1
|
Quan QL, Yoon KN, Lee JS, Kim EJ, Lee DH. Impact of ultraviolet radiation on cardiovascular and metabolic disorders: The role of nitric oxide and vitamin D. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:573-581. [PMID: 37731181 DOI: 10.1111/phpp.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND/PURPOSE Ultraviolet (UV) radiation has both harmful and beneficial effects on human skin and health. It causes skin damage, aging, and cancer; however, it is also a primary source of vitamin D. Additionally, UV radiation can impact energy metabolism and has protective effects on several cardiovascular and metabolic disorders in mice and humans. However, the mechanisms of UV protection against these diseases have not been clearly identified. METHODS This review summarizes the systemic effects of UV radiation on hypertension and several metabolic diseases such as obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD) in mice, and we also consider the mechanisms of action of the related regulators nitric oxide (NO) and vitamin D. RESULTS UV exposure can lower blood pressure and prevent the development of cardiovascular diseases and metabolic disorders, such as metabolic syndrome, obesity, and type 2 diabetes, primarily through mechanisms that depend on UV-induced NO. UV radiation may also effectively delay the onset of type 1 diabetes through mechanisms that rely on UV-induced vitamin D. UV-induced NO and vitamin D play roles in preventing and slowing the progression of NAFLD. CONCLUSION UV exposure is a promising nonpharmacological intervention for cardiovascular and metabolic disorders. NO and vitamin D may play a crucial role in mediating these effects. However, further investigations are required to elucidate the exact mechanisms and determine the optimal dosage and exposure duration of UV radiation.
Collapse
Affiliation(s)
- Qing-Ling Quan
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Kyeong-No Yoon
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Ji Su Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Eun Ju Kim
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| |
Collapse
|
2
|
Enhancement of Nitric Oxide Bioavailability by Modulation of Cutaneous Nitric Oxide Stores. Biomedicines 2022; 10:biomedicines10092124. [PMID: 36140225 PMCID: PMC9496039 DOI: 10.3390/biomedicines10092124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The generation of nitric oxide (NO) in the skin plays a critical role in wound healing and the response to several stimuli, such as UV exposure, heat, infection, and inflammation. Furthermore, in the human body, NO is involved in vascular homeostasis and the regulation of blood pressure. Physiologically, a family of enzymes termed nitric oxide synthases (NOS) generates NO. In addition, there are many methods of non-enzymatic/NOS-independent NO generation, e.g., the reduction of NO derivates (NODs) such as nitrite, nitrate, and nitrosylated proteins under certain conditions. The skin is the largest and heaviest human organ and contains a comparatively high concentration of these NODs; therefore, it represents a promising target for many therapeutic strategies for NO-dependent pathological conditions. In this review, we give an overview of how the cutaneous NOD stores can be targeted and modulated, leading to a further accumulation of NO-related compounds and/or the local and systemic release of bioactive NO, and eventually, NO-related physiological effects with a potential therapeutical use for diseases such as hypertension, disturbed microcirculation, impaired wound healing, and skin infections.
Collapse
|
3
|
IL-33/ST2 Activation Is involved in Ro60-Regulated Photosensitivity in Cutaneous Lupus Erythematosus. Mediators Inflamm 2022; 2022:4955761. [PMID: 35909659 PMCID: PMC9328989 DOI: 10.1155/2022/4955761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Interleukin- (IL-) 33 contributes to various inflammatory processes. IL-33/ST2 activation participates in systemic lupus erythematous via binding to the receptor of Suppression of Tumorigenicity 2 protein (ST2). However, whether IL-33/ST2 interferes with the nosogenesis of cutaneous lupus erythematosus (CLE) has not been reported so far. Herein, we proposed to disclose the impacts on IL-33/ST2 activation and Ro60 on CLE and their potential implications in the photosensitization of CLE cells. IL-33, ST2, and Ro60 in CLE patients' skin lesions were detected. Murine keratinocytes stimulated with or without IL-33 were irradiated by ultraviolet B (UVB), and the levels of Ro60 and inflammation markers were determined. Keratinocytes were cocultured with J774.2 macrophages and stimulated with IL-33 for analysis of chemostasis. The results identified that IL-33, ST2, and downstream inflammation markers were significantly upregulated in CLE lesions with Ro60 overexpression. Additionally, IL-33 treatment promoted the upregulation of Ro60 induced by UVB treatment in murine keratinocytes. Moreover, IL-33 stimulates keratinocytes to induce macrophage migration via enhancing the generation of the chemokine (C–C motif) ligands 17 and 22. Meanwhile, the silencing of ST2 or nuclear factor-kappa B (NF-κB) suppression abolished IL-33-induced upregulation of Ro60 in keratinocytes. Similarly, the inhibition of SOX17 expression was followed by downregulation of Ro60 in keratinocytes following IL-33 stimulation. In addition, UVB irradiation upregulated SOX17 in keratinocytes. Conclusively, the IL-33/ST2 axis interferes with Ro60-regulated photosensitization via activating the NF-κB- and PI3K/Akt- and SOX17-related pathways.
Collapse
|
4
|
Chen HW, Barber G, Chong BF. The Genetic Landscape of Cutaneous Lupus Erythematosus. Front Med (Lausanne) 2022; 9:916011. [PMID: 35721085 PMCID: PMC9201079 DOI: 10.3389/fmed.2022.916011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune connective tissue disease that can exist as a disease entity or within the context of systemic lupus erythematosus (SLE). Over the years, efforts to elucidate the genetic underpinnings of CLE and SLE have yielded a wealth of information. This review examines prior studies investigating the genetics of CLE at the DNA and RNA level and identifies future research areas. In this literature review, we examined the English language literature captured within the MEDLINE and Embase databases using pre-defined search terms. First, we surveyed studies investigating various DNA studies of CLE. We identified three predominant areas of focus in HLA profiling, complement deficiencies, and genetic polymorphisms. An increased frequency of HLA-B8 has been strongly linked to CLE. In addition, multiple genes responsible for mediating innate immune response, cell growth, apoptosis, and interferon response confer a higher risk of developing CLE, specifically TREX1 and SAMHD1. There was a strong association between C2 complement deficiency and CLE. Second, we reviewed literature studying aberrations in the transcriptomes of patients with CLE. We reviewed genetic aberrations initiated by environmental insults, and we examined the interplay of dysregulated inflammatory, apoptotic, and fibrotic pathways in the context of the pathomechanism of CLE. These current learnings will serve as the foundation for further advances in integrating personalized medicine into the care of patients with CLE.
Collapse
|
5
|
Man MQ, Wakefield JS, Mauro TM, Elias PM. Role of nitric oxide in regulating epidermal permeability barrier function. Exp Dermatol 2022; 31:290-298. [PMID: 34665906 PMCID: PMC8897205 DOI: 10.1111/exd.14470] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO), a free radical molecule synthesized by nitric oxide synthases (NOS), regulates multiple cellular functions in a variety of cell types. These NOS, including endothelial NOS (eNOS), inducible NOS (iNOS) and neural NOS (nNOS), are expressed in keratinocytes. Expression levels of both iNOS and nNOS decrease with ageing, and insufficient NO has been linked to the development of a number of disorders such as diabetes and hypertension, and to the severity of atherosclerosis. Conversely, excessive NO levels can induce cellular oxidative stress, but physiological levels of NO are required to maintain the normal functioning of cells, including keratinocytes. NO also regulates cutaneous functions, including epidermal permeability barrier homeostasis and wound healing, through its stimulation of keratinocyte proliferation, differentiation and lipid metabolism. Topical applications of a diverse group of agents which generate nitric oxide (called NO donors) such as S-nitroso-N-acetyl-D,L-penicillamine (SNAP) can delay permeability barrier recovery in barrier-disrupted skin, but iNOS is still required for epidermal permeability barrier homeostasis. This review summarizes the regulatory role that NO plays in epidermal permeability barrier functions and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Mao-Qiang Man
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA,Dermatology Hospital, Southern Medical University, Guangdong 510091, China
| | - Joan S. Wakefield
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| | - Theodora M. Mauro
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| | - Peter M. Elias
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| |
Collapse
|
6
|
Suciu M, Porav S, Radu T, Rosu MC, Lazar MD, Macavei S, Socaci C. Photodynamic effect of light emitting diodes on E. coli and human skin cells induced by a graphene-based ternary composite. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112298. [PMID: 34474299 DOI: 10.1016/j.jphotobiol.2021.112298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023]
Abstract
In this paper, the photodynamic effect of a ternary nanocomposite (TiO2-Ag/graphene) on Escherichia coli bacteria and two human cell lines: A375 (melanoma) and HaCaT (keratinocyte) after exposure to different wavelength domains (blue, green or red-Light Emitting Diode, LED) was analyzed. The results obtained through bioassays were correlated with the morphological, structural and spectral data obtained through FT-IR, XPS and UV-Vis spectroscopy, powder X-Ray diffractometry (XRD) and STEM/EDX techniques, leading to conclusions that showed different photodynamic activation mechanisms and effects on bacteria and human cells, depending on the wavelength. The nanocomposite proved a therapeutic potential for blue light-activated antibacterial treatment and revealed a keratinocyte cytotoxic effect under blue and green LEDs. The red light-nanocomposite duo gave a metabolic boost to normal keratinocytes and induced stasis to melanoma cells. The light and nanocomposite combination could be a potential therapy for bacterial keratosis or for skin tumors.
