1
|
Savelyeva E, Avdeenko A. The use of antigens derived from Bacillus thuringiensis bacteria for further differentiation. Heliyon 2024; 10:e29744. [PMID: 38681647 PMCID: PMC11053190 DOI: 10.1016/j.heliyon.2024.e29744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
This study is devoted to studying Bacillus thuringiensis antigens and their insecticide activity as critical features in bacterial differentiation. Indeed, 190 samples were examined for flagellar antigenicity as well as the insecticidal activity exhibited. From a serological perspective, 122 isolates (64.2 %) were attributed to 8 H-serogroups, including 3 non-typeable and 65 unverified. The dominant serotype was H3abc (82 % frequency); H6 was less frequent (8.5 %). The other 6 serotypes accounted for a low frequency of occurrence (up to 1.5 %). Of the 190 isolates tested, 125 (65.8 %) formed bipyramidal, and 63 (33.2 %) represented spherical inclusions. All H3abc isolates contained bipyramidal inclusions. The same applied to H8ab and H7 isolates. Insecticide activity was noted in 70.1 % of the population. In general, 128 samples were toxic to both species (Bombyx mori, Aedes sp.). Another 3 samples were toxic only to B. mori, and 2 for Aedes sp. Among the samples exhibiting toxicity to both species, 97.6 % belonged to bipyramidal paraspore inclusions (H3abc). All H7 samples were toxic to two insect species. Monotoxic B. thuringiensis against Aedes sp. were found only among organisms producing spherical parasporal inclusions in the cell. Examples of such microorganisms include an isolate of the H4ab/43 serotype.
Collapse
Affiliation(s)
- Ekaterina Savelyeva
- Department of Medical Genetics, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Aleksei Avdeenko
- Department of Agriculture and Storage Technologies for Crop Products, Don State Agrarian University, Persianovsky, Russian Federation
| |
Collapse
|
2
|
Singh D, Samiksha, Thayil SM, Sohal SK, Kesavan AK. Exploration of insecticidal potential of Cry protein purified from Bacillus thuringiensis VIID1. Int J Biol Macromol 2021; 174:362-369. [PMID: 33493564 DOI: 10.1016/j.ijbiomac.2021.01.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/25/2022]
Abstract
Insect pests are a threat to agriculture as they cause a loss of 15-22% to economically important crops every year. Bacillus thuringiensis produces parasporal crystal inclusions that have insecticidal 'Cry' proteins which are toxic to insect larvae of the order Lepidoptera, Coleoptera and Diptera, etc. In the present study, 40 different soil samples from Amritsar and its surrounding areas were selected for isolation of B. thuringiensis. The rod shaped, gram-positive bacterial isolates were further analyzed for characteristic crystal formation using phase contrast and scanning electron microscopy. 6 Bacillus samples containing cry genes were identified using the universal primers for cry genes, of which one isolate exhibited a protein band of ~95 kDa. This protein was purified using a Sephadex G-75 column. The insecticidal assays conducted with purified Cry protein on insect larvae of lepidopteran and dipteran orders viz. Spodoptera litura, Galleria malonella, Bactrocera cucurbitae and Culex pipens revealed considerable detrimental effects. A significant increase in larval mortality was observed for the larvae of all insects in a concentration dependent manner when treated with Cry protein purified from B. thuringenisis VIID1. The purified Cry protein did not have any significant effect on honey bee larvae.
