic neurostimulation via bioinspired nanovesicles is reported. The rationally designed vesicles are obtained from vesicle-membrane-confined enzymatic reactions. This study demonstrates that the vesicle-enabled NIR-II photothermal stimuli can elicit neuronal signaling dynamics with precise spatiotemporal control and thus evoke defined neural circuits in nontransgenic mice. Moreover, the vesicle-mediated NIR-II optical stimulation can regulate mouse motor behaviors with minimal invasiveness by eliminating light-emitting implants. Furthermore, the biological modulation is integrated with photoacoustic brain imaging, realizing navigational, and efficient neuromodulation. Such transcranial and precise NIR-II optical neuromodulation mediated by bioinspired vesicles shows the potential for the optical-theranostics of neurological diseases in nontransgenic organisms.
Collapse
Affiliation(s)
- Ya Zhang
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University, Shanghai, 200120, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Deqi Yang
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University, Shanghai, 200120, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jianfang Nie
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University, Shanghai, 200120, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jing Dai
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University, Shanghai, 200120, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haofan Wu
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University, Shanghai, 200120, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jialin Charles Zheng
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University, Shanghai, 200065, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Fudan University, Shanghai, 200433, China
| | - Yin Fang
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University, Shanghai, 200120, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
7
|
Cai M, Qu Y, Ren Z, Xu X, Ye C, Lu H, Zhang Y, Pan W, Shen H, Li H. Nutritional supplements formulated to prevent cognitive impairment in animals. Curr Res Food Sci 2022; 5:2294-2308. [DOI: 10.1016/j.crfs.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/08/2022] [Accepted: 11/02/2022] [Indexed: 11/20/2022] Open
|
8
|
Belity T, Horowitz M, Hoffman JR, Epstein Y, Bruchim Y, Todder D, Cohen H. Heat-Stress Preconditioning Attenuates Behavioral Responses to Psychological Stress: The Role of HSP-70 in Modulating Stress Responses. Int J Mol Sci 2022; 23:ijms23084129. [PMID: 35456946 PMCID: PMC9031159 DOI: 10.3390/ijms23084129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Exposure to high ambient temperature is a stressor that influences both biological and behavioral functions and has been previously shown to have an extensive impact on brain structure and function. Physiological, cellular and behavioral responses to heat-stress (HS) (40-41 °C, 2 h) were evaluated in adult male Sprague-Dawley rats. The effect of HS exposure before predator-scent stress (PSS) exposure (i.e., HS preconditioning) was examined. Finally, a possible mechanism of HS-preconditioning to PSS was investigated. Immunohistochemical analyses of chosen cellular markers were performed in the hippocampus and in the hypothalamic paraventricular nucleus (PVN). Plasma corticosterone levels were evaluated, and the behavioral assessment included the elevated plus-maze (EPM) and the acoustic startle response (ASR) paradigms. Endogenous levels of heat shock protein (HSP)-70 were manipulated using an amino acid (L-glutamine) and a pharmacological agent (Doxazosin). A single exposure to an acute HS resulted in decreased body mass (BM), increased body temperature and increased corticosterone levels. Additionally, extensive cellular, but not behavioral changes were noted. HS-preconditioning provided behavioral resiliency to anxiety-like behavior associated with PSS, possibly through the induction of HSP-70. Targeting of HSP-70 is an attractive strategy for stress-related psychopathology treatment.
Collapse
Affiliation(s)
- Tal Belity
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem 9112102, Israel; (M.H.); (Y.B.)
| | - Jay R. Hoffman
- Department of Physical Therapy, Ariel University, Ariel 40700, Israel;
| | - Yoram Epstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv and the Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan 52621, Israel;
| | - Yaron Bruchim
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem 9112102, Israel; (M.H.); (Y.B.)
- Intensive Care, Veterinary Emergency and Specialist Center, Youth Village Ben Shemen, Ben-Shemen 7311200, Israel
| | - Doron Todder
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8461144, Israel;
| | - Hagit Cohen
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8461144, Israel;
- Correspondence: ; Tel.: +972-8-6401743
| |
Collapse
|
9
|
Huang J, Chai X, Wu Y, Hou Y, Li C, Xue Y, Pan J, Zhao Y, Su A, Zhu X, Zhao S. β-Hydroxybutyric acid attenuates heat stress-induced neuroinflammation via inhibiting TLR4/p38 MAPK and NF-κB pathways in the hippocampus. FASEB J 2022; 36:e22264. [PMID: 35333405 DOI: 10.1096/fj.202101469rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 11/11/2022]
Abstract
Heat stress causes many pathophysiological responses in the brain, including neuroinflammation and cognitive deficits. β-Hydroxybutyric acid (BHBA) has been shown to have neuroprotective effects against inflammation induced by lipopolysaccharide. The aim of the present study was to evaluate the effects of BHBA on neuroinflammation induced by heat stress, as well as the underlying mechanisms. Mice were pretreated with vehicle, BHBA or minocycline (positive control group) and followed by heat exposure (43°C) for 15 min for 14 days. In mice subjected to heat stress, we found that treatment with BHBA or minocycline significantly decreased the level of serum cortisol, the expressions of heat shock protein 70 (HSP70), and the density of c-Fos+ cells in the hippocampus. Surprisingly, the ethological tests revealed that heat stress led to cognitive dysfunctions and could be alleviated by BHBA and minocycline administration. Further investigation showed that BHBA and minocycline significantly attenuated the activation of microglia and astrocyte induced by heat stress. Pro-inflammatory cytokines were attenuated in the hippocampus by BHBA and minocycline treatment. Importantly, compared with the heat stress group, mice in the BHBA treatment group and positive control group experienced a decrease in the expressions of toll-like receptor 4 (TLR4), phospho-p38 (p-p38), and nuclear factor kappa B (NF-κB). Our results elucidated that BHBA inhibits neuroinflammation induced by heat stress by suppressing the activation of microglia and astrocyte, and modulating TLR4/p38 MAPK and NF-κB pathways. This study provides new evidence that BHBA is a potential strategy for protecting animals from heat stress.
