1
|
Das IJ, Bal T. pH factors in chronic wound and pH-responsive polysaccharide-based hydrogel dressings. Int J Biol Macromol 2024; 279:135118. [PMID: 39208902 DOI: 10.1016/j.ijbiomac.2024.135118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Chronic wounds present a significant healthcare challenge marked by complexities such as persistent bleeding, inhibited cell proliferation, dysregulated inflammation, vulnerability to infection, and compromised tissue remodeling. Conventional wound dressings often prove inadequate in addressing the intricate requirements of chronic wound healing, leading to slow healing and heightened susceptibility to infections in patients with prolonged medical conditions. Bacterial biofilms in chronic wounds pose an additional challenge due to drug resistance. Advanced wound dressings have emerged as promising tools in expediting the healing process. Among these, pH-responsive polysaccharide-based hydrogels exhibit immense prospect by adapting their functions to dynamic wound conditions. Despite their potential, the current literature lacks a thorough review of these wound dressings. This review bridges this gap by meticulously examining factors related to chronic wounds, current strategies for healing, and the mechanisms and potential applications of pH-responsive hydrogel wound dressings as an emerging therapeutic solution. Special focus is given to their remarkable antibacterial properties and significant self-healing abilities. It further explores the pH-monitoring functions of these dressings, elucidating the associated pH indicators. This synthesis of knowledge aims to guide future research and development in the field of pH-responsive wound dressings, providing valuable insights into their potential applications in wound care.
Collapse
Affiliation(s)
- Itishree Jogamaya Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
2
|
Fuchs C, Stalnaker KJ, Dalgard CL, Sukumar G, Hupalo D, Dreyfuss JM, Pan H, Wang Y, Pham L, Wu X, Jozic I, Anderson RR, Cho S, Meyerle JH, Tam J. Plantar Skin Exhibits Altered Physiology, Constitutive Activation of Wound-Associated Phenotypes, and Inherently Delayed Healing. J Invest Dermatol 2024; 144:1633-1648.e14. [PMID: 38237729 DOI: 10.1016/j.jid.2023.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 06/24/2024]
Abstract
Wound research has typically been performed without regard for where the wounds are located on the body, despite well-known heterogeneities in physical and biological properties between different skin areas. The skin covering the palms and soles is highly specialized, and plantar ulcers are one of the most challenging and costly wound types to manage. Using primarily the porcine model, we show that plantar skin is molecularly and functionally more distinct from nonplantar skin than previously recognized, with unique gene and protein expression profiles, broad alterations in cellular functions, constitutive activation of many wound-associated phenotypes, and inherently delayed healing. This unusual physiology is likely to play a significant but underappreciated role in the pathogenesis of plantar ulcers as well as the last 25+ years of futility in therapy development efforts. By revealing this critical yet unrecognized pitfall, we hope to contribute to the development of more effective therapies for these devastating nonhealing wounds.
Collapse
Affiliation(s)
- Christiane Fuchs
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine J Stalnaker
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Clifton L Dalgard
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Gauthaman Sukumar
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Daniel Hupalo
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Linh Pham
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xunwei Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillp Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunghun Cho
- Department of Dermatology, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA; Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Jon H Meyerle
- Department of Dermatology, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA; Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Mai K, Maverakis E, Li J, Zhao M. Maintaining and Restoring Gradients of Ions in the Epidermis: The Role of Ion and Water Channels in Acute Cutaneous Wound Healing. Adv Wound Care (New Rochelle) 2023; 12:696-709. [PMID: 37051706 PMCID: PMC10615091 DOI: 10.1089/wound.2022.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 04/09/2023] [Indexed: 04/14/2023] Open
Abstract
Significance: Aquaporins and ion channels establish and regulate gradients of calcium, sodium, potassium, chloride, water, and protons in the epidermis. These elements have been found to play significant roles in skin biology and wound healing. In this study, we review our understanding of these channels and ion gradients, with a special emphasis on their role in acute wound healing. Recent Advances: Specifically, we assess the temporal and spatial arrangements of ions and their respective channels in the intact skin and during wound and healing to provide a novel perspective of the role of ionic gradients through the various stages of wound healing. Critical Issues: The roles of gradients of ions and channels in wound healing are currently not well understood. A collective analysis of their traits and arrangements in the skin during wound healing may provide a new perspective and understanding of the functionality of gradients of ions and channels in skin biology and wound healing. Future Directions: It is important to elucidate how the gradients of ions and ion channels regulate and facilitate wound healing. A better understanding of the ionic environments may identify novel therapeutic targets and improved strategies to promote wound healing and possibly treat other cutaneous diseases.