Collapse
Affiliation(s)
- Drishtant Singh
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Samiksha
- Insect Physiology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Seema Madhumal Thayil
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satwinder Kaur Sohal
- Insect Physiology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anup Kumar Kesavan
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
3
|
Molecular characterization of indigenous Bacillus thuringiensis strains isolated from Kashmir valley. 3 Biotech 2017; 7:143. [PMID: 28597156 DOI: 10.1007/s13205-017-0756-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/30/2017] [Indexed: 10/19/2022] Open
Abstract
Bacillus thuringiensis (Bt) being an eco-friendly bioinsecticide is effectively used in pest management strategies and, therefore, isolation and identification of new strains effective against a broad range of target pests is important. In the present study, new indigenous B. thuringiensis strains were isolated and investigated so that these could be used as an alternative and/or support the current commercial strains/cry proteins in use. For this, 159 samples including soil, leaf and spider webs were collected from ten districts of Kashmir valley (India). Of 1447 bacterial strains screened, 68 Bt strains were identified with 4 types of crystalline inclusions. Crystal morphology ranking among the Bt strains was spherical (69.11%) > spore attached (8.82%) > rod (5.88%) = bipyramidal (5.88%) > spherical plus rod (4.41%) > spherical plus bipyramidal (2.94%) = cuboidal (2.94%). SDS-PAGE investigation of the spore-crystal mixture demonstrated Bt strains contained proteins of various molecular weights ranging from 150 to 28 kDa. Insecticidal activity of the 68 indigenous Bt strains against Spodoptera litura neonates showed that Bt strain SWK1 strain had the highest mortality. Lepidopteron active genes (cry1, cry2Ab, cry2Ab) were present in six Bt strains. Further, analysis of a full-length cry2A gene (~1.9 kb) by PCR-RFLP in strain SWK1 revealed that it was a new cry2A gene in Bt strain SWK1 and was named as cry2Al1 (GenBank Accession No. KJ149819.1) using the Bt toxin nomenclature ( http://www.btnomenclature.info ). Insect bioassays with neonate larvae of S. litura and H. armigera showed that the purified Cry2Al1 is toxic to S. litura with LC50 2.448 µg/ml and H. armigera with LC50 3.374 µg/ml, respectively. However, it did not produce any mortality in third instar larvae of Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi larvae/pupae insects (100 µg/ml) at 28 ± 2 °C and 75 to 85% relative humidity under a photoperiod of 14L:10D.
Collapse
|
4
|
Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Sci Rep 2017; 7:44452. [PMID: 28294162 PMCID: PMC5353641 DOI: 10.1038/srep44452] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
Spore-forming bacteria are a class of microorganisms that possess the ability to survive in extreme environmental conditions. Morphological features of spores assure their resistance to stress factors such as high temperature, radiation, disinfectants, and drying. Consequently, spore elimination in industrial and medical environments is very challenging. Ceragenins are a new class of cationic lipids characterized by a broad spectrum of bactericidal activity resulting from amphipathic nature and membrane-permeabilizing properties. To assess the impact of ceragenin CSA-13 on spores formed by Bacillus subtilis (ATCC 6051), we performed the series of experiments confirming that amphipathic and membrane-permeabilizing properties of CSA-13 are sufficient to disrupt the structure of B. subtilis spores resulting in decreased viability. Raman spectroscopy analysis provided evidence that upon CSA-13 treatment the number of CaDPA-positive spores was clearly diminished. As a consequence, a loss of impermeability of the inner membranes of spores, accompanied by a decrease in spore resistance and killing take place. In addition to their broad antimicrobial spectrum, ceragenins possess great potential for development as new sporicidal agents.
Collapse
|
5
|
Argôlo-Filho RC, Loguercio LL. Bacillus thuringiensis Is an Environmental Pathogen and Host-Specificity Has Developed as an Adaptation to Human-Generated Ecological Niches. INSECTS 2013; 5:62-91. [PMID: 26462580 PMCID: PMC4592628 DOI: 10.3390/insects5010062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/03/2013] [Accepted: 12/13/2013] [Indexed: 11/16/2022]
Abstract
Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt's pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains.
Collapse
Affiliation(s)
- Ronaldo Costa Argôlo-Filho
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus-BA 45662-900, Brazil.
| | - Leandro Lopes Loguercio
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus-BA 45662-900, Brazil.
| |
Collapse
|
6
|
Microbial ecology and association of Bacillus thuringiensis in chicken feces originating from feed. Curr Microbiol 2012; 65:784-91. [PMID: 22986821 DOI: 10.1007/s00284-012-0231-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
Abstract
To explain the association of Bacillus thuringiensis (Bt) with animal feces, an ecological analysis in chickens was conducted by introducing a cry(-) strain marked by production of green fluorescent protein (GFP). After feeding with the tagged Bt strains, the feces of the tested chickens were collected at different times, isolated, and the morphology of Bt was observed. It was shown that Bt strain HD-73GFP in spore form could be isolated from feces of chickens for a period of 13 d, and then it disappeared thereafter. Bt could be detected only up to day 4 (but not thereafter), when chickens were fed with vegetative cells of HD-73GFP. To confirm the source of newly isolated strains, the gfp gene was examined by polymerase chain reaction (PCR), which showed that all the isolated strains harbored the marker gene. Recent data from isolation and PCR had suggested that fecal Bt strains had originated from food. Chicken tissues were thus dissected to isolate Bt strains and to investigate whether Bt could be located in vivo. Bt was located within the duodenum in spore form. Compared to the morphology of the isolated strains at different growth times, the growth rates of all the tested Bt had little changes when passing through the digestive system to the feces. Dissection of the chickens confirmed that Bt was safe for the tested animal.