Collapse
Affiliation(s)
- Maria Suciu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania; Biology and Geology Faculty, Babes-Bolyai University, 5-7 Clinicilor Str, Cluj-Napoca, Romania
| | - Sebastian Porav
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Teodora Radu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Marcela C Rosu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Mihaela D Lazar
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Sergiu Macavei
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Crina Socaci
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Lupus erythematosus (LE) is characterized by broad and varied clinical forms ranging from a localized skin lesion to a life-threatening form with severe systemic manifestations. The overlapping between cutaneous LE (CLE) and systemic LE (SLE) brings difficulties to physicians for early accurate diagnosis and sometimes may lead to delayed treatment for patients. We comprehensively review recent progress about the similarities and differences of the main three subsets of LE in pathogenesis and immunological mechanisms, with a particular focus on the skin damage. RECENT FINDINGS Recent studies on the mechanisms contributing to the skin damage in lupus have shown a close association of abnormal circulating inflammatory cells and abundant production of IgG autoantibodies with the skin damage of SLE, whereas few evidences if serum autoantibodies and circulating inflammatory cells are involved in the pathogenesis of CLE, especially for the discoid LE (DLE). Till now, the pathogenesis and molecular/cellular mechanism for the progress from CLE to SLE are far from clear. But more and more factors correlated with the differences among the subsets of LE and progression from CLE to SLE have been found, such as the mutation of IRF5, IFN regulatory factors and abnormalities of plasmacytoid dendritic cells (PDCs), Th1 cells, and B cells, which could be the potential biomarkers for the interventions in the development of LE. A further understanding in pathogenesis and immunological mechanisms for skin damage in different subsets of LE makes us think more about the differences and cross-links in the pathogenic mechanism of CLE and SLE, which will shed a light in predictive biomarkers and therapies in LE.
Collapse
|
8
|
Pan L, Yang S, Wang J, Xu M, Wang S, Yi H. Inducible nitric oxide synthase and systemic lupus erythematosus: a systematic review and meta-analysis. BMC Immunol 2020; 21:6. [PMID: 32066371 PMCID: PMC7027241 DOI: 10.1186/s12865-020-0335-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 01/29/2020] [Indexed: 01/01/2023] Open
Abstract
Background There is a growing body of evidences indicating iNOS has involved in the pathogenesis of SLE. However, the role of iNOS in SLE is inconsistency. This systematic review was designed to evaluate the association between iNOS and SLE. Results Six studies were included, reporting on a total of 277 patients with SLE. The meta-analysis showed that SLE patients had higher expression of iNOS at mRNA level than control subjects (SMD = 2.671, 95%CI = 0.446–4.897, z = 2.35, p = 0.019), and a similar trend was noted at the protein level (SMD = 3.602, 95%CI = 1.144–6.059, z = 2.87, p = 0.004) and positive rate of iNOS (OR = 9.515, 95%CI = 1.915–47.281, z = 2.76, p = 0.006) were significantly higher in SLE group compared with control group. No significant difference was observed on serum nitrite level between SLE patients and control subjects (SMD = 2.203, 95%CI = -0.386–4.793, z = 1.64, p = 0.095). The results did not modify from different sensitivity analysis, representing the robustness of this study. No significant publication bias was detected from Egger’s test. Conclusions There was a positive correlation between increasing iNOS and SLE. However, the source of iNOS is unknown. Besides NO pathway, other pathways also should be considered. More prospective random studies are needed in order to certify our results.
Collapse
Affiliation(s)
- Lu Pan
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Sirui Yang
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Jinghua Wang
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Meng Xu
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Shaofeng Wang
- The Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
9
|
Holliman G, Lowe D, Cohen H, Felton S, Raj K. Ultraviolet Radiation-Induced Production of Nitric Oxide:A multi-cell and multi-donor analysis. Sci Rep 2017; 7:11105. [PMID: 28894213 PMCID: PMC5593895 DOI: 10.1038/s41598-017-11567-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence regarding positive effects of exposure to sunlight has led to suggestions that current advice may be overly weighted in favour of avoidance. UV-A has been reported to lower blood pressure, possibly through nitric oxide (NO) production in skin. Here, we set out to investigate effects of UV-A and solar-simulated radiation on the potential source of dermal NO, the effective doses and wavelengths, the responsiveness of different human skin cells, the magnitude of inter-individual differences and the potential influence of age. We utilised isogenic keratinocytes, microvascular endothelial cells, melanocytes and fibroblasts isolated from 36 human skins ranging from neonates to 86 years old. We show that keratinocytes and microvascular endothelial cells show greatest NO release following biologically relevant doses of UV-A. This was consistent across multiple neonatal donors and the effect is maintained in adult keratinocytes. Our observations are consistent with a bi-phasic mechanism by which UV-A can trigger vasodilatory effects. Analyses of NO-production spectra adds further evidence that nitrites in skin cells are the source of UV-mediated NO release. These potentially positive effects of ultraviolet radiation lend support for objective assessment of environmental influence on human health and the idea of “healthy sun exposure”.
Collapse
Affiliation(s)
- Graham Holliman
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards,Public Health England (PHE), Chilton, Oxfordshire, OX11 0RQ, United Kingdom.
| | - Donna Lowe
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards,Public Health England (PHE), Chilton, Oxfordshire, OX11 0RQ, United Kingdom
| | - Howard Cohen
- Elizabeth House, 515 Limpsfield Road, Warlingham, Surrey, CR6 9LF, United Kingdom
| | - Sarah Felton
- Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LJ, United Kingdom
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards,Public Health England (PHE), Chilton, Oxfordshire, OX11 0RQ, United Kingdom
| |
Collapse
|
10
|
Xiao Y, Ahadian S, Radisic M. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:9-26. [PMID: 27405960 DOI: 10.1089/ten.teb.2016.0200] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell-matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them.
Collapse
Affiliation(s)
- Yun Xiao
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | - Samad Ahadian
- 2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | - Milica Radisic
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
11
|
The application of cold atmospheric plasma in medicine: The potential role of nitric oxide in plasma-induced effects. CLINICAL PLASMA MEDICINE 2016. [DOI: 10.1016/j.cpme.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Abstract
Nitric oxide (NO) plays an important role in the maintenance and regulation of the skin and the integrity of its environment. Derangement of NO production is implicated in the etiology of a multitude of dermatologic diseases, indicating future therapeutic directions. In an era of increasing resistance rates to available antibiotics and subpar development of new agents, NO is promising as a prospective topical broad-spectrum antimicrobial agent with small likelihood of resistance development. Because the greatest strides have been made in the setting of infectious disease and skin and soft-tissue infection, this will be a major focus of this article. In addition, we will review NO's role in skin regulation and dysregulation, immune function, the various topical release systems that have been devised and tested, NO's relation to UV radiation and skin pigmentation, and finally, its potential applications as a cosmeceutical.
Collapse
Affiliation(s)
- Brandon L Adler
- Department of Medicine (Division of Dermatology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine (Division of Dermatology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adam J Friedman
- Department of Medicine (Division of Dermatology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA; George Washington School of Medicine & Health Sciences, Washington, DC, USA; Department of Medicine (Division of Dermatology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA; George Washington School of Medicine & Health Sciences, Washington, DC, USA
| |
Collapse
|
13
|
Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response. PLoS One 2015; 10:e0130949. [PMID: 26121474 PMCID: PMC4488093 DOI: 10.1371/journal.pone.0130949] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022] Open
Abstract
Visible light (400–700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions.