Collapse
Affiliation(s)
- Kevin Mai
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Jung Li
- Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, USA
| | - Min Zhao
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
4
|
Haxaire C, Liebel F, Portocarrero Huang G, Chen S, Knapp E, Idkowiak-Baldys J, Glynn J. Effect of L-4-Thiazolylalanine (Protinol™) on skin barrier strength and skin protection. Int J Cosmet Sci 2023; 45:725-738. [PMID: 37402136 DOI: 10.1111/ics.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/19/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVES Skin barrier properties are critical for maintaining epidermal water content, protecting from environmental factors and providing the first line of defense against pathogens. In this study, we investigated the non-proteinogenic amino acid L-4-Thiazolylalanine (L4) as a potential active ingredient in skin protection and barrier strength. METHODS L4 on wound healing, anti-inflammatory and anti-oxidant properties were evaluated using monolayers and 3D skin equivalents. The transepithelial electrical resistance (TEER) value was used in vitro as a strong indicator of barrier strength and integrity. Clinical L4 efficacy was assessed for the evaluation of the skin barrier integrity and soothing benefits. RESULTS In vitro treatments of L4 show beneficial effects in wound closure mechanism, and we demonstrate that L4 anti-oxidant benefits with markedly increased HSP70 and decreased reactive oxygen species production induced by UVs exposure. Barrier strength and integrity were significantly improved by L4, confirmed clinically by an increase in 12R-lipoxygenase enzymatic activity in the stratum corneum. In addition, soothing benefits of L4 have been shown clinically with the decrease in redness after methyl nicotinate application on the inner arm and the significant reduction of the erythema and the skin desquamation on the scalp. CONCLUSION L4 delivered multiple skin benefits by strengthening the skin barrier, accelerating the skin repair process as well as soothing the skin and the scalp with anti-inflammaging effects. The observed efficacy validates L4 as a desirable skincare ingredient for topical treatment.
Collapse
Affiliation(s)
- C Haxaire
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - F Liebel
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - G Portocarrero Huang
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - S Chen
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - E Knapp
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - J Idkowiak-Baldys
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - J Glynn
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| |
Collapse
|
5
|
Jang HJ, Tiruneh DM, Ryu H, Yoon JK. Piezoelectric and Triboelectric Nanogenerators for Enhanced Wound Healing. Biomimetics (Basel) 2023; 8:517. [PMID: 37999158 PMCID: PMC10669670 DOI: 10.3390/biomimetics8070517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Wound healing is a highly orchestrated biological process characterized by sequential phases involving inflammation, proliferation, and tissue remodeling, and the role of endogenous electrical signals in regulating these phases has been highlighted. Recently, external electrostimulation has been shown to enhance these processes by promoting cell migration, extracellular matrix formation, and growth factor release while suppressing pro-inflammatory signals and reducing the risk of infection. Among the innovative approaches, piezoelectric and triboelectric nanogenerators have emerged as the next generation of flexible and wireless electronics designed for energy harvesting and efficiently converting mechanical energy into electrical power. In this review, we discuss recent advances in the emerging field of nanogenerators for harnessing electrical stimulation to accelerate wound healing. We elucidate the fundamental mechanisms of wound healing and relevant bioelectric physiology, as well as the principles underlying each nanogenerator technology, and review their preclinical applications. In addition, we address the prominent challenges and outline the future prospects for this emerging era of electrical wound-healing devices.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea;
| | - Daniel Manaye Tiruneh
- Department of Intelligence Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Hanjun Ryu
- Department of Intelligence Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea;
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
6
|
Chattopadhyay A, Tully J, Shan J, Sheikh S, Ohliger M, Gordon JW, Mauro T, Abuabara K. Sodium in the skin: a summary of the physiology and a scoping review of disease associations. Clin Exp Dermatol 2023; 48:733-743. [PMID: 36970766 DOI: 10.1093/ced/llad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Indexed: 07/20/2023]
Abstract
A large and growing body of research suggests that the skin plays an important role in regulating total body sodium, challenging traditional models of sodium homeostasis that focused exclusively on blood pressure and the kidney. In addition, skin sodium may help to prevent water loss and facilitate macrophage-driven antimicrobial host defence, but may also trigger immune dysregulation via upregulation of proinflammatory markers and downregulation of anti-inflammatory processes. We performed a systematic search of PubMed for published literature on skin sodium and disease outcomes and found that skin sodium concentration is increased in patients with cardiometabolic conditions including hypertension, diabetes and end-stage renal disease; autoimmune conditions including multiple sclerosis and systemic sclerosis; and dermatological conditions including atopic dermatitis, psoriasis and lipoedema. Several patient characteristics are associated with increased skin sodium concentration including older age and male sex. Animal evidence suggests that increased salt intake results in higher skin sodium levels; however, there are conflicting results from small trials in humans. Additionally, limited data suggest that pharmaceuticals such as diuretics and sodium-glucose co-transporter-2 inhibitors approved for diabetes, as well as haemodialysis may reduce skin sodium levels. In summary, emerging research supports an important role for skin sodium in physiological processes related to osmoregulation and immunity. With the advent of new noninvasive magnetic resonance imaging measurement techniques and continued research on skin sodium, it may emerge as a marker of immune-mediated disease activity or a potential therapeutic target.