Collapse
|
7
|
Zhang L, Huang E, Lin J, Gelbič I, Zhang Q, Guan Y, Huang T, Guan X. A novel mosquitocidal Bacillus thuringiensis strain LLP29 isolated from the phylloplane of Magnolia denudata. Microbiol Res 2010; 165:133-41. [DOI: 10.1016/j.micres.2009.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/06/2009] [Accepted: 03/08/2009] [Indexed: 11/30/2022]
|
8
|
Ammons DR, Reyna A, Granados JC, Samlal MS, Rampersad JN. An investigation of bacillus thuringiensis in rectal-collected fecal samples of cows. Curr Microbiol 2009; 59:532-6. [PMID: 19688377 DOI: 10.1007/s00284-009-9472-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/31/2009] [Accepted: 07/21/2009] [Indexed: 11/24/2022]
Abstract
In order to better understand the range and role of Bacillus thuringiensis (Bt) and its toxins in nature, we have undertaken a study of Bt taken directly from the rectum of 117 cows from 37 farms on the Caribbean island of Trinidad. Thirty-seven fecal samples (32%) were found to contain at least one Bt. Generally only one or two isolates with a particular crystal morphology were isolated from any one sample, however, a few samples contained more, up to 11 isolates, suggesting post-ingestion amplification. Bioassays using larvae of Musca domestica, Caenorhabditis elegans and Tetrahymena pyriformis showed no observable toxicity in gross bioassays. Very small dot-like parasporal bodies, not generally characteristic of Bt, were isolated from 44% of the samples, which in many instances appeared unstable and whose relation to Bt Cry protein-containing parasporal bodies is unknown. In conclusion, we find little evidence for a host adapted strain of Bt in the cows examined, nor toxicity to organisms that might logically be associated with either the cow or its feces. The presence of a large number of isolates containing small dot-like parasporal bodies, possibly either poly-beta-hydroxybutyrate storage bodies or Cry proteins, was unexpected and merits further investigation.
Collapse
Affiliation(s)
- David R Ammons
- Department of Chemistry, The University of Texas-Pan American, 1201 W. University Drive, Edinburg, TX 78539, USA.
| | | | | | | | | |
Collapse
|
9
|
Zhang B, Jiang D, Zhou W, Hao H, Niu T. Isolation and characterization of a new Bacillus sp. 50-3 with highly alkaline keratinase activity from Calotes versicolor faeces. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9926-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Novel isolate of Bacillus thuringiensis subsp. thuringiensis that produces a quasicuboidal crystal of Cry1Ab21 toxic to larvae of Trichoplusia ni. Appl Environ Microbiol 2007; 74:923-30. [PMID: 18083867 DOI: 10.1128/aem.01955-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new isolate (IS5056) of Bacillus thuringiensis subsp. thuringiensis that produces a novel variant of Cry1Ab, Cry1Ab21, was isolated from soil collected in northeastern Poland. Cry1Ab21 was composed of 1,155 amino acids and had a molecular mass of 130.5 kDa, and a single copy of the gene coding for this endotoxin was located on a approximately 75-kbp plasmid. When synthesized by the wild-type strain, Cry1Ab21 produced a unique, irregular, bipyramidal crystal whose long and short axes were both approximately 1 microm long, which gave it a cuboidal appearance in wet mount preparations. In diet incorporation bioassays, the 50% lethal concentrations of the crystal-spore complex were 16.9 and 29.7 microg ml(-1) for second- and fourth-instar larvae of the cabbage looper, Trichoplusia ni, respectively, but the isolate was essentially nontoxic to larvae of the beet armyworm, Spodoptera exigua. A bioassay of autoclaved spore-crystal preparations showed no evidence of beta-exotoxin activity, indicating that toxicity was due primarily to Cry1Ab21. Studies of the pathogenesis of isolate IS5056 in second-instar larvae of T. ni showed that after larval death the bacterium colonized and subsequently sporulated extensively throughout the cadaver, suggesting that other bacteria inhabiting the midgut lumen played little if any role in mortality. As T. ni is among the most destructive pests of vegetable crops in North America and has developed resistance to B. thuringiensis, this new isolate may have applied value.