Collapse
|
14
|
Abstract
Photoaggravated skin disorders are diseases that occur without UV radiation but are sometimes or frequently exacerbated by UV radiation. In conditions, such as lupus erythematosus, photoaggravation occurs in a majority of patients, whereas in conditions, such as psoriasis and atopic dermatitis, only a subset of patients demonstrate photoaggravation. Polymorphous light eruption is a common photodermatosis in all skin types, making it important to differentiate photoaggravation of an underlying disorder, such as lupus erythematosus, from superimposed polymorphous light eruption. Disease-specific treatments should be instituted where possible. A key component of management of photoaggravated conditions is photoprotection with behavioral change, UV-protective clothing, and broad-spectrum sunscreen.
Collapse
Affiliation(s)
- Susan M O'Gorman
- Dermatology Department, Beaumont Hospital, Beaumont Road, Beaumont, Dublin 9, Ireland.
| | - Gillian M Murphy
- Dermatology Department, Beaumont Hospital, Beaumont Road, Beaumont, Dublin 9, Ireland; National Photodermatology Unit, Dermatology Department, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| |
Collapse
|
15
|
Chance, genetics, and the heterogeneity of disease and pathogenesis in systemic lupus erythematosus. Semin Immunopathol 2014; 36:495-517. [PMID: 25102991 DOI: 10.1007/s00281-014-0440-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/30/2014] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is a remarkably complex and heterogeneous systemic autoimmune disease. Disease complexity within individuals and heterogeneity among individuals, even genetically identical individuals, is driven by stochastic execution of a complex inherited program. Genome-wide association studies (GWAS) have progressively improved understanding of which genes are most critical to the potential for SLE and provided illuminating insight about the immune mechanisms that are engaged in SLE. What initiates expression of the genetic program to cause SLE within an individual and how that program is initiated remains poorly understood. If we extrapolate from all of the different experimental mouse models for SLE, we can begin to appreciate why SLE is so heterogeneous and consequently why prediction of disease outcome is so difficult. In this review, we critically evaluate extrinsic versus intrinsic cellular functions in the clearance and elimination of cellular debris and how dysfunction in that system may promote autoimmunity to nuclear antigens. We also examine several mouse models genetically prone to SLE either because of natural inheritance or inheritance of induced mutations to illustrate how different immune mechanisms may initiate autoimmunity and affect disease pathogenesis. Finally, we describe the heterogeneity of disease manifestations in SLE and discuss the mechanisms of disease pathogenesis with emphasis on glomerulonephritis. Particular attention is given to discussion of how anti-DNA autoantibody initiates experimental lupus nephritis (LN) in mice.
Collapse
|
16
|
Oke V, Wahren-Herlenius M. Cutaneous lupus erythematosus: clinical aspects and molecular pathogenesis. J Intern Med 2013; 273:544-54. [PMID: 23464352 DOI: 10.1111/joim.12057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lupus erythematosus (LE) is an autoimmune disease with diverse clinical manifestations ranging from limited cutaneous (CLE) to potentially life-threatening systemic disease (SLE). Susceptibility to LE arises from genetic variation in multiple loci, and disease activity is provoked by exogenous or endogenous trigger(s), the best characterized of which is exposure to ultraviolet radiation (UVR). Amongst patients with LE, a cluster of photosensitive subjects with cutaneous lesions and positivity for anti-Ro/SSA autoantibodies have been described. The Ro52 antigen belongs to the tripartite motif protein family and has E3 ligase activity. New data reveal that Ro52 ubiquitinates interferon regulatory factors and modulates their transcriptional activity, indicating an important role for Ro52 in inflammation as a negative feedback regulator. Our findings indicate that UVR exposure induces upregulation of Ro52 in the CLE target cell, the keratinocyte, and that Ro52 is upregulated in spontaneous and UVR-induced CLE lesions. Recently described functional analysis of Ro52-deficient mice revealed that loss of Ro52 results in uncontrolled inflammation in response to minor skin injury leading to an LE-like condition. In summary, emerging data suggest that abnormal function or regulation of Ro52 contributes to the pathogenesis of UVR-induced CLE in genetically susceptible individuals. Ro52 may thus be an interesting therapeutic target, as its activation could contribute to downregulation of the chronic inflammatory process in LE. Here, we review the available data on the pathogenesis of CLE and, in particular, the role of the Ro52 autoantigen.
Collapse
Affiliation(s)
- V Oke
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital in Solna, Stockholm, Sweden
| | | |
Collapse
|
17
|
Opening of chloride channels by 1α,25-dihydroxyvitamin D3 contributes to photoprotection against UVR-induced thymine dimers in keratinocytes. J Invest Dermatol 2012; 133:776-782. [PMID: 23014341 DOI: 10.1038/jid.2012.343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
UVR produces vitamin D in skin, which is hydroxylated locally to 1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). 1,25(OH)(2)D(3) protects skin cells against UVR-induced DNA damage, including thymine dimers, but the mechanism is unknown. As DNA repair is inhibited by nitric oxide (NO) products but facilitated by p53, we examined whether 1,25(OH)(2)D(3) altered the expression of nitrotyrosine, a product of NO, or p53 after UVR in human keratinocytes. 1,25(OH)(2)D(3) and the nongenomic agonist 1α,25-dihydroxylumisterol(3) reduced nitrotyrosine 16 hours after UVR, detected by a sensitive whole-cell ELISA. p53 was enhanced after UVR, and this was further augmented in the presence of 1,25(OH)(2)D(3). DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid), a chloride channel blocker previously shown to prevent 1,25(OH)(2)D(3)-induced chloride currents in osteoblasts, had no effect on thymine dimers on its own but prevented the 1,25(OH)(2)D(3)-induced protection against thymine dimers. Independent treatment with DIDS, at concentrations that had no effect on thymine dimers, blocked UVR-induced upregulation of p53. In contrast, reduction of nitrotyrosine remained in keratinocytes treated with 1,25(OH)(2)D(3) and DIDS at concentrations shown to block decreases in post-UVR thymine dimers. These results suggest that 1,25(OH)(2)D(3)-induced chloride currents help protect from UVR-induced thymine dimers, but further increases in p53 or reductions of nitrotyrosine by 1,25(OH)(2)D(3) are unlikely to contribute substantially to this protection.
Collapse
|
18
|
Abstract
Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disease of unknown etiology with many clinical manifestations. The skin is one of the target organs most variably affected by the disease. The American College of Rheumatology (ACR) established 11 criteria as a classificatory instrument to operationalise the definition of SLE in clinical trials. They were not intended to be used to diagnose individuals and do not do well in that capacity. Cutaneous lesions account for four of these 11 revised criteria of SLE. Skin lesions in patients with lupus may be specific or nonspecific. This paper covers the SLE-specific cutaneous changes: malar rash, discoid rash, photosensitivity, and oral mucosal lesions as well as SLE nonspecific skin manifestations, their pathophysiology, and management. A deeper thorough understanding of the cutaneous manifestations of SLE is essential for diagnosis, prognosis, and efficient management. Thus, dermatologists should cooperate with other specialties to provide optimal care of SLE patient.
Collapse
|
19
|
Cutaneous manifestations of systemic lupus erythematosus. Autoimmune Dis 2012; 2012:834291. [PMID: 22888407 PMCID: PMC3410306 DOI: 10.1155/2012/834291] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/04/2012] [Indexed: 11/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disease of unknown etiology with many clinical manifestations. The skin is one of the target organs most variably affected by the disease. The American College of Rheumatology (ACR) established 11 criteria as a classificatory instrument to operationalise the definition of SLE in clinical trials. They were not intended to be used to diagnose individuals and do not do well in that capacity. Cutaneous lesions account for four of these 11 revised criteria of SLE. Skin lesions in patients with lupus may be specific or nonspecific. This paper covers the SLE-specific cutaneous changes: malar rash, discoid rash, photosensitivity, and oral mucosal lesions as well as SLE nonspecific skin manifestations, their pathophysiology, and management. A deeper thorough understanding of the cutaneous manifestations of SLE is essential for diagnosis, prognosis, and efficient management. Thus, dermatologists should cooperate with other specialties to provide optimal care of SLE patient.