Collapse
Affiliation(s)
- Jian Huang
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Xuejun Chai
- Department of Basic Medicine, Xi'an Medical University, Xi'an, P.R. China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Yan Hou
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Cixia Li
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Yuhuan Xue
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Jiarong Pan
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Yongkang Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Aimin Su
- College of Life Sciences, Northwest A & F University, Yangling, P.R. China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| |
Collapse
|
10
|
Aghazadeh A, Feizi MAH, Fanid LM, Ghanbari M, Roshangar L. Effects of Hyperthermia on TRPV1 and TRPV4 Channels Expression and Oxidative Markers in Mouse Brain. Cell Mol Neurobiol 2021; 41:1453-1465. [PMID: 32661579 PMCID: PMC11448633 DOI: 10.1007/s10571-020-00909-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/20/2020] [Indexed: 10/25/2022]
Abstract
Heat stress increases the core body temperature through the pathogenic process. The pathogenic process leads to the release of free radicals, such as superoxide production. Heat stress in the central nervous system (CNS) can cause neuronal damage and symptoms such as delirium, coma, and convulsion. TRPV1 (Transient Receptor Potential Vanilloid1) and TRPV4 genes are members of the TRPV family, including integral membrane proteins that act as calcium-permeable channels. These channels act as thermosensors and have essential roles in the cellular regulation of heat responses. The objective of this study is to examine the effect of general heat stress on the expression of TRPV1 and TRPV4 channels. Furthermore, oxidative markers were measured in the brain of the same heat-stressed mice. Our results show that heat stress leads to a significant upregulation of TRPV1 expression within 21-42 days, while TRPV4 expression decreased significantly in a time-dependent manner. Alterations in the oxidative markers were also observed in the heat-stressed mice.
Collapse
Affiliation(s)
- Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, 29 Bahman Bolvard, Tabriz, 51555, Iran
| | | | - Leila Mehdizadeh Fanid
- Division of Cognitive Neuroscience, Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran.
| | - Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, 29 Bahman Bolvard, Tabriz, 51555, Iran
| | - Leila Roshangar
- Department of Anatomical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Mota-Rojas D, Wang D, Titto CG, Gómez-Prado J, Carvajal-de la Fuente V, Ghezzi M, Boscato-Funes L, Barrios-García H, Torres-Bernal F, Casas-Alvarado A, Martínez-Burnes J. Pathophysiology of Fever and Application of Infrared Thermography (IRT) in the Detection of Sick Domestic Animals: Recent Advances. Animals (Basel) 2021; 11:2316. [PMID: 34438772 PMCID: PMC8388492 DOI: 10.3390/ani11082316] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Body-temperature elevations are multifactorial in origin and classified as hyperthermia as a rise in temperature due to alterations in the thermoregulation mechanism; the body loses the ability to control or regulate body temperature. In contrast, fever is a controlled state, since the body adjusts its stable temperature range to increase body temperature without losing the thermoregulation capacity. Fever refers to an acute phase response that confers a survival benefit on the body, raising core body temperature during infection or systemic inflammation processes to reduce the survival and proliferation of infectious pathogens by altering temperature, restriction of essential nutrients, and the activation of an immune reaction. However, once the infection resolves, the febrile response must be tightly regulated to avoid excessive tissue damage. During fever, neurological, endocrine, immunological, and metabolic changes occur that cause an increase in the stable temperature range, which allows the core body temperature to be considerably increased to stop the invasion of the offending agent and restrict the damage to the organism. There are different metabolic mechanisms of thermoregulation in the febrile response at the central and peripheral levels and cellular events. In response to cold or heat, the brain triggers thermoregulatory responses to coping with changes in body temperature, including autonomic effectors, such as thermogenesis, vasodilation, sweating, and behavioral mechanisms, that trigger flexible, goal-oriented actions, such as seeking heat or cold, nest building, and postural extension. Infrared thermography (IRT) has proven to be a reliable method for the early detection of pathologies affecting animal health and welfare that represent economic losses for farmers. However, the standardization of protocols for IRT use is still needed. Together with the complete understanding of the physiological and behavioral responses involved in the febrile process, it is possible to have timely solutions to serious problem situations. For this reason, the present review aims to analyze the new findings in pathophysiological mechanisms of the febrile process, the heat-loss mechanisms in an animal with fever, thermoregulation, the adverse effects of fever, and recent scientific findings related to different pathologies in farm animals through the use of IRT.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Cristiane Gonçalves Titto
- Laboratório de Biometeorologia e Etologia, FZEA-USP, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil;
| | - Jocelyn Gómez-Prado
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Verónica Carvajal-de la Fuente
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Mexico; (V.C.-d.l.F.); (H.B.-G.)
| | - Marcelo Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires 7000, Argentina;
| | - Luciano Boscato-Funes
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Hugo Barrios-García
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Mexico; (V.C.-d.l.F.); (H.B.-G.)
| | - Fabiola Torres-Bernal
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Mexico; (V.C.-d.l.F.); (H.B.-G.)
| |
Collapse
|
12
|
Oghbaei H, Hosseini L, Farajdokht F, Rahigh Aghsan S, Majdi A, Sadigh-Eteghad S, Sandoghchian Shotorbani S, Mahmoudi J. Heat stress aggravates oxidative stress, apoptosis, and endoplasmic reticulum stress in the cerebellum of male C57 mice. Mol Biol Rep 2021; 48:5881-5887. [PMID: 34338963 DOI: 10.1007/s11033-021-06582-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The current study was set to assess the effect of heat stress exposure on oxidative stress, apoptosis, and endoplasmic reticulum stress markers in the cerebellum of male mice. METHODS Fifty male C57BL/6 mice were assigned to five groups of (I) control, (II) heat stress (HS)7, (III) HS14, (IV) HS21, and (V) HS42 groups. Animals in the control group were not exposed to HS. Mice in the II-V groups were exposed to HS once a day over 7, 14, 21, and 42 days, respectively. Cerebellar reactive oxygen species (ROS) levels, expression of heat shock protein (HSP)70 and caspase 3 as well as endoplasmic reticulum stress-related proteins (PERK, p-PERK, CHOP, and Full-length ATF-6) expression were determined on the 7th, 14th, 21st, and 42nd days. RESULTS ROS levels and HSP70 expression increased following HS on the 14th, 21st, and 42nd days and the 7th, and 14th days with a peak level of expression on the 14th day following HS. HSP70 levels decreased afterward on the 21st and 42nd days compared with the control group. Besides, exposure to HS for 14, 21, and 42 days resulted in a significant increase in the CHOP and p-PERK levels in the cerebellum compared with the control group. Heat exposure also increased protein expression of cleaved caspase 3 and active ATF-6/Full-length ATF-6 on the 21st and 42nd days in the cerebellum compared with the control animals. CONCLUSION These findings indicated that chronic HS augmented oxidative stress, endoplasmic reticulum stress, and apoptosis pathways in the cerebellum of mice.