Collapse
|
11
|
Zhang LL, Lin J, Luo L, Guan CY, Zhang QL, Guan Y, Zhang Y, Ji JT, Huang ZP, Guan X. A novel Bacillus thuringiensis strain LLB6, isolated from bryophytes, and its new cry2Ac-type gene. Lett Appl Microbiol 2007; 44:301-7. [PMID: 17309508 DOI: 10.1111/j.1472-765x.2006.02072.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To isolate and characterize the novel Bacillus thuringiensis strains from bryophytes collected from Wuyi Mountain, Fujian Province of China, and identify new B. thuringiensis strains and toxins active against mosquitoes. METHODS AND RESULTS Twelve novel B. thuringiensis strains were isolated from 76 bryophyte samples. According to the results of this preliminary screening, LLB6 was the most toxic to Aedes albopictus. Then phase-contrast as well as scanning electron microscopy, bioassays, cloning, sequencing and expression were performed to characterize the novel isolate LLB6 and its new gene cry2Ac5. CONCLUSIONS Bacillus thuringiensis occurred naturally on bryophytes. LLB6 isolated from Physcomitrium japonicum was toxic to A. albopictus. A new cry2Ac5 gene of LLB6 was detected, cloned and expressed successfully. Bioassays on A. albopictus showed that the expressed Cry2Ac5 was also toxic to the third instar larvae. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of B. thuringiensis strains isolated from bryophytes. It represents a specific source of new B. thuringiensis strains and is of great importance for the knowledge of the ecology of B. thuringiensis. Novel LLB6 harboring the new gene cry2Ac5 and its expressed Cry2Ac5 protein revealed activity against A. albopictus and became a new member of B. thuringiensis toxins.
Collapse
Affiliation(s)
- L L Zhang
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wu XY, Walker M, Vanselow B, Chao RL, Chin J. Characterization of mesophilic bacilli in faeces of feedlot cattle. J Appl Microbiol 2007; 102:872-9. [PMID: 17309638 DOI: 10.1111/j.1365-2672.2006.03106.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To determine the identity and composition of mesophilic Bacillus spp. in faeces sampled from feedlot cattle. METHODS AND RESULTS Faecal samples from 10 feedlot cattle were analysed. The total aerobic spore count increased from 4.6 x 10(4) CFU g(-1) (before feedlotting, day 0) to 1.6 x 10(6) CFU g(-1) (feedlot for day 76). A total of 150 randomly selected spore isolates (60 each from days 0 and 76 cattle, 30 from feed) were speciated using a Bacillus group-specific PCR-amplified ribosomal DNA restriction analysis technique (Wu et al. 2006). At day 0, Bacillus subtilis and Bacillus cereus predominated with a prevalence of 58.3% and 26.7%, respectively, whereas three species, B. subtilis (50.0%), Bacillus licheniformis (27.6%) and Bacillus clausii (20.0%) predominated in day 76 faecal samples. Of these, only the first two species were present in feed samples at a frequency of 70% and 30% respectively. All B. cereus isolates on day 0, possessed at least one of three enterotoxin genes (nheA, nheB and nheC) but these were completely eliminated after a period of feedlotting. All isolates of B. licheniformis were genotypically heterogeneous according to pulsed-field gel electrophoresis analysis. CONCLUSIONS Cattle faeces contain large numbers of Bacillus spores representing different mesophilic species. Stable faecal populations of particular Bacillus spp. mimicking those found in feed, were subsequently established by feedlotting. SIGNIFICANCE AND IMPACT OF THE STUDY The results obtained and methods used in this study will help to investigate the indigenous Bacillus composition in the gastrointestinal tract of cattle and will further guide the administration of Bacillus probiotics.