Collapse
|
20
|
Terra VA, Souza-Neto FP, Pereira RC, Xavier Da Silva TN, Ramalho LNZ, Luiz RC, Cecchini R, Cecchini AL. Nitric oxide is responsible for oxidative skin injury and modulation of cell proliferation after 24 hours of UVB exposures. Free Radic Res 2012; 46:872-82. [DOI: 10.3109/10715762.2012.686036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Terra V, Souza-Neto F, Pereira R, Silva T, Costa A, Luiz R, Cecchini R, Cecchini A. Time-dependent reactive species formation and oxidative stress damage in the skin after UVB irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 109:34-41. [DOI: 10.1016/j.jphotobiol.2012.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
|
22
|
Kuhn A, Gensch K, Haust M, Meuth AM, Boyer F, Dupuy P, Lehmann P, Metze D, Ruzicka T. Photoprotective effects of a broad-spectrum sunscreen in ultraviolet-induced cutaneous lupus erythematosus: a randomized, vehicle-controlled, double-blind study. J Am Acad Dermatol 2011; 64:37-48. [PMID: 21167404 DOI: 10.1016/j.jaad.2009.12.053] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/03/2009] [Accepted: 12/31/2009] [Indexed: 10/18/2022]
Abstract
OBJECTIVE We sought to assess if the exclusive use of a broad-spectrum sunscreen can prevent skin lesions in patients with different subtypes of cutaneous lupus erythematosus (CLE) induced by ultraviolet (UV) irradiation under standardized conditions. METHODS A total of 25 patients with a medical history of photosensitive CLE were included in this monocentric, randomized, vehicle-controlled, double-blind, intraindividual study. The test product and its vehicle were applied 15 minutes before UVA and UVB irradiation of uninvolved skin areas on the upper aspect of the back in a random order, and standardized phototesting was performed daily for 3 consecutive days. RESULTS Characteristic skin lesions were induced by UVA and UVB irradiation in 16 patients with CLE in the untreated area, and 14 patients showed a positive test result in the vehicle-treated area. In contrast, no eruptions compatible with CLE were observed in the sunscreen-treated area in any of the 25 patients. This resulted in significant differences (P < .001) between UV-irradiated sunscreen-treated versus vehicle-treated areas, and between UV-irradiated sunscreen-treated versus untreated areas. Furthermore, a significant difference (P < .05) was observed concerning the age of disease onset and the patient history of photosensitivity. Patients who were younger than 40 years at onset of CLE reported photosensitivity significantly more often than patients with a higher age of disease onset. None of the patients showed any adverse events from application of the test product or the vehicle. LIMITATIONS Data resulting from standardized experimental phototesting might not be transferable to a clinical setting. CONCLUSION These results indicate clearly that the use of a highly protective broad-spectrum sunscreen can prevent skin lesions in photosensitive patients with different subtypes of CLE.
Collapse
Affiliation(s)
- Annegret Kuhn
- Department of Dermatology, University of Muenster, Muenster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The roles of Akt and NOSs in regulation of VLA-4-mediated melanoma cell adhesion to endothelial VCAM-1 after UVB-irradiation. Arch Biochem Biophys 2010; 508:192-7. [PMID: 21129359 DOI: 10.1016/j.abb.2010.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 11/22/2022]
Abstract
UVB-reduced avidity between M624 melanoma and HUVEC cells is dependent on the interaction of VLA-4 with its endothelial ligand VCAM-1. Our previous studies suggested that a spatial organization of α4 integrin, one of the two subunits of VLA-4, on the melanoma cell surface contributed to the changes in avidity for VCAM-1 upon UVB-irradiation. In this study, we demonstrate that Akt plays an important role in regulation of the expression and surface level of α4 integrin on melanoma cells upon UVB-irradiation. While the cell surface level of α4 integrin is not significantly affected by UVB-irradiation or Akt inhibitor alone, it is dynamically altered after UVB-irradiation when Akt is inhibited. Inhibition of Akt also reverses the reduction of avidity of cells after the irradiation. Our data also shows that UVB reduces the level of Akt. The inhibition of Akt activity correlates with a reduced amount of coupled cNOS and reduced amount of iNOS after UVB-irradiation. However, the effect of NOSs on melanoma cell adhesion appears due to their roles in regulation of apoptosis after UVB-irradiation. Base on these results, we propose that the UVB-induced reduction of avidity of melanoma cells is coordinatively regulated by NOSs and Akt through two differential mechanisms.
Collapse
|
24
|
Kuhn A, Ruland V, Bonsmann G. Photosensitivity, phototesting, and photoprotection in cutaneous lupus erythematosus. Lupus 2010; 19:1036-46. [DOI: 10.1177/0961203310370344] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is a heterogeneous autoimmune disease involving well-defined skin lesions that can be categorized as acute CLE (ACLE), subacute CLE (SCLE), chronic CLE (CCLE), or intermittent CLE (ICLE). It is commonly accepted that ultraviolet (UV) exposure can induce and exacerbate skin lesions in patients with certain subtypes of CLE. Phototesting with UVA and UVB irradiation using a standardized protocol has proven to be a reliable model to study photosensitivity in CLE and to analyse the underlying pathomechanisms of the disease. In addition to UV-mediated induction of apoptosis, the molecular and cellular factors that may underlie the abnormal long-lasting photoreactivity in CLE include mediators of inflammation such as cytokines and chemokines, inducible nitric oxide (NO) synthase (iNOS), and cellular adhesion molecules. The photosensitivity associated with CLE requires education of the patient about avoidance of excessive sun exposure, continuous photoprotection through physical measures such as protective clothing, and daily application of broad-spectrum sunscreens. Novel approaches to UV-protection, such as alpha-MSH or thymidine dinucleotides, might also have an impact on photosensitivity in patients with CLE. In this review, we summarize the current knowledge about photosensitivity in patients with CLE, including an overview of standardized phototesting procedures, possible molecular pathomechanisms, and photoprotection. Lupus (2010) 19, 1036—1046.
Collapse
Affiliation(s)
- A. Kuhn
- Department of Dermatology, University of Münster, Münster, Germany,
| | - V. Ruland
- Department of Dermatology, University of Münster, Münster, Germany
| | - G. Bonsmann
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
25
|
Abeyakirthi S, Mowbray M, Bredenkamp N, van Overloop L, Declercq L, Davis PJ, Matsui MS, Weller RB. Arginase is overactive in psoriatic skin. Br J Dermatol 2010; 163:193-6. [PMID: 20331451 DOI: 10.1111/j.1365-2133.2010.09766.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Psoriatic keratinocytes are poorly differentiated and hyperproliferative. Low concentrations of nitric oxide (NO) induce keratinocyte proliferation, while high concentrations induce differentiation. The NO-producing enzyme inducible NO synthase is overexpressed in psoriatic skin, but so is arginase. The overexpressed arginase competes for arginine, the common substrate for both enzymes, and may reduce NO production. OBJECTIVES To determine whether arginase activity is elevated in psoriatic skin and whether exogenous NO will improve psoriatic plaques. METHODS Tape strips were taken from healthy skin of eight control subjects and nonlesional skin of eight patients with psoriasis and L-arginine, L-citrulline and L-ornithine concentrations measured by high-performance liquid chromatography. In a second study, four psoriatic patients with a pair of similar symmetrical plaques were treated with an NO donor and vehicle control. Plaques were scored for size, erythema, induration and scaling at the start and after 6 weeks of treatment. RESULTS Ornithine, the end-product of arginase, was at higher concentrations in nonlesional psoriatic than in healthy skin (mean +/- SEM 2.08 +/- 0.98 vs. 1.13 +/- 0.44 microg mg(-1) protein; P = 0.0002). Arginine, its substrate, was at lower concentrations. Topical application of an NO donor improved psoriatic plaques clinically [mean +/- SD reduction in severity from baseline score (100%) to 35% +/- 16% in active NO donor and to 93% +/- 10% in control]. CONCLUSIONS Arginase is overactive in psoriatic skin, leading to a relative increase in the consumption of arginine. We therefore hypothesize a relative decrease in NO synthase-derived NO production. NO donors may be effective topical treatments for psoriasis.
Collapse
Affiliation(s)
- S Abeyakirthi
- Department of Dermatology, University of Edinburgh, Edinburgh EH3 9HA, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune syndrome marked by autoantibody production. Innate immunity is essential to transform humoral autoimmunity into the clinical lupus phenotype. Nitric oxide (NO) is a membrane- permeable signaling molecule involved in a broad array of biologic processes through its ability to modify proteins, lipids, and DNA and alter their function and immunogenicity. The literature regarding mechanisms through which NO regulates inflammation and cell survival is filled with contradictory findings. However, the effects of NO on cellular processes depend on its concentration and its interaction with reactive oxygen. Understanding this interaction will be essential to determine mechanisms through which reactive intermediates induce cellular autoimmunity and contribute to a sustained innate immune response and organ damage in SLE.