Collapse
Affiliation(s)
- Hajar Oghbaei
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.,Deptartment of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.,Deptartment of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.,Deptartment of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Rahigh Aghsan
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Alireza Majdi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.
| |
Collapse
|
13
|
Chauhan NR, Kumar R, Gupta A, Meena RC, Nanda S, Mishra KP, Singh SB. Heat stress induced oxidative damage and perturbation in BDNF/ERK1/2/CREB axis in hippocampus impairs spatial memory. Behav Brain Res 2020; 396:112895. [PMID: 32890597 DOI: 10.1016/j.bbr.2020.112895] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 11/19/2022]
Abstract
Heat exposure is an environmental stress that causes diverse heat related pathophysiological changes under extreme conditions. The brain including hippocampal region which is associated with learning and memory is significantly affected by heat stress resulting in memory impairment. However, the effect of heat on the spatial memory remains unclear. The present study aimed to explore the effect of heat stress on hippocampus and spatial memory in rats. Rat model of acute heat stress was used which was divided into two groups, viz. moderate heat stress (MHS) and severe heat stress (SHS). Redox parameters evaluation revealed that MHS and SHS exposure markedly increase the production of malondialdehyde (MDA), oxidised glutathione (GSSG), reactive oxidative species (ROS), protein oxidation level and decrease the reduced glutathione (GSH) levels in the hippocampal tissue. Furthermore, Cresyl Violet (CV) staining of hippocampal region showed higher pyknosis in rats exposed to SHS. Pronounced increase of caspase3 expression and Fluoro Jade-C (FJ-C) positive cells were observed in SHS resulting in neuronal injury and apoptosis in CA3 region of hippocampus culminating in spatial memory deficit. Our data also suggest that heat stress induces phospho Extracellular signal-regulated kinases (pERK)1/2 activation induced by Brain-derived neurotrophic factor (BDNF) leading to further activation of phospho cAMP-response element binding protein (pCREB) under MHS. However, during SHS, BDNF and pCREB expression were completely dysregulated and not sufficient to rescue cognitive decline in rats. In conclusion, SHS induces pathological alterations that include oxidative damage and apoptosis of hippocampal neurons, disturbing BDNF/ERK1/2/CREB axis that may affect spatial memory.
Collapse
Affiliation(s)
- Nishant Ranjan Chauhan
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Rahul Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Avinash Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Ramesh Chand Meena
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Sarita Nanda
- Department of Biochemistry, Daulat Ram College, University of Delhi North Campus, Delhi 110007, India
| | - Kamla Prasad Mishra
- Scientist E, Defence Research and Development Organisation (DRDO), DRDO Bhawan, Rajaji Marg, Delhi 110011, India
| | - Shashi Bala Singh
- Distinguished Scientist and Director General (Life Sciences), Defence Research and Development Organisation (DRDO), DRDO Bhawan, Rajaji Marg, Delhi 110011, India.
| |
Collapse
|
14
|
Elvira R, Cha SJ, Noh GM, Kim K, Han J. PERK-Mediated eIF2α Phosphorylation Contributes to The Protection of Dopaminergic Neurons from Chronic Heat Stress in Drosophila. Int J Mol Sci 2020; 21:ijms21030845. [PMID: 32013014 PMCID: PMC7037073 DOI: 10.3390/ijms21030845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/05/2023] Open
Abstract
Environmental high-temperature heat exposure is linked to physiological stress such as disturbed protein homeostasis caused by endoplasmic reticulum (ER) stress. Abnormal proteostasis in neuronal cells is a common pathological factor of Parkinson’s disease (PD). Chronic heat stress is thought to induce neuronal cell death during the onset and progression of PD, but the exact role and mechanism of ER stress and the activation of the unfolded protein response (UPR) remains unclear. Here, we showed that chronic heat exposure induces ER stress mediated by the PKR-like eukaryotic initiation factor 2α kinase (PERK)/eIF2α phosphorylation signaling pathway in Drosophila neurons. Chronic heat-induced eIF2α phosphorylation was regulated by PERK activation and required for neuroprotection from chronic heat stress. Moreover, the attenuated protein synthesis by eIF2α phosphorylation was a critical factor for neuronal cell survival during chronic heat stress. We further showed that genetic downregulation of PERK, specifically in dopaminergic (DA) neurons, impaired motor activity and led to DA neuron loss. Therefore, our findings provide in vivo evidence demonstrating that chronic heat exposure may be a critical risk factor in the onset of PD, and eIF2α phosphorylation mediated by PERK may contribute to the protection of DA neurons against chronic heat stress in Drosophila.
Collapse
Affiliation(s)
- Rosalie Elvira
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Korea; (R.E.); (S.J.C.)
| | - Sun Joo Cha
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Korea; (R.E.); (S.J.C.)
| | - Gyeong-Mu Noh
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungcheongnam-do 31538, Korea;
| | - Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungcheongnam-do 31538, Korea;
- Correspondence: (K.K.); (J.H.); Tel.: +82-41-413-5024 (K.K.); +82-41-413-5027 (J.H.); Fax: +82-41-413-5006 (K.K. & J.H.)
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Korea; (R.E.); (S.J.C.)
- Correspondence: (K.K.); (J.H.); Tel.: +82-41-413-5024 (K.K.); +82-41-413-5027 (J.H.); Fax: +82-41-413-5006 (K.K. & J.H.)