Collapse
Affiliation(s)
- Aheli Chattopadhyay
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Janell Tully
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Judy Shan
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Sidra Sheikh
- Kaiser Permanente, Department of Physical Medicine & Rehabilitation, Oakland, CA, USA
| | - Michael Ohliger
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Theodora Mauro
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Dermatology Service, Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Zhao M, Rolandi M, Isseroff RR. Bioelectric Signaling: Role of Bioelectricity in Directional Cell Migration in Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041236. [PMID: 36041786 PMCID: PMC9524286 DOI: 10.1101/cshperspect.a041236] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In wound healing, individual cells' behaviors coordinate movement toward the wound center to restore small or large barrier defects. The migration of epithelial cells as a continuous sheet structure is one of the most important processes by which the skin barrier is restored. How such multicellular and tissue level movement is initiated upon injury, coordinated during healing, and stopped when wounds healed has been a research focus for decades. When skin is wounded, the compromised epithelial barrier generates endogenous electric fields (EFs), produced by ion channels and maintained by cell junctions. These EFs are present across wounds, with the cathodal pole at the wound center. Epithelial cells detect minute EFs and migrate directionally in response to electrical signals. It has long been postulated that the naturally occurring EFs facilitate wound healing by guiding cell migration. It is not until recently that experimental evidence has shown that large epithelial sheets of keratinocytes or corneal epithelial cells respond to applied EFs by collective directional migration. Although some of the mechanisms of the collective cell migration are similar to those used by isolated cells, there are unique mechanisms that govern the coordinated movement of the cohesive sheet. We will review the understanding of wound EFs and how epithelial cells and other cells important to wound healing respond to the electric signals individually as well as collectively. Mounting evidence suggests that wound bioelectrical signaling is an important mechanism in healing. Critical understanding and proper exploitation of this mechanism will be important for better wound healing and regeneration.
Collapse
Affiliation(s)
- Min Zhao
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California 95817, USA
- Department of Dermatology, University of California, Davis, California 95616, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California, Davis, California 95616, USA
| |
Collapse
|
8
|
Resolution of Eczema with Multivalent Peptides. JID INNOVATIONS 2022; 2:100142. [PMID: 36039327 PMCID: PMC9418603 DOI: 10.1016/j.xjidi.2022.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
|
9
|
Haftek M, Abdayem R, Guyonnet-Debersac P. Skin Minerals: Key Roles of Inorganic Elements in Skin Physiological Functions. Int J Mol Sci 2022; 23:ijms23116267. [PMID: 35682946 PMCID: PMC9181837 DOI: 10.3390/ijms23116267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
As odd as it may seem at first glance, minerals, it is what we are all about…or nearly. Although life on Earth is carbon-based, several other elements present in the planet’s crust are involved in and often indispensable for functioning of living organisms. Many ions are essential, and others show supportive and accessory qualities. They are operative in the skin, supporting specific processes related to the particular situation of this organ at the interface with the environment. Skin bioenergetics, redox balance, epidermal barrier function, and dermal remodeling are amongst crucial activities guided by or taking advantage of mineral elements. Skin regenerative processes and skin ageing can be positively impacted by adequate accessibility, distribution, and balance of inorganic ions.
Collapse
Affiliation(s)
- Marek Haftek
- CNRS Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), UMR5305 CNRS–University of Lyon1, 69367 Lyon, France
- Correspondence:
| | - Rawad Abdayem
- L’Oréal Research and Innovation, 94550 Chevilly-Larue, France;
| | | |
Collapse
|
10
|
Krasovec G, Hozumi A, Yoshida T, Obita T, Hamada M, Shiraishi A, Satake H, Horie T, Mori H, Sasakura Y. d-Serine controls epidermal vesicle release via NMDA receptor, allowing tissue migration during the metamorphosis of the chordate Ciona. SCIENCE ADVANCES 2022; 8:eabn3264. [PMID: 35275721 PMCID: PMC8916719 DOI: 10.1126/sciadv.abn3264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 05/26/2023]
Abstract
d-Serine, a free amino acid synthesized by serine racemase, is a coagonist of N-methyl-d-aspartate-type glutamate receptor (NMDAR). d-Serine in the mammalian central nervous system modulates glutamatergic transmission. Functions of d-serine in mammalian peripheral tissues such as skin have also been described. However, d-serine's functions in nonmammals are unclear. Here, we characterized d-serine-dependent vesicle release from the epidermis during metamorphosis of the tunicate Ciona. d-Serine leads to the formation of a pocket that facilitates the arrival of migrating tissue during tail regression. NMDAR is the receptor of d-serine in the formation of the epidermal pocket. The epidermal pocket is formed by the release of epidermal vesicles' content mediated by d-serine/NMDAR. This mechanism is similar to observations of keratinocyte vesicle exocytosis in mammalian skin. Our findings provide a better understanding of the maintenance of epidermal homeostasis in animals and contribute to further evolutionary perspectives of d-amino acid function among metazoans.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- Center for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takayuki Obita
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute, Okayama University, Okayama, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka, Japan
| | - Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| |
Collapse
|
11
|
Hoober JK, Eggink LL. The Discovery and Function of Filaggrin. Int J Mol Sci 2022; 23:ijms23031455. [PMID: 35163390 PMCID: PMC8835998 DOI: 10.3390/ijms23031455] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Keratohyalin granules were discovered in the mid-19th century in cells that terminally differentiate to form the outer, cornified layer of the epidermis. The first indications of the composition of these structures emerged in the 1960s from a histochemical stain for histidine, followed by radioautographic evidence of a high incidence of histidine incorporation into newly synthesized proteins in cells containing the granules. Research during the next three decades revealed the structure and function of a major protein in these granules, which was initially called the ‘histidine-rich protein’. Steinert and Dale named the protein ‘filaggrin’ in 1981 because of its ability to aggregate keratin intermediate filaments. The human gene for the precursor, ‘profilaggrin,’ was reported in 1991 to encode 10, 11 or 12 nearly identical repeats. Remarkably, the mouse and rat genes encode up to 20 repeats. The lifetime of filaggrin is the time required for keratinocytes in the granular layer to move into the inner cornified layer. During this transition, filaggrin facilitates the collapse of corneocytes into ‘building blocks’ that become an impermeable surface barrier. The subsequent degradation of filaggrin is as remarkable as its synthesis, and the end-products aid in maintaining moisture in the cornified layer. It was apparent that ichthyosis vulgaris and atopic dermatitis were associated with the absence of this protein. McLean’s team in 2006 identified the cause of these diseases by discovering loss-of-function mutations in the profilaggrin gene, which led to dysfunction of the surface barrier. This story illustrates the complexity in maintaining a healthy, functional epidermis.