Collapse
Affiliation(s)
- Jim C Oates
- Medical Service, Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA.
| |
Collapse
|
27
|
Non-enzymatic NO production in human skin: Effect of UVA on cutaneous NO stores. Nitric Oxide 2010; 22:120-35. [DOI: 10.1016/j.niox.2009.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 12/27/2022]
|
28
|
Wu S, Wang L, Jacoby AM, Jasinski K, Kubant R, Malinski T. Ultraviolet B light-induced nitric oxide/peroxynitrite imbalance in keratinocytes--implications for apoptosis and necrosis. Photochem Photobiol 2010; 86:389-96. [PMID: 20074088 DOI: 10.1111/j.1751-1097.2009.00682.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Elevation of nitric oxide (NO*) can either promote or inhibit ultraviolet B light (UVB)-induced apoptosis. In this study, we determined real-time concentration of NO* and peroxynitrite (ONOO(-)) and their role in regulation of membrane integrity and apoptosis. Nanosensors (diameter 300-500 nm) were used for direct in situ simultaneous measurements of NO* and ONOO(-) generated by UVB in cultured keratinocytes and mice epidermis. An exposure of keratinocytes to UVB immediately generated ONOO(-) at maximal concentration of 190 nm followed by NO(*) release with a maximal concentration of 91 nm. The kinetics of UVB-induced NO*/ONOO(-) was in contrast to cNOS agonist stimulated NO*/ONOO(-) from keratinocytes. After stimulating cNOS by calcium ionophore (CaI), NO* release from keratinocytes was followed by ONOO(-) production. The [NO*] to [ONOO(-)] ratio generated by UVB decreased below 0.5 indicating a serious imbalance between cytoprotective NO* and cytotoxic ONOO(-)-a main component of nitroxidative stress. The NO*/ONOO(-) imbalance increased membrane damage and cell apoptosis was partially reversed in the presence of free radical scavenger. The results suggest that UVB-induced and cNOS-produced NO* is rapidly scavenged by photolytically and enzymatically generated superoxide (O(2) (-)) to produce high levels of ONOO(-), which enhances oxidative injury and apoptosis of the irradiated cells.
Collapse
Affiliation(s)
- Shiyong Wu
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Yamaoka J, Kawana S, Miyachi Y. Nitric Oxide Inhibits Ultraviolet B-induced Murine Keratinocyte Apoptosis by Regulating Apoptotic Signaling Cascades. Free Radic Res 2009; 38:943-50. [PMID: 15621712 DOI: 10.1080/10715760412331284807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytotoxic effects of nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) are considered to be one of the major causes of inflammatory diseases. On the other hand, protective effects of NO on toxic insults-induced cellular damage/apoptosis have been demonstrated recently. Ultraviolet B (UVB)-induced apoptosis of epidermal keratinocytes leads to skin inflammation and photoageing. However, it has not been elucidated what kind of effects NO has on UVB-induced keratinocyte apoptosis. Thus, in the present study, we investigated the problem and demonstrated that NO from NO donor suppressed UVB-induced apoptosis of murine keratinocytes. In addition, NO significantly suppressed activities of caspase 3, caspase 8 and caspase 9 that had been upregulated by UVB radiation. NO also suppressed p53 expression that had been upregulated by UVB radiation and upregulated Bcl-2 expression that had been down-regulated by UVB radiation. These findings suggested that NO might suppress UVB-induced keratinocyte apoptosis by regulating apoptotic signaling cascades in p53, Bcl-2, caspase3, caspase 8 and caspase 9.
Collapse
Affiliation(s)
- Junichi Yamaoka
- Department of Dermatology, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo 113-8607, Japan.
| | | | | |
Collapse
|
30
|
Jo HY, Kim CK, Suh IB, Ryu SW, Ha KS, Kwon YG, Kim YM. Co-localization of inducible nitric oxide synthase and phosphorylated Akt in the lesional skins of patients with melasma. J Dermatol 2009; 36:10-6. [PMID: 19207431 DOI: 10.1111/j.1346-8138.2008.00579.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Activation of the inducible nitric oxide synthase (iNOS)/nitric oxide (NO) pathway in keratinocytes has been reported to be associated with the pathogenesis of melanogenesis. Akt activation plays an important role in the activation of the transcription factor nuclear factor (NF)-kappaB and subsequent elevation of iNOS expression. In the present study, we highly detected both iNOS protein and Akt phosphorylation in keratinocytes of the basal layer of the epidermis at the junction with the dermis of melasma skin biopsy specimens, but not in normal skin tissues, from nine patients using immunohistological analysis. iNOS protein and phosphorylated Akt were co-localized in the lesional skins, and their levels were highly correlated R2= 0.69). Furthermore, iNOS mRNA was also detected in an additional three skin biopsy specimens, but not in normal skin, by reverse transcription polymerase chain reaction. Our results describe that iNOS expression is elevated in human melasma lesions, probably via activation of the Akt/NF-kappaB pathway, indicating that NO production plays an important role in the mechanism of hyperpigmentation in human facial melasma.
Collapse
Affiliation(s)
- Ho-Youn Jo
- Department of Dermatology, Kangwon National University, Chunchon, Kangwon-do, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Mowbray M, McLintock S, Weerakoon R, Lomatschinsky N, Jones S, Rossi AG, Weller RB. Enzyme-independent NO stores in human skin: quantification and influence of UV radiation. J Invest Dermatol 2008; 129:834-42. [PMID: 18818674 DOI: 10.1038/jid.2008.296] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) has many functions in the skin, including the mediation of inflammation and antimicrobial defense, wound healing, regulation of keratinocyte homeostasis, and regulation of apoptosis following UV radiation. NO is synthesized by a family of NO synthase enzymes, but its rapid release following UV exposure suggests the existence of preformed stores. NO can be converted into nitrite or nitrosothiols that are stable until cleaved by UV to release NO. Using dermal microdialysis, suction blister epidermal samples, and sweat collection, we demonstrated cutaneous concentrations of total NO-related products of 12+/-5.97 microM, 0.03+/-0.03 micromol mg(-1) epidermal protein, and 22+/-9.34 microM, respectively. The predominant oxyanion was nitrate (60-75%) followed by nitrite. S-Nitrosothiols were barely detectable. Serum total NO-related products correlated directly with those of the upper dermis and sweat (R(2)=0.62 and 0.3, respectively). UVA irradiation (10 mW cm(-2)) increased the yield of NO-related products by microdialysis, peaking after 30 minutes. Dialysis with noradrenaline abrogated this rise. Both the skin and the dermal vasculature contain biologically significant stores of NO, particularly nitrite, which can be directly mobilized by UVA irradiation. The level of circulating NO-related products probably determines skin-bound stores.
Collapse
Affiliation(s)
- Megan Mowbray
- Department of Dermatology, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Photoageing is the superposition of chronic ultraviolet (UV)-induced damage on intrinsic ageing and accounts for most age-associated changes in skin appearance. It is triggered by receptor-initiated signalling, mitochondrial damage, protein oxidation and telomere-based DNA damage responses. Photodamaged skin displays variable epidermal thickness, dermal elastosis, decreased/fragmented collagen, increased matrix-degrading metalloproteinases, inflammatory infiltrates and vessel ectasia. The development of cosmetically pleasing sunscreens that protect against both UVA and UVB irradiation as well as products such as tretinoin that antagonize the UV signalling pathways leading to photoageing are major steps forward in preventing and reversing photoageing. Improved understanding of the skin's innate UV protective mechanisms has also given rise to several novel treatment concepts that promise to revolutionize this field within the coming decade. Such advances should not only allow for the improved appearance of skin in middle age and beyond, but also greatly reduce the accompanying burden of skin cancer.
Collapse
Affiliation(s)
- M Yaar
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA 02118-2394, USA
| | | |
Collapse
|
33
|
Roh S, Choi S, Lim I. Involvement of protein kinase A in nitric oxide stimulating effect on a BK(Ca) channel of human dermal fibroblasts. J Invest Dermatol 2007; 127:2533-8. [PMID: 17554366 DOI: 10.1038/sj.jid.5700907] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We reported previously that a large-conductance Ca2+-activated K+ (BK(Ca)) channel constitutes a significant fraction of the K+ current in human dermal fibroblasts, and that nitric oxide (NO) increases the open-channel probability (NPo) of BK(Ca) channels via a soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) pathway. The purpose of this study was to investigate whether the adenylate cyclase (AC)/cAMP/protein kinase A (PKA) pathway may also be involved in NO action on BK(Ca) channels in human dermal fibroblasts. Electrophysiological single-channel recordings were performed on fifth-passage cells of human penile skin cultures. KT5720 (specific PKA inhibitor) blocked the stimulatory effect of sodium nitroprusside (NO donor) on BK(Ca) channels. By contrast, forskolin (AC activator) or 8-bromo-cAMP (cell-permeable cAMP analog) did not increase the NPo of the channel. The PKA catalytic subunit (PKAcs) alone did not increase the NPo of the channel in cell-attached and inside-out patches, however, PKAcs with cGMP increased the NPo. In contrast, PKAcs with cGMP did not increase the NPo of BK(Ca) channels with 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one pretreatment, and KT5720 pretreatment also blocked the stimulatory effect of 8-Br-cGMP. In conclusion, the present data suggest the involvement of PKA in the stimulatory effect of NO on the BK(Ca) channel in human dermal fibroblasts through cGMP.