| |
Collapse
|
15
|
Sabrini S, Russell B, Wang G, Lin J, Kirk I, Curley L. Methamphetamine induces neuronal death: Evidence from rodent studies. Neurotoxicology 2019; 77:20-28. [PMID: 31812708 DOI: 10.1016/j.neuro.2019.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/23/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
Animal studies have consistently observed neuronal death following methamphetamine (MA) administration, however, these have not been systematically reviewed. This systematic review aims to present the evidence for MA-induced neuronal death in animals (rodents) and identify the regions affected. Locating the brain regions in which neuronal death occurs in animal studies will provide valuable insight into the linkage between MA consumption and the structural alterations observed in the human brain. The data were collected from three databases: Scopus, Ovid, and the Web of Science. Thirty-seven studies met the inclusion criteria and were divided into two sub-groups, i.e. acute and repeated administration. Twenty-six (of 27) acute and ten (of 11) repeated administration studies observed neuronal death. A meta-analysis was not possible due to different variables between studies, i.e. species, treatment regimens, withdrawal periods, methods of quantification, and regions studied. Acute MA treatment induced neuronal death in the frontal cortex, striatum, and substantia nigra, but not in the hippocampus, whereas repeated MA administration led to neuronal loss in the hippocampus, frontal cortex, and striatum. In addition, when animals self-administered the drug, neuronal death was observed at much lower doses than the doses administered by experimenters. There is some overlap in the regions where neuronal death occurred in animals and the identified regions from human studies. For instance, gray matter deficits have been observed in the prefrontal cortex and hippocampus of MA users. The findings presented in this review implicate that not only does MA induce neuronal death in animals, but it also damages the same regions affected in human users. Despite the inter-species differences, animal studies have contributed significantly to addiction research, and are still of great assistance for future research with a more relevant model of compulsive drug use in humans.
Collapse
Affiliation(s)
- Sabrini Sabrini
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142 New Zealand.
| | - Bruce Russell
- School of Pharmacy, University of Otago, New Zealand.
| | - Grace Wang
- Department of Psychology, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand.
| | - Joanne Lin
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| | - Ian Kirk
- School of Psychology, Faculty of Science, The University of Auckland, New Zealand.
| | - Louise Curley
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142 New Zealand.
| |
Collapse
|
16
|
Han J, Shao J, Chen Q, Sun H, Guan L, Li Y, Liu J, Liu H. Transcriptional changes in the hypothalamus, pituitary, and mammary gland underlying decreased lactation performance in mice under heat stress. FASEB J 2019; 33:12588-12601. [PMID: 31480864 DOI: 10.1096/fj.201901045r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Because of climate change, heat stress (HS) causes more and more impacts on dairy animals to decrease lactation performance. The neuroendocrine system is key in regulating systemic physiological processes and milk synthesis. However, the hypothalamic-pituitary axis response to HS is still unclear. In this study, a group of lactating mice underwent a daily 2-h heat treatment (36°C) for 14 d to explore possible cross-talk between the hypothalamic-pituitary axis and mammary gland under HS. Transcriptome analyses by multitissue RNA-Seq indicated the possible mechanisms of reduced lactation performance in animals under HS. In the hypothalamus, the cAMP signaling pathway was activated to resist neuronal death, and the expression of downstream genes was increased to promote cell survival under HS. Reduced food intake might be caused by down-regulated appetite-related peptide, whereas up-regulated neuropeptide Y acted to attenuate reduced food intake. In pituitary, energy stress from lower food intake might result in reduced secretion of prolactin and growth hormone. Under HS, the mammary gland may undergo hypoxic stress, causing mammary epithelial cell apoptosis. Together, these data showed systemic changes in tissues to accommodate the effects of HS on lactation.-Han, J., Shao, J., Chen, Q., Sun, H., Guan, L., Li, Y., Liu, J., Liu, H. Transcriptional changes in the hypothalamus, pituitary, and mammary gland underlying decreased lactation performance in mice under heat stress.
Collapse
Affiliation(s)
- Jialiang Han
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Juanjuan Shao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Qiong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Huizeng Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and.,Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Leluo Guan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and.,Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Yongxin Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and
| |
Collapse
|
17
|
Xu B, Lian S, Li SZ, Guo JR, Wang JF, Wang D, Zhang LP, Yang HM. GABAB receptor mediate hippocampal neuroinflammation in adolescent male and female mice after cold expose. Brain Res Bull 2018; 142:163-175. [PMID: 30031816 DOI: 10.1016/j.brainresbull.2018.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
Stress induces many non-specific inflammatory responses in the mouse brain, especially during adolescence. Although the impact of stress on the brain has long been reported, the effects of cold stress on hippocampal neuroinflammation in adolescent mice are not well understood; furthermore, whether these effects are gender specific are also not well established. Adolescent male and female C57BL/6 mice were exposed to 4 °C temperatures for 12 h, after which behavior was assessed using the open field test. Using western blotting and immunohistochemistry we also assessed glial cell numbers and microglial activation, as well as inflammatory cytokine levels and related protein expression levels. We found that in mice subjected to cold stress: 1) There were significant behavioral changes; 2) neuronal nuclei densities were smaller and total cell numbers were significantly decreased; 3) nuclear factor (NF)-κB and phosphorylated AKT were upregulated; 4) pro-inflammatory cytokines such as interleukin-6 and tumor necrosis factor-α were also upregulated; and 5) microglia were activated, while glial fibrillary acid protein and ionized calcium-binding adapter molecule 1 protein expression increased. Taken together, these results indicate that cold stress induces pro-inflammatory cytokine upregulation that leads to neuroinflammation and neuronal apoptosis in the hippocampi of adolescent mice. We believe that these effects are influenced by a GABAB/Rap1B/AKT/NF-κB pathway. Finally, male mice were more sensitive to the effects of cold stress than were female mice.
Collapse
Affiliation(s)
- Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Jing-Ru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Jian-Fa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Di Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Li-Ping Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| | - Huan-Min Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| |
Collapse
|
18
|
Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, Huang AJY, Hashimotodani Y, Kano M, Iwasaki H, Parajuli LK, Okabe S, Teh DBL, All AH, Tsutsui-Kimura I, Tanaka KF, Liu X, McHugh TJ. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018; 359:679-684. [PMID: 29439241 DOI: 10.1126/science.aaq1144] [Citation(s) in RCA: 676] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022]
Abstract
Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.