Collapse
Affiliation(s)
- X-Y Wu
- Department of Immunology and Microbiology, Elizabeth Macarthur Agriculture Institute, NSW Department of Primary Industries, Camden, NSW, Australia
| | | | | | | | | |
Collapse
|
13
|
Konecka E, Kaznowski A, Ziemnicka J, Ziemnicki K. Molecular and phenotypic characterisation of Bacillus thuringiensis isolated during epizootics in Cydia pomonella L. J Invertebr Pathol 2007; 94:56-63. [PMID: 17027023 DOI: 10.1016/j.jip.2006.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/01/2006] [Accepted: 08/16/2006] [Indexed: 11/18/2022]
Abstract
Twelve Bacillus thuringiensis strains were isolated from intestinal tracts of Cydia pomonella larvae during epizootics in different laboratory insect culture lines. Phenotypic and genetic similarity of these isolates, together with two cultured from Leucoma salicis larvae and 14 reference B. thuringiensis strains were determined. The epizootic bacteria did not form a single group based on numerical analysis of biochemical properties. Simple RAPD method with only one primer does not allow estimating the genetic similarity of B. thuringiensis strains. We propose a novel strategy based on combining several DNA patterns obtained by RAPD technique with different primers for B. thuringiensis typing. Majority of infections in the C. pomonella culture lines were caused by bacteria with different genotypes. However, two isolates cultured from infected insects at different time (one strain was isolated in 1990 and the other in 1992) had identical DNA fingerprint that suggested a possibility of these bacteria to survive in the laboratory and to cause infections in different years. The results of SDS-PAGE of whole-cell proteins revealed a possibility to apply protein profile analysis in epidemiological investigations of infections caused by B. thuringiensis. Strains with identical DNA patterns had very similar whole-cell protein profiles.
Collapse
Affiliation(s)
- Edyta Konecka
- Department of Microbiology, Institute of Experimental Biology, Adam Mickiewicz University, Fredry 10, 61-701 Poznań, Poland
| | | | | | | |
Collapse
|
14
|
Swiecicka I, Van der Auwera GA, Mahillon J. Hemolytic and nonhemolytic enterotoxin genes are broadly distributed among Bacillus thuringiensis isolated from wild mammals. MICROBIAL ECOLOGY 2006; 52:544-51. [PMID: 16944343 DOI: 10.1007/s00248-006-9122-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 06/06/2006] [Indexed: 05/11/2023]
Abstract
The presence of cytotoxin K (cytK), nonhemolytic (NHE), and hemolytic (HBL) enterotoxin genes was investigated in 74 Bacillus thuringiensis strains recovered from the intestines of wild mammals from northeast Poland, using polymerase chain reaction amplification and Southern hybridization. All the isolates harbored genes coding for toxin(s) that could cause diarrhea. The B. thuringiensis strains containing the nhe genes were found more frequently (nheA 100%, nheB 77%, nheC 96%) than those with the hblACD (74%) and cytK (73%) genes. The presence/absence of the nheA, hblA, and cytK genes was confirmed in all of the B. thuringiensis strains by Southern hybridization. Interestingly, these experiments also indicated that the nheA locus is located on a more variable chromosome region compared with hblA and, to a lesser degree, cytK. Detection of the 41-kDa component of NHE enterotoxin by the TECRA assay revealed various protein levels by B. thuringiensis strains. These results indicate the existence of environmental B. thuringiensis strains bearing the potential virulence arsenal for the production of diarrheal toxins, and emphasize the importance of small animals in the spread of B. cereus-like enterotoxin genes in nature. However, further investigation is needed to clarify any possible involvement of environmental B. thuringiensis strains in human health issues.
Collapse
Affiliation(s)
- Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Bialystok, 20B Swierkowa Street, 15-950 Bialystok, Poland.
| | | | | |
Collapse
|
15
|
Swiecicka I, Mahillon J. The clonal structure of Bacillus thuringiensis isolates from north-east Poland does not correlate with their cry gene diversity. Environ Microbiol 2005; 7:34-9. [PMID: 15643933 DOI: 10.1111/j.1462-2920.2004.00662.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The genetic relationship among 103 natural Bacillus thuringiensis isolates was investigated on the basis of polymerase chain reaction amplification of their specific crystal (cry) protein type genes and chromosomal DNA profiling by pulsed-field gel electrophoresis (PFGE). The strains were recovered from the intestines of small wild rodents and insectivores from the Biebrza National Park and the Lomza Landscape Park of the Narew River Valley in north-east Poland. The percentage of B. thuringiensis strains harbouring genes coding for toxins active against Lepidoptera (cry1, cry2, cry9) was very high (64%) compared with that of Diptera-specific strains (cry4, 14%). No strain with cry genes coding for proteins directed against coleopteran larvae and nematodes was found. After digestion with NotI and AscI, only nine PFGE pulsotypes were observed among all isolates, indicating a clonal structure for the B. thuringiensis population from NE Poland. Interestingly, no correlation was observed between the DNA pulsotype strains and their crystal gene content and diversity. These results therefore emphasize the importance of cry gene horizontal transfer occurring among natural isolates of B. thuringiensis.