Collapse
Affiliation(s)
- Siyoung Roh
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | | | | |
Collapse
|
34
|
Gu M, Singh RP, Dhanalakshmi S, Agarwal C, Agarwal R. Silibinin Inhibits Inflammatory and Angiogenic Attributes in Photocarcinogenesis in SKH-1 Hairless Mice. Cancer Res 2007; 67:3483-91. [PMID: 17409458 DOI: 10.1158/0008-5472.can-06-3955] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sunscreens partially filter UVB and, therefore, could partially prevent skin cancer; however, efficient approaches are desired to effectively prevent photocarcinogenesis. It is hypothesized that nontoxic pharmacologically active natural compounds can increase photoprotective effects. Our completed studies suggest that silibinin, a bioactive phytochemical, strongly prevents photocarcinogenesis; however, its mechanism is not fully understood. Herein, for the first time, we used a clinically relevant UVB dose (30 mJ/cm(2)/day) to examine the photoprotective effect and associated mechanisms of silibinin in SKH1 hairless mice. Topical or dietary silibinin treatment caused a strong protection against photocarcinogenesis in terms of delay in tumor appearance, multiplicity, and volume. Analyses of normal skin, uninvolved skin from tumor-bearing mice, and skin tumors showed a statistically significant decrease (P < 0.05-0.001) in inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) levels by silibinin. Concomitantly, phospho-signal transducers and activators of transcription 3 (Tyr(705)) and phospho-p65(Ser(536)) were also decreased by silibinin, which are potential up-stream regulators of iNOS and COX-2. Simultaneously, silibinin also decreased UVB-caused increase in cell proliferation and microvessel density. In tumors, hypoxia-inducible factor 1alpha (HIF-1alpha) and vascular endothelial growth factor protein levels were decreased by silibinin. Further analysis showed that silibinin inhibited UVB-caused phosphorylation and nuclear translocation of STAT3 and p65, as well as nuclear factor kappaB (NF-kappaB) DNA binding activity. Together, these results suggest that silibinin causes a strong protective effect against photocarcinogenesis via down-regulation of inflammatory and angiogenic responses, involving HIF-1alpha, STAT3, and NF-kappaB transcription factors, as well as COX2 and iNOS.
Collapse
Affiliation(s)
- Mallikarjuna Gu
- Department of Pharmaceutical Sciences, and University of Colorado Cancer Center, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | |
Collapse
|
35
|
Curran JN, Winter DC, Bouchier-Hayes D. Biological fate and clinical implications of arginine metabolism in tissue healing. Wound Repair Regen 2007; 14:376-86. [PMID: 16939563 DOI: 10.1111/j.1743-6109.2006.00151.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Since its discovery in 1987, many biological roles (including wound healing) have been identified for nitric oxide (NO). The gas is produced by NO synthase using the dibasic amino acid L-arginine as a substrate. It has been established that a lack of dietary L-arginine delays experimental wound healing. Arginine can also be metabolized to urea and ornithine by arginase-1, a pathway that generates L-proline, a substrate for collagen synthesis, and polyamines, which stimulate cellular proliferation. Herein, we review subjects of interest in arginine metabolism, with emphasis on the biochemistry of wound NO production, relative NO synthase isoform activity in healing wounds, cellular contributions to NO production, and NO effects and mechanisms of action in wound healing.
Collapse
Affiliation(s)
- John N Curran
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.
| | | | | |
Collapse
|
36
|
Oates JC, Gilkeson GS. The biology of nitric oxide and other reactive intermediates in systemic lupus erythematosus. Clin Immunol 2006; 121:243-50. [PMID: 16861040 PMCID: PMC2765327 DOI: 10.1016/j.clim.2006.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 06/03/2006] [Indexed: 02/07/2023]
Abstract
Formation of reactive nitrogen and oxygen intermediates (RNI and ROI) is an essential part of the innate immune response. Markers of systemic RNI production are increased in the setting of systemic lupus erythematosus (SLE) activity. Several lines of evidence suggest mechanisms through which the activity of inducible nitric oxide synthase (iNOS) is pathogenic in SLE, including the ability of peroxynitrite (ONOO(-), a product of iNOS activity) to modify proteins, lipids, and DNA. These modifications can alter enzyme activity and may increase the immunogenicity of self antigens, leading to a break in immune tolerance. In humans, observational data suggest that overexpression of iNOS and increased production of ONOO(-) lead to glomerular and vascular pathology. Therapies designed to target iNOS activity or scavenge ROI and RNI are in development and may provide the means to reduce the pathogenic consequences of ROI and RNI in SLE.
Collapse
Affiliation(s)
- Jim C Oates
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 912, PO Box 250637, Charleston, SC 29425, USA.
| | | |
Collapse
|
37
|
Kuhn A, Herrmann M, Kleber S, Beckmann-Welle M, Fehsel K, Martin-Villalba A, Lehmann P, Ruzicka T, Krammer PH, Kolb-Bachofen V. Accumulation of apoptotic cells in the epidermis of patients with cutaneous lupus erythematosus after ultraviolet irradiation. ACTA ACUST UNITED AC 2006; 54:939-50. [PMID: 16511837 DOI: 10.1002/art.21658] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To examine whether apoptosis contributes to the pathogenesis of skin lesions in patients with cutaneous lupus erythematosus (CLE) after ultraviolet (UV) irradiation. METHODS In situ nick translation and TUNEL were performed to detect apoptosis in 85 skin biopsy specimens from patients with various subtypes of CLE. Specimens from normal healthy donors and patients with polymorphous light eruption were used as controls. In addition to assessment of primary lesions, provocative phototesting was carried out to investigate events occurring secondary to UV irradiation during a very early stage of lesion formation. RESULTS A significant increase in apoptotic nuclei was found in the upper epidermal layer of primary and UV light-induced skin lesions of CLE patients compared with controls. In tissue sections obtained from control subjects at 24 hours after a single exposure to UV light, a slight increase in the count of epidermal apoptotic nuclei was present as compared with skin tissue from CLE patients obtained under the same conditions before lesion formation. In sections obtained from controls at 72 hours after irradiation, a significant decrease in the apoptotic nuclei count was observed, consistent with a proper clearance of apoptotic cells in the period between 24 and 72 hours after irradiation. In striking contrast, the number of apoptotic nuclei increased significantly within this period in tissue sections from patients with CLE. CONCLUSION These data support the hypothesis that apoptotic cells accumulate in the skin of patients with CLE after UV irradiation, as a result of impaired or delayed clearance. The nonengulfed cells may undergo secondary necrosis and release proinflammatory compounds and potential autoantigens, which may contribute to the inflammatory micromilieu that leads to formation of skin lesions in this disease.
Collapse
|
38
|
Nakai K, Kadiiska MB, Jiang JJ, Stadler K, Mason RP. Free radical production requires both inducible nitric oxide synthase and xanthine oxidase in LPS-treated skin. Proc Natl Acad Sci U S A 2006; 103:4616-21. [PMID: 16537416 PMCID: PMC1450220 DOI: 10.1073/pnas.0510352103] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Indexed: 11/18/2022] Open
Abstract
Free radical formation has been investigated in diverse experimental models of LPS-induced inflammation. Here, using electron spin resonance (ESR) and the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone, we have detected an ESR spectrum of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone radical adducts in the lipid extract of mouse skin treated with LPS for 6 h. The ESR spectrum was consistent with the trapping of lipid-derived radical adducts. In addition, a secondary radical-trapping technique using dimethyl sulfoxide (DMSO) demonstrated methyl radical formation, revealing the production of hydroxyl radical. Radical adduct formation was suppressed by aminoguanidine, N-(3-aminomethyl)benzylacetamidine (1400W), or allopurinol, suggesting a role for both inducible nitric oxide synthase (iNOS) and xanthine oxidase (XO) in free radical formation. The radical formation was also suppressed in iNOS knockout (iNOS(-/-)) mice, demonstrating the involvement of iNOS. NADPH oxidase was not required in the formation of these radical adducts because the ESR signal intensity was increased by LPS treatment in NADPH oxidase knockout (gp91(phox-/-)) mice as much as it was in the wild-type mouse. Nitric oxide (*NO) end products were increased in LPS-treated skin. As expected, the *NO end products were not suppressed by allopurinol but were by aminoguanidine. Interestingly, nitrotyrosine formation in LPS-treated skin was also suppressed by aminoguanidine and allopurinol independently. Pretreatment with the ferric iron chelator Desferal had no effect on free radical formation. Our results imply that both iNOS and XO, but neither NADPH oxidase nor ferric iron, work synergistically to form lipid radical and nitrotyrosine early in the skin inflammation caused by LPS.