Collapse
|
12
|
Abe Y, Nishizawa M. Electrical aspects of skin as a pathway to engineering skin devices. APL Bioeng 2021; 5:041509. [PMID: 34849444 PMCID: PMC8604566 DOI: 10.1063/5.0064529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Skin is one of the indispensable organs for life. The epidermis at the outermost surface provides a permeability barrier to infectious agents, chemicals, and excessive loss of water, while the dermis and subcutaneous tissue mechanically support the structure of the skin and appendages, including hairs and secretory glands. The integrity of the integumentary system is a key for general health, and many techniques have been developed to measure and control this protective function. In contrast, the effective skin barrier is the major obstacle for transdermal delivery and detection. Changes in the electrical properties of skin, such as impedance and ionic activity, is a practical indicator that reflects the structures and functions of the skin. For example, the impedance that reflects the hydration of the skin is measured for quantitative assessment in skincare, and the current generated across a wound is used for the evaluation and control of wound healing. Furthermore, the electrically charged structure of the skin enables transdermal drug delivery and chemical extraction. This paper provides an overview of the electrical aspects of the skin and summarizes current advances in the development of devices based on these features.
Collapse
Affiliation(s)
- Yuina Abe
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
13
|
Tarnowska M, Chevalier Y, Briançon S, Bordes C, de Azevedo JR, Arquier D, Pourcher T, Bolzinger MA. Skin absorption of mixed halide anions from concentrated aqueous solutions. Eur J Pharm Sci 2021; 166:105985. [PMID: 34455087 DOI: 10.1016/j.ejps.2021.105985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/08/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022]
Abstract
Non-ideal behaviour of mixed ions is disclosed in skin absorption experiments of mixed halide anions in excised pig skin. Comparison of skin absorption of pure and mixed ions shows enhanced penetration of chaotropic ions from mixed solutions. An experimental design and statistical analysis using a Scheffé {3,2} simplex-lattice allows investigating the full ternary diagram of anion mixtures of fluoride, bromide and iodide. Synergism in mixed absorption is observed for chaotropic bromide and iodide anions. A refined analysis highlighting specific interactions is made by considering the ratio of the absorbed amount to the ion activity instead of the directly measured absorbed amount. Statistical analysis discards non-significant effects and discloses specific interactions. Such interactions between bromide and iodide cause an absorption enhancement of their partner by a factor of 2-3 with respect to the case of ideal mixing. It is proposed that enhanced absorption from mixed solution involves the formation of neutral complex species of mixed bromide and iodide with endogenous magnesium or calcium inside stratum corneum.
Collapse
Affiliation(s)
- Małgorzata Tarnowska
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Yves Chevalier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France.
| | - Stéphanie Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Claire Bordes
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Jacqueline Resende de Azevedo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Delphine Arquier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Thierry Pourcher
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d'Azur, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat à l'Énergie Atomique, Faculté de Médecine, 28 av de Valombrose, Nice, France
| | - Marie-Alexandrine Bolzinger
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France
| |
Collapse
|
14
|
Celli A, Tu CL, Lee E, Bikle DD, Mauro TM. Decreased Calcium-Sensing Receptor Expression Controls Calcium Signaling and Cell-To-Cell Adhesion Defects in Aged Skin. J Invest Dermatol 2021; 141:2577-2586. [PMID: 33862069 PMCID: PMC8526647 DOI: 10.1016/j.jid.2021.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 11/24/2022]
Abstract
The calcium-sensing receptor (CaSR) drives essential calcium ion (Ca2+) and E-cadherin‒mediated processes in the epidermis, including differentiation, cell-to-cell adhesion, and epidermal barrier homeostasis in cells and in young adult mice. We now report that decreased CaSR expression leads to impaired Ca2+ signal propagation in aged mouse (aged >22 months) epidermis and human (aged >79 years, donor age) keratinocytes. Baseline cytosolic Ca2+ concentrations were higher, and capacitive Ca2+ entry was lower in aged than in young keratinocytes. As in Casr-knockout mice (EpidCaSR-/-), decreased CaSR expression led to decreased E-cadherin and phospholipase C-γ expression and to a compensatory upregulation of STIM1. Pretreatment with the CaSR agonist N-(3-[2-chlorophenyl]propyl)-(R)-alpha-methyl-3-methoxybenzylamine normalized Ca2+ propagation and E-cadherin organization after experimental wounding. These results suggest that age-related defects in CaSR expression dysregulate normal keratinocyte and epidermal Ca2+ signaling, leading to impaired E-cadherin expression, organization, and function. These findings show an innovative mechanism whereby Ca2+- and E-cadherin‒dependent functions are impaired in aging epidermis and suggest a new therapeutic approach by restoring CaSR function.