Collapse
Affiliation(s)
- Shuo Chen
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan.
| | - Adam Z Weitemier
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan
| | - Xiao Zeng
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Linmeng He
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan
| | - Xiyu Wang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan
| | - Yanqiu Tao
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan
| | - Arthur J Y Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan
| | - Yuki Hashimotodani
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,International Research Center for Neurointellegence (WPI), University of Tokyo Institute for Advanced Studies, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hirohide Iwasaki
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Laxmi Kumar Parajuli
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel B Loong Teh
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore 117456, Singapore
| | - Angelo H All
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Iku Tsutsui-Kimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore 117602, Singapore
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan. .,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Slawinska A, Hsieh JC, Schmidt CJ, Lamont SJ. Heat Stress and Lipopolysaccharide Stimulation of Chicken Macrophage-Like Cell Line Activates Expression of Distinct Sets of Genes. PLoS One 2016; 11:e0164575. [PMID: 27736938 PMCID: PMC5063343 DOI: 10.1371/journal.pone.0164575] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
Acute heat stress requires immediate adjustment of the stressed individual to sudden changes of ambient temperatures. Chickens are particularly sensitive to heat stress due to development of insufficient physiological mechanisms to mitigate its effects. One of the symptoms of heat stress is endotoxemia that results from release of the lipopolysaccharide (LPS) from the guts. Heat-related cytotoxicity is mitigated by the innate immune system, which is comprised mostly of phagocytic cells such as monocytes and macrophages. The objective of this study was to analyze the molecular responses of the chicken macrophage-like HD11 cell line to combined heat stress and lipopolysaccharide treatment in vitro. The cells were heat-stressed and then allowed a temperature-recovery period, during which the gene expression was investigated. LPS was added to the cells to mimic the heat-stress-related endotoxemia. Semi high-throughput gene expression analysis was used to study a gene panel comprised of heat shock proteins, stress-related genes, signaling molecules and immune response genes. HD11 cell line responded to heat stress with increased mRNA abundance of the HSP25, HSPA2 and HSPH1 chaperones as well as DNAJA4 and DNAJB6 co-chaperones. The anti-apoptotic gene BAG3 was also highly up-regulated, providing evidence that the cells expressed pro-survival processes. The immune response of the HD11 cell line to LPS in the heat stress environment (up-regulation of CCL4, CCL5, IL1B, IL8 and iNOS) was higher than in thermoneutral conditions. However, the peak in the transcriptional regulation of the immune genes was after two hours of temperature-recovery. Therefore, we propose the potential influence of the extracellular heat shock proteins not only in mitigating effects of abiotic stress but also in triggering the higher level of the immune responses. Finally, use of correlation networks for the data analysis aided in discovering subtle differences in the gene expression (i.e. the role of the CASP3 and CASP9 genes).
Collapse
Affiliation(s)
- Anna Slawinska
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland
| | - John C. Hsieh
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Carl J. Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Susan J. Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
20
|
Lee W, Moon M, Kim HG, Lee TH, Oh MS. Heat stress-induced memory impairment is associated with neuroinflammation in mice. J Neuroinflammation 2015; 12:102. [PMID: 26001832 PMCID: PMC4465309 DOI: 10.1186/s12974-015-0324-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heat stress induces many pathophysiological responses and has a profound impact on brain structure. It has been demonstrated that exposure to high temperature induces cognitive impairment in experimental animals and humans. Although the effects of heat stress have long been studied, the mechanisms by which heat stress affects brain structure and cognition not well understood. METHODS In our longitudinal study of mice exposed to heat over 7, 14, or 42 days, we found that heat stress time dependently impaired cognitive function as determined by Y-maze, passive avoidance, and novel object recognition tests. To elucidate the histological mechanism by which thermal stress inhibited cognitive abilities, we examined heat stress-induced inflammation in the hippocampus. RESULTS In mice subjected to heat exposure, we found: 1) an increased number of glial fibrillary acid protein (GFAP)- and macrophage-1 antigen (Mac-1)-positive cells, 2) up-regulated nuclear factor (NF)-κB, a master regulator of inflammation, and 3) marked increases in cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokine interleukin (IL)-1β and tumor necrosis factor (TNF)-α in the mouse hippocampus. We also observed that neuronal and synaptic densities were degenerated significantly in hippocampal regions after heat exposure, as determined by histological analysis of neuronal nuclei (NeuN), postsynaptic density protein 95 (PSD-95), and synaptophysin expression. Moreover, in heat-exposed mice, we found that the number of cells positive for doublecortin (DCX), a marker of neurogenesis, was significantly decreased compared with control mice. Finally, anti-inflammatory agent minocycline inhibited the heat stress-induced cognitive deficits and astogliosis in mice. CONCLUSIONS Together, these findings suggest that heat stress can lead to activation of glial cells and induction of inflammatory molecules in the hippocampus, which may act as causative factors for memory loss, neuronal death, and impaired adult neurogenesis.
Collapse
Affiliation(s)
- Wonil Lee
- Department of Life and Nanopharmaceutical Science, Graduate School and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| | - Minho Moon
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA. .,Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 302-718, Republic of Korea.
| | - Hyo Geun Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| | - Tae Hee Lee
- Department of Formulae Pharmacology, School of Oriental Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, 461-701, Republic of Korea.
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Science, Graduate School and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea. .,Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
21
|
Chen R, Romero G, Christiansen MG, Mohr A, Anikeeva P. Wireless magnetothermal deep brain stimulation. Science 2015; 347:1477-80. [DOI: 10.1126/science.1261821] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
White MG, Saleh O, Nonner D, Barrett EF, Moraes CT, Barrett JN. Mitochondrial dysfunction induced by heat stress in cultured rat CNS neurons. J Neurophysiol 2012; 108:2203-14. [PMID: 22832569 DOI: 10.1152/jn.00638.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous work demonstrated that hyperthermia (43°C for 2 h) results in delayed, apoptotic-like death in striatal neuronal cultures. We investigated early changes in mitochondrial function induced by this heat stress. Partial depolarization of the mitochondrial membrane potential (ΔΨ(m)) began about 1 h after the onset of hyperthermia and increased as the stress continued. When the heat stress ended, there was a partial recovery of ΔΨ(m), followed hours later by a progressive, irreversible depolarization of ΔΨ(m). During the heat stress, O(2) consumption initially increased but after 20-30 min began a progressive, irreversible decline to about one-half the initial rate by the end of the stress. The percentage of oligomycin-insensitive respiration increased during the heat stress, suggesting an increased mitochondrial leak conductance. Analysis using inhibitors and substrates for specific respiratory chain complexes indicated hyperthermia-induced dysfunction at or upstream of complex I. ATP levels remained near normal for ∼4 h after the heat stress. Mitochondrial movement along neurites was markedly slowed during and just after the heat stress. The early, persisting mitochondrial dysfunction described here likely contributes to the later (>10 h) caspase activation and neuronal death produced by this heat stress. Consistent with this idea, proton carrier-induced ΔΨ(m) depolarizations comparable in duration to those produced by the heat stress also reduced neuronal viability. Post-stress ΔΨ(m) depolarization and/or delayed neuronal death were modestly reduced/postponed by nicotinamide adenine dinucleotide, a calpain inhibitor, and increased expression of Bcl-xL.