Collapse
Affiliation(s)
- Kozo Nakai
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, MD F0-01, Research Triangle Park, NC 27709
| | - Maria B. Kadiiska
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, MD F0-01, Research Triangle Park, NC 27709
| | - Jin-Jie Jiang
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, MD F0-01, Research Triangle Park, NC 27709
| | - Krisztian Stadler
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, MD F0-01, Research Triangle Park, NC 27709
| | - Ronald P. Mason
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, MD F0-01, Research Triangle Park, NC 27709
| |
Collapse
|
39
|
Abstract
Lupus erythematosus (LE) is an autoimmune disease which can be triggered by environmental factors such as solar irradiation. It has long been observed that especially ultraviolet (UV) exposure can induce and exacerbate skin lesions in patients with this disease. However, despite the frequency of photosensitivity in LE, the mechanisms by which UV irradiation activates autoimmune responses is only now becoming increasingly unfolded by advanced molecular and cellular biological investigations. Phototesting, according to a standardized protocol with UVA and UVB irradiation has proven to be a valid model to study photosensitivity in various subtypes of LE and to evaluate the underlying pathomechanisms of this disease. Detailed analysis of the molecular events that govern lesion formation in experimentally photoprovoced LE showed increased accumulation of apoptotic keratinocytes and impaired expression of the inducible nitric oxide synthase (iNOS). In the near future, gene expression profiling and proteomics will further increase our knowledge on the complexity of the "UV response" in LE. This review summarizes the current understanding of the clinical and molecular mechanisms that initiate photosensitivity in this disease.
Collapse
Affiliation(s)
- Annegret Kuhn
- Department of Dermatology, University of Düsseldorf, Düsseldorf, Germany.
| | | |
Collapse
|
40
|
Photosensitivity in Lupus Erythematosus. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1571-5078(05)05005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Lim I, Yun J, Kim S, Lee C, Seo S, Kim T, Bang H. Nitric oxide stimulates a large-conductance Ca-activated K+ channel in human skin fibroblasts through protein kinase G pathway. Skin Pharmacol Physiol 2005; 18:279-87. [PMID: 16145282 DOI: 10.1159/000088013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 06/21/2005] [Indexed: 11/19/2022]
Abstract
In order to investigate the large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel and determine the effects of nitric oxide (NO) on the channel in human skin fibroblasts, we performed electrophysiological patch clamp recordings on 5th-passage cells of human genital skin cultures. The whole-cell outward K(+) current was increased with depolarization, and proved to be sensitive to NS1619 (a selective BK(Ca) channel activator) and iberiotoxin (a specific BK(Ca )channel inhibitor). The single-channel currents showed 226 pS of mean conductance in symmetrical K(+). Sodium nitroprusside (SNP; an NO donor) significantly increased the K(+) current amplitude in the whole-cell mode, and open probability of the channel (NPo) in the cell-attached mode, but not in the inside-out mode. S-nitroso-N-acetylpenicillamine (an NO donor) and 8-Br-cGMP (a membrane-permeant cGMP analogue) also increased the BK(Ca )channel activity. The stimulatory effect of SNP on BK(Ca) channels was inhibited by pretreatment with 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (a soluble guanylyl cyclase inhibitor), or KT5823 [a specific protein kinase G (PKG) inhibitor]. Cytoplasmic PKG also increased the channel activity in inside-out patches. In conclusion, the present data indicate that BK(Ca) channels constitute a significant fraction of K(+) current in human skin fibroblasts, and that NO increases NPo of BK(Ca) channels, which are mediated via the cGMP/PKG pathway, without direct effects on the channel.
Collapse
Affiliation(s)
- I Lim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
42
|
Paunel AN, Dejam A, Thelen S, Kirsch M, Horstjann M, Gharini P, Mürtz M, Kelm M, de Groot H, Kolb-Bachofen V, Suschek CV. Enzyme-independent nitric oxide formation during UVA challenge of human skin: characterization, molecular sources, and mechanisms. Free Radic Biol Med 2005; 38:606-15. [PMID: 15683717 DOI: 10.1016/j.freeradbiomed.2004.11.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 11/10/2004] [Accepted: 11/11/2004] [Indexed: 10/26/2022]
Abstract
Many of the local UV-induced responses including erythema and edema formation, inflammation, premature aging, and immune suppression can be influenced by nitric oxide synthase (NOS)-produced NO which is known to play a pivotal role in cutaneous physiology. Besides NOS-mediated NO production, UV radiation might trigger an enzyme-independent NO formation in human skin by a mechanism comprising the decomposition of photo-reactive nitrogen oxides. Therefore, we have examined the chemical-storage forms of potential NO-generating agents, the mechanisms and kinetics of their decomposition, and their biological relevance. In normal human skin specimens we find nitrite and S-nitrosothiols (RSNO) at concentrations 25- or 360-fold higher than those found in plasma of healthy volunteers. UVA irradiation of human skin leads to high-output formation of bioactive NO due to photo-decomposition of RSNO and nitrite which represents the primary basis for NO formation during UVA exposure. Interestingly, reduced thiols strongly augment photo-decomposition of nitrite and are essential for maximal NO release. The enzyme-independent NO formation found in human skin opens a completely new field in cutaneous physiology and will extend our understanding of mechanisms contributing to skin aging, inflammation, and cancerogenesis.
Collapse
Affiliation(s)
- Adnana N Paunel
- Institute of Molecular Medicine, Department of Immunobiology, Heinrich-Heine-University of Düsseldorf, P.O. Box 101007, D-40001 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Suschek CV, Paunel A, Kolb-Bachofen V. Nonenzymatic Nitric Oxide Formation during UVA Irradiation of Human Skin: Experimental Setups and Ways to Measure. Methods Enzymol 2005; 396:568-78. [PMID: 16291263 DOI: 10.1016/s0076-6879(05)96048-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many of the local ultraviolet (UV)-induced responses, including erythema and edema formation, inflammation, premature aging, and immune suppression, can be influenced by nitric oxide synthase (NOS)-produced NO, which plays a pivotal role in cutaneous physiology. Besides enzyme-mediated NO production, UV radiation triggers an enzyme-independent NO formation in human skin. This occurs due to decomposition of photoreactive nitrogen oxides like nitrite and S-nitrosothiols, which are present in human skin at relatively high concentrations and lead to high-output formation of bioactive NO. This enzyme-independent NO formation opens a new field in cutaneous physiology and will extend our understanding of mechanisms contributing to skin aging, inflammation, and cancerogenesis but also functional protection. Therefore, it is of high interest to examine the chemical storage forms of these potential NO-generating agents in skin, the mechanisms and kinetics of their decomposition, and their biological relevance.
Collapse
Affiliation(s)
- Christoph V Suschek
- Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University of Düesseldorf, NRW, Germany
| | | | | |
Collapse
|
44
|
Scheinfeld N, Deleo VA. Photosensitivity in lupus erythematosus. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2004; 20:272-9. [PMID: 15379880 DOI: 10.1111/j.1600-0781.2004.00094.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Lupus erythematosus is a systemic disease process that may manifest with a variety of internal and cutaneous findings. Photosensitivity is one the most common manifestations of lupus erythematosus. In patients with lupus erythematosus, there is a relationship between exposure to ultraviolet light, autoantibodies, genetics and other factors in the development of photosensitivity. METHODS Literature was reviewed on the topics of lupus erythematosus and photosensitivity discussed together and separately. The suggested mechanisms for their relationship were reviewed and analyzed. RESULTS Photosensitivity's relationship to and influence on the systemic manifestations of lupus remain to be defined. Mechanisms for photosensitivity might include: modulation of autoantibody location, cytotoxic effects, apoptosis induction with autoantigens in apoptotic blebs, upregulation of adhesion molecules and cytokines, induction of nitric oxide synthase expression and ultraviolet-generated antigenic DNA. Tumor necrosis factor alpha also seems to play a role in the development of photosensitivity. CONCLUSION The basis for photosensitivity in lupus has yet to be fully defined. It is more commonly associated with subacute and tumid lupus erythematosus than with other variants. Anti-Ro antibodies appear to relate to photosensitivity. Tumor necrosis factor alpha polymorphisms appear to be important in some variants of lupus with photosensitivity. There is no sine qua non antibody or mutation of photosensitivity in lupus. In patients with lupus, more work needs to be done to define the mechanisms of photosensitivity.