Collapse
Affiliation(s)
- Anna Celli
- Department of Dermatology, SFVAHCS Medical Center and University of California San Francisco, San Francisco, California, USA
| | - Chia-Ling Tu
- Endocrine Unit, San Francisco VA Medical Center (SFVAMC), San Francisco, California, USA; Department of Medicine, University of California-San Francisco (UCSF), San Francisco, California, USA
| | - Elise Lee
- Department of Dermatology, SFVAHCS Medical Center and University of California San Francisco, San Francisco, California, USA
| | - Daniel D Bikle
- Departments of Medicine and Dermatology, UCSF Staff Physician, SF Department of Health Affairs Medical Center, San Francisco, California, USA
| | - Theodora M Mauro
- Department of Dermatology, SFVAHCS Medical Center and University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
15
|
A computational model of the epidermis with the deformable dermis and its application to skin diseases. Sci Rep 2021; 11:13234. [PMID: 34168195 PMCID: PMC8225835 DOI: 10.1038/s41598-021-92540-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023] Open
Abstract
The skin barrier is provided by the organized multi-layer structure of epidermal cells, which is dynamically maintained by a continuous supply of cells from the basal layer. The epidermal homeostasis can be disrupted by various skin diseases, which often cause morphological changes not only in the epidermis but in the dermis. We present a three-dimensional agent-based computational model of the epidermis that takes into account the deformability of the dermis. Our model can produce a stable epidermal structure with well-organized layers. We show that its stability depends on the cell supply rate from the basal layer. Modeling the morphological change of the dermis also enables us to investigate how the stiffness of the dermis affects the structure and barrier functions of the epidermis. Besides, we show that our model can simulate the formation of a corn (clavus) by assuming hyperproliferation and rapid differentiation. We also provide experimental data for human corn, which supports the model assumptions and the simulation result.
Collapse
|
16
|
Tarnowska M, Briançon S, Resende de Azevedo J, Chevalier Y, Bolzinger MA. Inorganic ions in the skin: Allies or enemies? Int J Pharm 2020; 591:119991. [PMID: 33091552 DOI: 10.1016/j.ijpharm.2020.119991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Skin constitutes a barrier protecting the organism against physical and chemical factors. Therefore, it is constantly exposed to the xenobiotics, including inorganic ions that are ubiquitous in the environment. Some of them play important roles in homeostasis and regulatory functions of the body, also in the skin, while others can be considered dangerous. Many authors have shown that inorganic ions could penetrate inside the skin and possibly induce local effects. In this review, we give an account of the current knowledge on the effects of skin exposure to inorganic ions. Beneficial effects on skin conditions related to the use of thermal spring waters are discussed together with the application of aluminium in underarm hygiene products and silver salts in treatment of difficult wounds. Finally, the potential consequences of dermal exposure to topical sensitizers and harmful heavy ions including radionuclides are discussed.
Collapse
Affiliation(s)
- Małgorzata Tarnowska
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Stéphanie Briançon
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Jacqueline Resende de Azevedo
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Yves Chevalier
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Marie-Alexandrine Bolzinger
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France.
| |
Collapse
|
17
|
Nakanishi S, Kamezono R, Nakatani M, Denda M. Comprehensive analysis of elemental distribution in human skin using laser ablation inductively coupled plasma mass spectrometry. Skin Res Technol 2020; 27:576-581. [PMID: 33216424 DOI: 10.1111/srt.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/04/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Multiple chemical elements play roles in skin homeostasis. The distribution of elements in skin has been studied by X-ray microanalysis methods and fluorescence microscopy using chemical indicators, but the former requires complicated sample preparation steps, while the latter is limited by the availability of suitable chemical indicators. MATERIALS AND METHODS We applied laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to measure the distributions of thirty-eight elements in human skin. RESULTS Among the target elements, nine (calcium: 40 Ca, 44 Ca, zinc: 64 Zn, 66 Zn, phosphorus: 31 P, potassium: 39 K, sodium: 23 Na, sulfur: 34 S, copper: 63 Cu, magnesium: 24 Mg, and iron: 56 Fe) showed distribution patterns that were consistent with previous reports, and four others (iodine: 127 I, barium: 138 Ba, strontium: 88 Sr, and molybdenum: 95 Mo) were detected for the first time in human skin. CONCLUSION The method described here requires only slicing into sections to prepare a sample for measurement, so the elemental distributions are minimally disturbed, and comprehensive information can be obtained rapidly. The method is expected to be useful for research in a variety of fields, including skin diseases, aging, and allergenicity.