Collapse
Affiliation(s)
- Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Białystok, 15-950 Białystok, Swierkowa 20B, Poland.
| | | |
Collapse
|
16
|
Lee DH, Cha IH, Woo DS, Ohba M. Microbial ecology of Bacillus thuringiensis: fecal populations recovered from wildlife in Korea. Can J Microbiol 2004; 49:465-71. [PMID: 14569287 DOI: 10.1139/w03-063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A total of 34 fecal samples, collected from 14 species of wild mammals in Korea, were examined for the occurrence of Bacillus thuringiensis. The organism was detected in 18 (53%) samples. Among the three food-habit groups, herbivorous animals yielded the highest frequency (69%) of samples positive for B. thuringiensis, followed by omnivorous animals (50%). Of the six fecal samples from carnivorous animals, only one sample contained B. thurin giensis. Among 527 isolates belonging to the Bacillus cereus - B. thuringiensis group, 43 (8%) were assigned to B. thurin giensis on the basis of the formation of parasporal inclusions. Of the 43 isolates, 13 were serologically allocated to the nine H-antigenic serotypes: H3ad (serovar sumiyoshiensis), H15 (dakota), H17/27 (tohokuensis/ mexicanensis), H19 (tochigiensis), H21 (colmeri), H29 (amagiensis), H31/49 (toguchini/muju), H42 (jinghongiensis), and H44 (higo). Other isolates were untestable or untypable by the 55 reference H antisera available. Insecticidal activity was associated with 23% of the fecal populations: three isolates killed larvae of the silkworm, Bombyx mori (Lepidoptera), and seven exhibited larvicidal activity against the mosquito, Aedes aegypti (Diptera). There was no larvicidal activity against the three lepidopterous insects: Plutella xylostella, Spodoptera exigua, and Spodoptera litura. The overall results suggest that wild animals in Korea are in contact with naturally occurring B. thuringiensis at high frequencies through the daily food intake of plants.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
17
|
Abstract
Bacillus cereus sensu lato, the species group comprising Bacillus anthracis, Bacillus thuringiensis and B. cereus (sensu stricto), has previously been scrutinized regarding interspecies genetic correlation and pathogenic characteristics. So far, little attention has been paid to analysing the biological and ecological properties of the three species in their natural environments. In this review, we describe the B. cereus sensu lato living in a world on its own; all B. cereus sensu lato can grow saprophytically under nutrient-rich conditions, which are only occasionally found in the environment, except where nutrients are actively collected. As such, members of the B. cereus group have recently been discovered as common inhabitants of the invertebrate gut. We speculate that all members disclose symbiotic relationships with appropriate invertebrate hosts and only occasionally enter a pathogenic life cycle in which the individual species infects suitable hosts and multiplies almost unrestrained.
Collapse
Affiliation(s)
- G B Jensen
- National Institute of Occupational Health, Lersø Parkalle 105, 2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
18
|
Abstract
AIMS To assess the properties of B. thuringiensis naturally occurring in the intestines of bank voles. METHODS AND RESULTS Seventeen Bacillus thuringiensis strains, exhibiting typical growth on selective medium for the B. cereus group and characterized by the ability to produce parasporal crystals, were isolated from bank voles trapped in the Łomza Landscape Park of the Narew River Valley (north-east Poland). All isolates were characterized by pulsed field gel electrophoresis (PFGE) of chromosomal DNA and SDS polyacrylamide gel electrophoresis (SDS-PAGE) of whole-cell proteins. Six pulsotypes were found with PFGE typing, using SmaI or NotI as restriction enzymes. Significant differences in chromosome size, ranging from 2.4 to 4.2 Mb for the B. thuringiensis strains studied, were noted. Strain heterogeneity in pulsotypes was also reflected by the similarity of whole-cell protein profiles of the strains. Environmental isolates and reference strains grouped at 71% similarity according to SDS-PAGE data and at 84% on the basis of biochemical tests. CONCLUSIONS B. thuringiensis from intestines of bank voles demonstrated an important level of heterogeneity. The comparison of PFGE profiles and SDS-PAGE of whole-cell protein patterns may be useful to evaluate the relationship between B. thuringiensis isolates. SIGNIFICANCE AND IMPACT OF THE STUDY The results presented in this paper may help to explain the diversity of B. thuringiensis.
Collapse
Affiliation(s)
- I Swiecicka
- Department of Microbiology, Institute of Biology, University of Białystok, 15-950 Białystok, Swierkowa 20B, Poland.
| | | |
Collapse
|