Collapse
Affiliation(s)
- Noah Scheinfeld
- St-Lukes Roosevelt Hospital Center, 1090 Amsterdam Avenue, Suite 11D, New York, NY 10025, USA
| | | |
Collapse
|
45
|
Cals-Grierson MM, Ormerod AD. Nitric oxide function in the skin. Nitric Oxide 2004; 10:179-93. [PMID: 15275864 DOI: 10.1016/j.niox.2004.04.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 04/19/2004] [Indexed: 01/12/2023]
Abstract
Endogenously produced nitric oxide (NO) has a remarkably diverse range of biological functions, including a role in neurotransmission, smooth muscle relaxation, and the response to immunogens. Over the last 10 years, it has become clear that this extraordinary molecular messenger also plays a vital role in the skin, orchestrating normal regulatory processes and underlying some of the pathophysiological ones. We thought it pertinent to review the current literature concerning the possible function of NO in normal skin, its clinical and pathological significance, and the potential for therapeutic advances. The keratinocytes, which make up the bulk of the epidermis, constitutively express the neuronal isoform of NO synthase (NOS1), whereas the fibroblasts in the dermis and other cell types in the skin express the endothelial isoform (NOS3). Under certain conditions, virtually all skin cells appear to be capable of expressing the inducible NOS isoform (NOS2). The expression of NOS2 is also strongly implicated in psoriasis and other inflammatory skin conditions. Constitutive, low level NO production in the skin seems to play a role in the maintenance of barrier function and in determining blood flow rate in the microvasculature. Higher levels of NOS activity, stimulated by ultraviolet (UV) light or skin wounding, initiate other more complex reactions that require the orchestration of various cell types in a variety of spatially and temporally coordinated sets of responses. The NO liberated following UV irradiation plays a significant role in initiating melanogenesis, erythema, and immunosuppression. New evidence suggests that it may also be involved in protecting the keratinocytes against UV-induced apoptosis. The enhanced NOS activity in skin wounding (reviewed recently in this journal [Nitric oxide 7 (2002) 1]) appears to be important in guiding the infiltrating white blood cells and initiating the inflammation. In response to both insults, UV irradiation and skin wounding, the activation of constitutive NOS proceeds and overlaps with the expression of NOS2. Thus, at a macro-level, at least three different rates of NO production can occur in the skin, which seem to play an important part in organizing the skin's unique adaptability and function.
Collapse
|
46
|
|
47
|
Heck DE, Gerecke DR, Vetrano AM, Laskin JD. Solar ultraviolet radiation as a trigger of cell signal transduction. Toxicol Appl Pharmacol 2004; 195:288-97. [PMID: 15020191 DOI: 10.1016/j.taap.2003.09.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 09/12/2003] [Indexed: 10/26/2022]
Abstract
Ultraviolet light radiation in sunlight is known to cause major alterations in growth and differentiation patterns of exposed human tissues. The specific effects depend on the wavelengths and doses of the light, and the nature of the exposed tissue. Both growth inhibition and proliferation are observed, as well as inflammation and immune suppression. Whereas in the clinical setting, these responses may be beneficial, for example, in the treatment of psoriasis and atopic dermatitis, as an environmental toxicant, ultraviolet light can induce significant tissue damage. Thus, in the eye, ultraviolet light causes cataracts, while in the skin, it induces premature aging and the development of cancer. Although ultraviolet light can damage many tissue components including membrane phospholipids, proteins, and nucleic acids, it is now recognized that many of its cellular effects are due to alterations in growth factor- and cytokine-mediated signal transduction pathways leading to aberrant gene expression. It is generally thought that reactive oxygen intermediates are mediators of some of the damage induced by ultraviolet light. Generated when ultraviolet light is absorbed by endogenous photosensitizers in the presence of molecular oxygen, reactive oxygen intermediates and their metabolites induce damage by reacting with cellular electrophiles, some of which can directly initiate cell signaling processes. In an additional layer of complexity, ultraviolet light-damaged nucleic acids initiate signaling during the activation of repair processes. Thus, mechanisms by which solar ultraviolet radiation triggers cell signal transduction are multifactorial. The present review summarizes some of the mechanisms by which ultraviolet light alters signaling pathways as well as the genes important in the beneficial and toxic effects of ultraviolet light.
Collapse
Affiliation(s)
- Diane E Heck
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Nitric oxide (NO) is a free radical synthesized from l-arginine by a family of NO synthase (NOS) enzymes, all of which are present in the skin, and also by reduction of sweat nitrate. NO synthesis is regulated by NOS activation (eNOS and nNOS) or synthesis (iNOS) and by substrate availability. Elevated arginase concentrations in psoriatic skin suggest that substrate competition may affect NO production. The balance of NO and reactive oxygen species is probably also important in regulating the biological actions of NO. The physiological functions of NO in the skin are being elaborated. NO release is increased following exposure to ultraviolet radiation (UVR); in eNOS null mice, dermal and epidermal apoptosis following UVR exposure is increased. Experiments in which keratinocytes and melanocytes were cocultured show melanogenesis being dependent on keratinocyte-generated NO, and UVR-induced guinea pig pigmentation is delayed following application of a NOS antagonist to the skin. Wound healing is delayed in eNOS and iNOS null mice.
Collapse
Affiliation(s)
- R Weller
- Department of Dermatology, Edinburgh University, Scotland.
| |
Collapse
|
49
|
Weller R, Schwentker A, Billiar TR, Vodovotz Y. Autologous nitric oxide protects mouse and human keratinocytes from ultraviolet B radiation-induced apoptosis. Am J Physiol Cell Physiol 2003; 284:C1140-8. [PMID: 12676653 DOI: 10.1152/ajpcell.00462.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nitric oxide (NO) can either prevent or promote apoptosis, depending on cell type. In the present study, we tested the hypothesis that NO suppresses ultraviolet B radiation (UVB)-induced keratinocyte apoptosis both in vitro and in vivo. Irradiation with UVB or addition of the NO synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) increased apoptosis in the human keratinocyte cell line CCD 1106 KERTr, and apoptosis was greater when the two agents were given in combination. Addition of the chemical NO donor S-nitroso-N-acetyl-penicillamine (SNAP) immediately after UVB completely abrogated the rise in apoptosis induced by l-NAME. An adenoviral vector expressing human inducible NOS (AdiNOS) also reduced keratinocyte death after UVB. Caspase-3 activity, an indicator of apoptosis, doubled in keratinocytes incubated with l-NAME compared with the inactive isomer, d-NAME, and was reduced by SNAP. Apoptosis was also increased on addition of 1,H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase. Mice null for endothelial NOS (eNOS) exhibited significantly higher apoptosis than wild-type mice both in the dermis and epidermis, whereas mice null for inducible NOS (iNOS) exhibited more apoptosis than wild-type mice only in the dermis. These results demonstrate an antiapoptotic role for NO in keratinocytes, mediated by cGMP, and indicate an antiapoptotic role for both eNOS and iNOS in skin damage induced by UVB.
Collapse
Affiliation(s)
- Richard Weller
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
50
|
Nakai K, Fujii S, Yamamoto A, Igarashi J, Kubota Y, Kosaka H. Effects of high glucose on NO synthesis in human keratinocyte cell line (HaCaT). J Dermatol Sci 2003; 31:211-8. [PMID: 12727025 DOI: 10.1016/s0923-1811(03)00006-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND There is a possibility that alteration of nitric oxide (NO) synthesis by high glucose leads to a variety of diabetic complications. OBJECTIVE In this study, we examined whether NO synthesis is altered by high glucose in spontaneously immortalized human keratinocyte cell line (HaCaT) that have three isoforms of NO synthases (NOS). METHODS We measured NO end product nitrite in the culture medium using the Griess reagent and analyzed mRNA expression of three isoforms of NOS in HaCaT cells by RT-PCR. RESULTS High glucose enhanced constitutively produced NO production in HaCaT cells, which persisted for 10 days and was attenuated by an inhibitor of protein kinase C (PKC), without altering eNOS/nNOS mRNA levels. Cytokine stimulation induced iNOS mRNA in HaCaT cells. Pretreatment with high glucose for 24 h enhanced cytokine-induced NO production in HaCaT cells. However, when these cells were exposed to high glucose for 10 days, cytokine treatment did not induce iNOS mRNA and nitrite production. CONCLUSION These diverse alterations in NO production by high glucose may be involved in impaired host-defense and wound healing in the skin of diabetic patients.
Collapse
Affiliation(s)
- Kozo Nakai
- Department of Dermatology, Kagawa Medical University, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|