Collapse
Affiliation(s)
| | | | - Masashi Nakatani
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | | |
Collapse
|
18
|
Portugal-Cohen M, Cohen D, Ish-Shalom E, Laor-Costa Y, Ma'or Z. Dead Sea minerals: New findings on skin and the biology beyond. Exp Dermatol 2020; 28:585-592. [PMID: 30903724 DOI: 10.1111/exd.13918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/30/2019] [Accepted: 03/07/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Therapeutic effects of Dead Sea (DS) minerals are well established, and their unique combination is analysed and reported. DS water (DSW) is a key source for DS minerals, and various studies report the capability of DSW to alleviate symptoms of different skin disorders and to contribute to skin maintenance. However, the biological mechanisms beyond reported effects are not fully understood yet. OBJECTIVE To elucidate the effect of topically applied DSW via the expression of different skin biomarkers related to barrier function, homeostasis, inflammation and irritation. METHODS In vitro skin equivalents and ex vivo human skin organ culture were used to assess the biological effects of DSW. Epidermal barrier protein expression and DSW ions transdermal penetration were analysed on skin equivalents. β-endorphin secretion was tested on human skin organ culture. The capability of DSW to protect against skin inflammation and irritation was tested on ex vivo human skin organ culture by lipopolysaccharides and sodium dodecyl sulphate addition, respectively. RESULTS Topical application of DSW encouraged the expression of the barrier-related proteins: filaggrin, involucrin and transglutaminase, while transdermal penetration of calcium ions was not detected. Additionally, DSW application had increased skin secretion of β-endorphin and attenuated the expression of inflammatory and irritation-related cytokines. CONCLUSIONS This study reports new findings of DSW effects on skin. Signalling pathway activation is proposed as a key step that may result in a vast range of proven biological activities following skin exposure to DS minerals, and specifically DSW.
Collapse
Affiliation(s)
- Meital Portugal-Cohen
- Ahava Dead Sea Laboratories, Airport City, Israel.,The Skin Research Institute, Dead Sea & Arava Science Center, Masada, Israel
| | - Dror Cohen
- Ahava Dead Sea Laboratories, Airport City, Israel.,The Skin Research Institute, Dead Sea & Arava Science Center, Masada, Israel
| | - Eliran Ish-Shalom
- Ahava Dead Sea Laboratories, Airport City, Israel.,The Skin Research Institute, Dead Sea & Arava Science Center, Masada, Israel
| | - Yaara Laor-Costa
- Ahava Dead Sea Laboratories, Airport City, Israel.,The Skin Research Institute, Dead Sea & Arava Science Center, Masada, Israel
| | - Ze'evi Ma'or
- Ahava Dead Sea Laboratories, Airport City, Israel.,The Skin Research Institute, Dead Sea & Arava Science Center, Masada, Israel
| |
Collapse
|
19
|
Ipponjima S, Umino Y, Nagayama M, Denda M. Live imaging of alterations in cellular morphology and organelles during cornification using an epidermal equivalent model. Sci Rep 2020; 10:5515. [PMID: 32218450 PMCID: PMC7099034 DOI: 10.1038/s41598-020-62240-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/09/2020] [Indexed: 11/30/2022] Open
Abstract
The stratum corneum plays a crucial role in epidermal barrier function. Various changes occur in granular cells at the uppermost stratum granulosum during cornification. To understand the temporal details of this process, we visualized the cell shape and organelles of cornifying keratinocytes in a living human epidermal equivalent model. Three-dimensional time-lapse imaging with a two-photon microscope revealed that the granular cells did not simply flatten but first temporarily expanded in thickness just before flattening during cornification. Moreover, before expansion, intracellular vesicles abruptly stopped moving, and mitochondria were depolarized. When mitochondrial morphology and quantity were assessed, granular cells with fewer, mostly punctate mitochondria tended to transition to corneocytes. Several minutes after flattening, DNA leakage from the nucleus was visualized. We also observed extension of the cell-flattening time induced by the suppression of filaggrin expression. Overall, we successfully visualized the time-course of cornification, which describes temporal relationships between alterations in the transition from granular cells to corneocytes.
Collapse
Affiliation(s)
- Sari Ipponjima
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan.
| | - Yuki Umino
- Shiseido Global Innovation Center, Yokohama, Japan
| | - Masaharu Nagayama
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
20
|
Tarnowska M, Briançon S, Resende de Azevedo J, Chevalier Y, Arquier D, Barratier C, Bolzinger MA. The effect of vehicle on skin absorption of Mg 2+ and Ca 2+ from thermal spring water. Int J Cosmet Sci 2020; 42:248-258. [PMID: 32027379 DOI: 10.1111/ics.12607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Thermal spring waters (TSW) are commonly used as active ingredients in cosmetics. Their biological activities directly depend on the ionic composition of the spring. However, in order to exhibit beneficial properties, the minerals need to reach viable skin layers. The present study addresses the incorporation of marketed TSW in model cosmetic formulations and the impact of the formulation on skin absorption of magnesium and calcium ions that are known to improve skin barrier function. METHODS Marketed TSW was introduced into five formulations. Liposomes were prepared using saturated or unsaturated phospholipids mixed with cholesterol by the thin layer evaporation technique. Emulsions water-in-oil (W/O), oil-in-water (O/W) or double: water-in-oil-in-water (W/O/W) were prepared by high-shear mixing. Skin absorption of Mg2+ and Ca2+ from those formulations was studied in vitro using static Franz diffusion cells under infinite dose condition and under occlusion of the apparatus. RESULTS Mg2+ and Ca2+ penetrate skin samples from TSW. Encapsulating TSW into double emulsion (TSW/O/W) increased skin absorption of both cations of interest and kept the Ca2+ /Mg2+ ratio equal to that of TSW in each skin layer. The dermal absorption of Mg2+ from the double emulsion departs from both single emulsions. Application of liposome suspension improved the skin absorption of Ca2+ while keeping constant that of Mg2+ , leading to unbalanced Ca2+ /Mg2+ ratio inside skin. CONCLUSION The beneficial effects of TSW are not only due to their action on the skin surface. Their active components, especially Ca2+ and Mg2+ cations, reach viable skin layers in a formulation-dependent manner. The distribution of ions inside skin depends on the type of formulation.