Collapse
Affiliation(s)
- Michael G White
- Dept. of Physiology and Biophysics, Univ. of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
23
|
The actions of hyperthermia on the autonomic nervous system: Central and peripheral mechanisms and clinical implications. Auton Neurosci 2012; 168:4-13. [DOI: 10.1016/j.autneu.2012.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/26/2022]
|
24
|
White MG, Wang Y, Akay C, Lindl KA, Kolson DL, Jordan-Sciutto KL. Parallel high throughput neuronal toxicity assays demonstrate uncoupling between loss of mitochondrial membrane potential and neuronal damage in a model of HIV-induced neurodegeneration. Neurosci Res 2011; 70:220-9. [PMID: 21291924 DOI: 10.1016/j.neures.2011.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/08/2010] [Accepted: 01/25/2011] [Indexed: 11/24/2022]
Abstract
Neurocognitive deficits seen in HIV-associated neurocognitive disorders (HANDs) are attributed to the release of soluble factors from CNS-resident, HIV-infected and/or activated macrophages and microglia. To study HIV-associated neurotoxicity, we used our in vitro model in which primary rat neuronal/glial cultures are treated with supernatants from cultured human monocyte-derived macrophages, infected with a CNS-isolated HIV-1 strain (HIV-MDM). We found that neuronal damage, detected as a loss of microtubule-associated protein-2 (MAP2), begins as early as 2h and is preceded by a loss of mitochondrial membrane potential (Δψ(m)). Interestingly, inhibitors of calpains, but not inhibitors of caspases, blocked MAP2 loss, however neither type of inhibitor prevented the loss of Δψ(m). To facilitate throughput for these studies, we refined a MAP2 cell-based-ELISA whose data closely compare with our standardized method of hand counting neurons. In addition, we developed a tetramethyl rhodamine methyl ester (TMRM)-based multi-well fluorescent plate assay for the evaluation of whole culture Δψ(m). Together, these findings indicate that calpain activation and loss of Δψ(m) may be parallel pathways to death in HIV-MDM-treated neurons and also demonstrate the validity of plate assays for assessing multiple experimental parameters as is useful for screening neurotherapeutics for neuronal damage and death.
Collapse
Affiliation(s)
- Michael G White
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
25
|
Burke S, Abu-Wasel B, Eid A, Nissan A, Hanani M. Differential effect of hyperthermia on nerves and smooth muscle of the mouse ileum. J Surg Oncol 2011; 103:92-100. [PMID: 20886554 DOI: 10.1002/jso.21746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) gained wide acceptance as the treatment of choice for selected patients with peritoneal surface malignancies. Patients tend to suffer from prolonged ileus following CRS + HIPEC, complicating their recovery. We studied the effects of hyperthermia on the intestine to gain insight into mechanisms of ileus post-HIPEC. METHODS Segments of mouse ileum were incubated at 36°C. Electrical field stimulation (EFS) was applied, stimulating nerves, and the resultant muscle contraction was measured. The response was measured at varying temperatures (38-43°C) at exposure times of up to 120 min. We also stimulated the tissues with 10(-6) M carbachol, a muscarinic receptor agonist, which acts directly on smooth muscle. RESULTS Response to EFS decreased at high temperatures, especially above 41°C. This effect was irreversible for 120 min after decreasing temperature. When stimulating with carbachol, both transient and plateau responses decreased at 43°C (plateau more than transient) but the effect reversed on returning to 36°C. CONCLUSION The irreversible decline in responses to nerve stimulation when exposed to high temperatures was not seen with direct muscle stimulation. This indicates that smooth muscle is resilient and that the main effect of hyperthermia is on nerves. These results have significance for HIPEC.
Collapse
Affiliation(s)
- Shoshana Burke
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
26
|
El-Orabi NF, Rogers CB, Gray Edwards H, Schwartz DD. Heat-induced inhibition of superoxide dismutase and accumulation of reactive oxygen species leads to HT-22 neuronal cell death. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2010.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Bahniwal M, Villanueva EB, Klegeris A. Moderate increase in temperature may exacerbate neuroinflammatory processes in the brain: human cell culture studies. J Neuroimmunol 2010; 233:65-72. [PMID: 21185608 DOI: 10.1016/j.jneuroim.2010.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022]
Abstract
The effect of a moderate, physiologically relevant rise in temperature on several neuroinflammatory parameters was investigated in vitro using human cell lines and cultured human astrocytes. A two degree Celsius rise in temperature was found to enhance the neurotoxicity of microglia-like and astrocytic cells, increase the release of monocyte chemotactic protein (MCP)-1 by activated human monocytic THP-1 cells and amplify the generation of reactive oxygen intermediates by differentiated HL-60 myelocytic cells. Moderate increases in body temperature may exacerbate neuroinflammation and neuronal injury in chronic neurodegenerative disorders. Hence, therapies aimed at lowering the body temperature could be used to slow down the progression of such diseases.
Collapse
Affiliation(s)
- Manpreet Bahniwal
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC, Canada
| | | | | |
Collapse
|
28
|
Emery MJ, Eveland RL, Eveland K, Couetil LL, Hildebrandt J, Swenson ER. Lung Volume Reduction by Bronchoscopic Administration of Steam. Am J Respir Crit Care Med 2010; 182:1282-91. [DOI: 10.1164/rccm.201001-0102oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Hou Y, Wei H, Luo Y, Liu G. Modulating expression of brain heat shock proteins by estrogen in ovariectomized mice model of aging. Exp Gerontol 2009; 45:323-30. [PMID: 19836443 DOI: 10.1016/j.exger.2009.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 09/25/2009] [Accepted: 10/09/2009] [Indexed: 11/26/2022]
Abstract
Heat shock proteins (HSPs) serve as molecular chaperones and endogenous cytoprotective factors. Two of the well-studied HSPs, HSP70, and HSP27 can be significantly induced in many areas of brain by a variety of stressors. A decrease in expression of brain HSPs has been documented in aged brain. Estrogen is well known as a neuroprotective hormone, and it has been reported that estrogen can regulate HSP70 and HSP27 expression in neuronal cells. In this study, the relationship between estrogen and heat stress-induced brain HSPs expression in young and aged ovariectomized (OVX) mice was investigated. Our results show that heat stress-induced levels of HSP70 proteins and mRNA transcripts was significantly lower in brain of aged (12 month) OVX mice, compared with young (2 month) OVX mice group. Estrogen supplementation (17beta-estradiol 0.5mg/kg for 7 days) restored heat stress-induced brain HSP70 expression and attenuated heat stress-induced brain DNA fragmentation, caspase 3 activation and mitochondrial leakage of cytochrome c and AIF in OVX mice. These results suggest that estrogen deficiency during aging down-regulates heat stress-induced brain HSP70 expression, which reveals a previously unknown link between estrogen deficiency and stress response elements.
Collapse
Affiliation(s)
- Yan Hou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
30
|
Lai JCK, Lai MB, Jandhyam S, Dukhande VV, Bhushan A, Daniels CK, Leung SW. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. Int J Nanomedicine 2009; 3:533-45. [PMID: 19337421 PMCID: PMC2636591 DOI: 10.2147/ijn.s3234] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The use of titanium dioxide (TiO2) in various industrial applications (eg, production of paper, plastics, cosmetics, and paints) has been expanding thereby increasing the occupational and other environmental exposure of these nanoparticles to humans and other species. However, the health effects of exposure to TiO2 nanoparticles have not been systematically assessed even though recent studies suggest that such exposure induces inflammatory responses in lung tissue and cells. Because the effects of such nanoparticles on human neural cells are unknown, we have determined the putative cytotoxic effects of these nanoparticles on human astrocytes-like astrocytoma U87 cells and compared their effects on normal human fibroblasts. We found that TiO2 micro- and nanoparticles induced cell death on both human cell types in a concentration-related manner. We further noted that zinc oxide (ZnO) nanoparticles were the most effective, TiO2 nanoparticles the second most effective, and magnesium oxide (MgO) nanoparticles the least effective in inducing cell death in U87 cells. The cell death mechanisms underlying the effects of TiO2 micro- and nanoparticles on U87 cells include apoptosis, necrosis, and possibly apoptosis-like and necrosis-like cell death types. Thus, our findings may have toxicological and other pathophysiological implications on exposure of humans and other mammalian species to metallic oxide nanoparticles.
Collapse
Affiliation(s)
- James C K Lai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Antar V, Akdemir O, Sağmanligil A, Sahan E, Çelik Ö, Çolak A, Karaoğlan A. Q-VD-OPh, a pancaspase inhibitor, reduces trauma-induced apoptosis and improves the recovery of hind-limb function in rats after spinal cord injury. Neurocirugia (Astur) 2009. [DOI: 10.1016/s1130-1473(09)70130-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Cheng BC, Chang CP, Liu WP, Lin MT. Both mild hypothermia and dopamine D2 agonist are neuroprotective against hyperthermia-induced injury in PC12 cells. Neurosci Lett 2008; 443:140-4. [DOI: 10.1016/j.neulet.2008.07.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/21/2008] [Accepted: 07/30/2008] [Indexed: 11/24/2022]
|
33
|
Overexpression of Cdk5 or non-phosphorylatable retinoblastoma protein protects septal neurons from oxygen-glucose deprivation. Neurochem Res 2008; 33:1852-8. [PMID: 18351461 DOI: 10.1007/s11064-008-9647-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
Activation of cyclin dependent kinases (Cdks) contributes to neuronal death following ischemia. We used oxygen-glucose deprivation (OGD) in septal neuronal cultures to test for possible roles of cell cycle proteins in neuronal survival. Increased cdc2-immunoreactive neurons were observed at 24 h after the end of 5 h OGD. Green fluorescent protein (GFP) or GFP along with a wild type or dominant negative form of the retinoblastoma protein (Rb), or cyclin-dependent kinase5 (Cdk5), were overexpressed using plasmid constructs. Following OGD, when compared to controls, neurons expressing both GFP and dominant negative Rb, RbDeltaK11, showed significantly less damage using microscopy imaging. Overexpression of Rb-wt did not affect survival. Surprisingly, overexpression of Cdk5-wild type significantly protected neurons from process disintegration but Cdk5T33, a dominant negative Cdk5, gave little or no protection. Thus phosphorylation of the cell cycle regulator, Rb, contributes to death in OGD in septal neurons but Cdk5 can have a protective role.
Collapse
|
34
|
White MG, Luca LE, Nonner D, Saleh O, Hu B, Barrett EF, Barrett JN. Cellular mechanisms of neuronal damage from hyperthermia. PROGRESS IN BRAIN RESEARCH 2007; 162:347-71. [PMID: 17645927 DOI: 10.1016/s0079-6123(06)62017-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hyperthermia can cause brain damage and also exacerbate the brain damage produced by stroke and amphetamines. The developing brain is especially sensitive to hyperthermia. The severity of, and mechanisms underlying, hyperthermia-induced neuronal death depend on both temperature and duration of exposure. Severe hyperthermia can produce necrotic neuronal death. For a window of less severe heat stresses, cultured neurons exhibit a delayed death with apoptotic characteristics including cytochrome c release and caspase activation. Little is known about mechanisms of hyperthermia-induced damage upstream of these late apoptotic effects. This chapter considers several possible upstream mechanisms, drawing on both in vivo and in vitro studies of the nervous system and other tissues. Hyperthermia-induced damage in some non-neuronal cells includes endoplasmic reticular stress due to denaturing of nascent polypeptide chains, as well as nuclear and cytoskeletal damage. Evidence is presented that hyperthermia produces mitochondrial damage, including depolarization, in cultured mammalian neurons.
Collapse
Affiliation(s)
- Michael G White
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Dukhande VV, Malthankar-Phatak GH, Hugus JJ, Daniels CK, Lai JCK. Manganese-induced neurotoxicity is differentially enhanced by glutathione depletion in astrocytoma and neuroblastoma cells. Neurochem Res 2006; 31:1349-57. [PMID: 17053969 DOI: 10.1007/s11064-006-9179-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 09/20/2006] [Indexed: 11/26/2022]
Abstract
Manganese (Mn) is neurotoxic: the underlying mechanisms have not been fully elucidated. L: -Buthionine-(S,R)-sulfoximine (BSO) is an irreversible inhibitor of gamma-glutamylcysteine synthetase, an important enzyme in glutathione (GSH) synthesis. To test the hypothesis that BSO modulates Mn toxicity, we investigated the effects of treatment of U-87 or SK-N-SH cells with MnCl(2), BSO, or MnCl(2) plus BSO. We monitored cell viability using MTT assay, staining with HO-33342 to assess live and/or apoptotic cells, and staining with propidium iodide (PI) to assess necrotic cells; we also measured cellular glutathione. Our results indicate decreased viability in both cell types when treated with MnCl(2) or BSO: Mn was more toxic to SK-N-SH cells, whereas BSO was more toxic to U-87 cells. Because BSO treatment accentuated Mn toxicity in both cell lines, GSH may act to combat Mn toxicity. Thus, further investigation in oxidative stress mediated by glutathione depletion will unravel new Mn toxicity mechanism(s).