Collapse
Affiliation(s)
- M Tarnowska
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP, UMR 5007), Bat CPE 308G, 43 Bd du 11 Novembre 1918, Villeurbanne, 69622, France
| | - S Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP, UMR 5007), Bat CPE 308G, 43 Bd du 11 Novembre 1918, Villeurbanne, 69622, France
| | - J Resende de Azevedo
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP, UMR 5007), Bat CPE 308G, 43 Bd du 11 Novembre 1918, Villeurbanne, 69622, France
| | - Y Chevalier
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP, UMR 5007), Bat CPE 308G, 43 Bd du 11 Novembre 1918, Villeurbanne, 69622, France
| | - D Arquier
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP, UMR 5007), Bat CPE 308G, 43 Bd du 11 Novembre 1918, Villeurbanne, 69622, France
| | - C Barratier
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP, UMR 5007), Bat CPE 308G, 43 Bd du 11 Novembre 1918, Villeurbanne, 69622, France
| | - M-A Bolzinger
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP, UMR 5007), Bat CPE 308G, 43 Bd du 11 Novembre 1918, Villeurbanne, 69622, France
| |
Collapse
|
21
|
Muncanovic D, Justesen MH, Preisler SS, Pedersen PA. Characterization of Hailey-Hailey Disease-mutants in presence and absence of wild type SPCA1 using Saccharomyces cerevisiae as model organism. Sci Rep 2019; 9:12442. [PMID: 31455819 PMCID: PMC6712213 DOI: 10.1038/s41598-019-48866-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/12/2019] [Indexed: 01/07/2023] Open
Abstract
Hailey-Hailey disease is an autosomal genetic disease caused by mutations in one of the two ATP2C1 alleles encoding the secretory pathway Ca2+/Mn2+-ATPase, hSPCA1. The disease almost exclusively affects epidermis, where it mainly results in acantholysis of the suprabasal layers. The etiology of the disease is complex and not well understood. We applied a yeast based complementation system to characterize fourteen disease-causing ATP2C1 missense mutations in presence or absence of wild type ATP2C1 or ATP2A2, encoding SERCA2. In our yeast model system, mutations in ATP2C1 affected Mn2+ transport more than Ca2+ transport as twelve out of fourteen mutations were unable to complement Mn2+ sensitivity while thirteen out of fourteen to some extent complemented the high Ca2+requirement. Nine out of fourteen mutations conferred a cold sensitive complementation capacity. In absence of a wild type ATP2C1 allele, twelve out of fourteen mutations induced an unfolded protein response indicating that in vivo folding of hSPCA1 is sensitive to disease causing amino acid substitutions and four of the fourteen mutations caused the hSPCA1 protein to accumulate in the vacuolar membrane. Co-expression of either wild type ATP2C1 or ATP2A2 prevented induction of the unfolded protein response and hSPCA1 mis-localization.
Collapse
Affiliation(s)
- Daniel Muncanovic
- Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, OE, Denmark
| | - Mette Heberg Justesen
- Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, OE, Denmark
| | - Sarah Spruce Preisler
- Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, OE, Denmark
| | - Per Amstrup Pedersen
- Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, OE, Denmark.
| |
Collapse
|
22
|
Rogerson C, O'Shaughnessy RFL. Protein kinases involved in epidermal barrier formation: The AKT family and other animals. Exp Dermatol 2019; 27:892-900. [PMID: 29845670 DOI: 10.1111/exd.13696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Formation of a stratified epidermis is required for the performance of the essential functions of the skin; to act as an outside-in barrier against the access of microorganisms and other external factors, to prevent loss of water and solutes via inside-out barrier functions and to withstand mechanical stresses. Epidermal barrier function is initiated during embryonic development and is then maintained throughout life and restored after injury. A variety of interrelated processes are required for the formation of a stratified epidermis, and how these processes are both temporally and spatially regulated has long been an aspect of dermatological research. In this review, we describe the roles of multiple protein kinases in the regulation of processes required for epidermal barrier formation.
Collapse
Affiliation(s)
- Clare Rogerson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Ryan F L O'Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
23
|
Abstract
Epidermis, the outermost layer of the skin, plays a critical role as both a physical and immunological barrier protecting the internal tissues from external environmental insults, such as pathogenic bacteria, fungi, viruses, UV irradiation, and water loss. Epidermal keratinocytes (KC), the predominant cell type in the skin epidermis, are in the front line of skin defense. Here we describe methods to isolate and culture primary epidermal KC from neonatal and adult mouse skin and describe in vitro assays to study and characterize KC proliferation and differentiation and pro-inflammatory responses to viral products and UVB irradiation. These methods will be useful for researchers in the field of epidermal biology to set up in vitro assays to study the barrier and pro-inflammatory function of epidermal keratinocytes.