Collapse
Affiliation(s)
- Vikas V Dukhande
- Department of Pharmaceutical Sciences, College of Pharmacy and Biomedical Research Institute, Idaho State University, Pocatello, ID 83209-8288, USA
| | | | | | | | | |
Collapse
|
36
|
Inoue H, Sameshima N, Ishida T, Tsuji A, Kudo K, Ikeda N. Vulnerability of experimentally induced fatty liver to heat stress in rats. J Gastroenterol 2006; 41:55-61. [PMID: 16501858 DOI: 10.1007/s00535-005-1722-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 08/09/2005] [Indexed: 02/04/2023]
Abstract
BACKGROUND The aim of this study was to confirm the vulnerability of fatty liver to heat stress using fatty liver rats from the viewpoint of the induction of apoptosis. METHODS We exposed rats with and without a fatty liver to heat stress and then looked for apoptotic cells within the liver tissue using two apoptosis detection kits. We also determined the mRNA expression of heat shock protein (HSP) 70, caspase-3, bcl-2, and bax using a quantitative reverse transcription-polymerase chain reaction method. RESULTS Following heat stress, apoptosis was strongly visible in the fatty liver comparing with that noted in the normal liver. The expression of HSP70 was increased following heat stress in both livers, but the volume of its expression was significantly less in the fatty liver than in the normal liver. The ratio of bcl-2/bax expression tended to increase in the normal liver but decrease in the fatty liver following heat stress. Caspase-3 demonstrated no significant change following heat stress in both livers. CONCLUSIONS The detection of apoptosis, together with changes in the mRNA expression of HSP70 and the expression ratio bcl-2/bax mRNA may indicate vulnerability of a fatty liver to heat stress and may support the hypothesis that morphologic change is induced in a fatty liver by exposure to heat stress. These results suggest that fatty liver may be more vulnerable to heat stress than normal liver.
Collapse
Affiliation(s)
- Hiromasa Inoue
- Department of Forensic Pathology and Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Panickar KS, Nonner D, Barrett JN. Overexpression of Bcl-xl protects septal neurons from prolonged hypoglycemia and from acute ischemia-like stress. Neuroscience 2005; 135:73-80. [PMID: 16111822 DOI: 10.1016/j.neuroscience.2005.02.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 02/11/2005] [Accepted: 02/20/2005] [Indexed: 11/15/2022]
Abstract
Overexpression of Bcl-xl, a member of the Bcl-2 protein family, is reported to protect from a variety of stresses involving delayed cell death. We tested the ability of Bcl-xl overexpression to protect primary cultures of embryonic rat septal neurons subjected to one of four different stresses: 6 h of combined oxygen-glucose deprivation, which produces rapid cell death, or a 24 h exposure to hypoglycemia, hyperglycemia, or 1mM 3-nitropropionic acid (an inhibitor of mitochondrial respiration), which results in a more slowly-developing death. Prior to the stress neurons were transiently transfected to overexpress either green fluorescent protein only or green fluorescent protein along with wild-type Bcl-xl. Immediately after oxygen-glucose deprivation, many neurons expressing green fluorescent protein only showed process blebbing and disintegration, with only 49% of the initial cells remaining intact with processes. Neurons expressing both green fluorescent protein and Bcl-xl showed less damage (68% intact post-stress, P<0.05). This result indicates that Bcl-xl's saving effects are not due solely to blocking delayed (apoptotic) death, because death following oxygen-glucose deprivation was rapid and was not accompanied by increased activation of caspase-3. Bcl-xl expression also significantly protected against the hypoglycemic stress (23% intact 24 h post-stress with green fluorescent protein only, compared with 70% with Bcl-xl and green fluorescent protein), but did not protect from hyperglycemia or 3-nitropropionic acid. Thus Bcl-xl does not protect against all forms of delayed death. Bcl-xl's protective effects may include blocking early damaging events, perhaps by increasing mitochondrial function in the face of low levels of energy substrates. Bcl-xl's protective effects may require an intact electron transport chain.
Collapse
Affiliation(s)
- K S Panickar
- Department of Physiology and Biophysics (R430), University of Miami Miller School of Medicine, PO Box 016430, Miami, FL 33101, USA.
| | | | | |
Collapse
|
38
|
Nonner D, Panickar K, Barrett EF, Barrett JN. Bone morphogenetic proteins and neurotrophins provide complementary protection of septal cholinergic function during phosphatase inhibitor-induced stress. J Neurochem 2004; 91:77-87. [PMID: 15379889 DOI: 10.1111/j.1471-4159.2004.02687.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cultures of embryonic rat septum were exposed for 24-48 h to 2-5 nm okadaic acid (OA), an inhibitor of pp1A and pp2A phosphatases. This stress killed approximately 75% of neurons. A neurotrophin (NT) combination (nerve growth factor and brain-derived neurotrophic factor, each 100 ng/mL) plus a bone morphogenetic protein (BMP6 or BMP7, 5 nm) reduced the death of both cholinergic and non-cholinergic neurons, and preserved choline acetyltransferase (ChAT) activity assayed 2-6 days post-stress. This NT + BMP combination preserved ChAT activity better than either NTs or BMPs alone, and was effective even if trophic factor addition was delayed until 12 h after stress onset. A general caspase inhibitor (qVD-OPH, 10 micro g/mL) also increased survival of stressed cholinergic neurons, but its protection of ChAT activity was shorter lived than that produced by the NT + BMP combination. Neither the NT + BMP combination nor the caspase inhibitor reduced the OA-induced increase in tau phosphorylation. These findings indicate that NTs and BMPs have synergistic protective effects against an OA stress, and suggest that at least some of these protective effects occur upstream of caspase activation.
Collapse
Affiliation(s)
- Doris Nonner
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|