Collapse
Affiliation(s)
- Ling-Juan Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Murata T, Honda T, Egawa G, Yamamoto Y, Ichijo R, Toyoshima F, Dainichi T, Kabashima K. Transient elevation of cytoplasmic calcium ion concentration at a single cell level precedes morphological changes of epidermal keratinocytes during cornification. Sci Rep 2018; 8:6610. [PMID: 29700333 PMCID: PMC5919969 DOI: 10.1038/s41598-018-24899-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/11/2018] [Indexed: 01/29/2023] Open
Abstract
Epidermal keratinocytes achieve sequential differentiation from basal to granular layers, and undergo a specific programmed cell death, cornification, to form an indispensable barrier of the body. Although elevation of the cytoplasmic calcium ion concentration ([Ca2+]i) is one of the factors predicted to regulate cornification, the dynamics of [Ca2+]i in epidermal keratinocytes is largely unknown. Here using intravital imaging, we captured the dynamics of [Ca2+]i in mouse skin. [Ca2+]i was elevated in basal cells on the second time scale in three spatiotemporally distinct patterns. The transient elevation of [Ca2+]i also occurred at the most apical granular layer at a single cell level, and lasted for approximately 40 min. The transient elevation of [Ca2+]i at the granular layer was followed by cornification, which was completed within 10 min. This study demonstrates the tightly regulated elevation of [Ca2+]i preceding the cornification of epidermal keratinocytes, providing possible clues to the mechanisms of cornification.
Collapse
Affiliation(s)
- Teruasa Murata
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tetsuya Honda
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Gyohei Egawa
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuo Yamamoto
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Central Pharmaceutical Research Institute, Japan Tobacco, Tokyo, Japan
| | - Ryo Ichijo
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Teruki Dainichi
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan. .,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, IMMUNOS Building #3-4, Biopolis, 138648, Singapore.
| |
Collapse
|
25
|
Abstract
Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions (Ca2+) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular Ca2+ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both Ca2+ release from intracellular stores, such as the ER and Ca2+ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.
Collapse
Affiliation(s)
- Sang Eun Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hun Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Yamamura Y, Morizane S, Yamamoto T, Wada J, Iwatsuki K. High calcium enhances the expression of double-stranded RNA sensors and antiviral activity in epidermal keratinocytes. Exp Dermatol 2018; 27:129-134. [PMID: 29087009 DOI: 10.1111/exd.13456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2017] [Indexed: 12/30/2022]
Abstract
Double-stranded RNA (dsRNA) sensors including TLR3, MDA5 and RIG-I are expressed in epidermal keratinocytes and play an important immunological role by enhancing various innate and adaptive immune responses. Although the role of elevated extracellular calcium concentration in keratinocyte differentiation is well understood, the effect of high calcium on dsRNA sensors is not well studied. We investigated alterations in dsRNA sensor expression and antiviral activity induced by a high extracellular concentration of calcium in epidermal keratinocytes. Normal human epidermal keratinocytes (NHEKs) were stimulated with high calcium and/or synthetic dsRNA, poly (I:C). TLR3, IFIH1 (MDA5) and DDX58 (RIG-I) expression were measured via qPCR, and IFN-β and human beta-defensin 2 (HBD2) levels were measured using ELISA. TLR3 localization was evaluated with immunocytofluorescence. Antiviral activity was quantified with virus plaque assays using herpes simplex virus type 1 (HSV-1). High calcium significantly upregulated mRNA expression of TLR3, IFIH1 and DDX58 in NHEKs. In addition, high calcium significantly enhanced poly (I:C)-induced anti-HSV-1 activity in NHEKs. The antiviral molecule HBD2 but not IFN-β induction by poly (I:C) was enhanced by high calcium. Our findings indicate that high levels of extracellular calcium enhance the expression of dsRNA sensors and augment antiviral activity in epidermal keratinocytes.
Collapse
Affiliation(s)
- Yuriko Yamamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiji Iwatsuki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
27
|
Li F, Adase CA, Zhang LJ. Isolation and Culture of Primary Mouse Keratinocytes from Neonatal and Adult Mouse Skin. J Vis Exp 2017. [PMID: 28745643 DOI: 10.3791/56027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The keratinocyte (KC) is the predominant cell type in the epidermis, the outermost layer of the skin. Epidermal KCs play a critical role in providing skin defense by forming an intact skin barrier against environmental insults, such as UVB irradiation or pathogens, and also by initiating an inflammatory response upon those insults. Here we describe methods to isolate KCs from neonatal mouse skin and from adult mouse tail skin. We also describe culturing conditions using defined growth supplements (dGS) in comparison to chelexed fetal bovine serum (cFBS). Functionally, we show that both neonatal and adult KCs are highly responsive to high calcium-induced terminal differentiation, tight junction formation and stratification. Additionally, cultured adult KCs are susceptible to UVB-triggered cell death and can release large amounts of TNF upon UVB irradiation. Together, the methods described here will be useful to researchers for the setup of in vitro models to study epidermal biology in the neonatal mouse and/or the adult mouse.
Collapse
Affiliation(s)
- Fengwu Li
- Department of Dermatology, School of Medicine, UC San Diego
| | | | - Ling-Juan Zhang
- Department of Dermatology, School of Medicine, UC San Diego;
| |
Collapse
|
28
|
Kobashi M, Morizane S, Sugimoto S, Sugihara S, Iwatsuki K. Expression of serine protease inhibitors in epidermal keratinocytes is increased by calcium but not 1,25-dihydroxyvitamin D3or retinoic acid. Br J Dermatol 2017; 176:1525-1532. [DOI: 10.1111/bjd.15153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 11/29/2022]
Affiliation(s)
- M. Kobashi
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - S. Morizane
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - S. Sugimoto
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - S. Sugihara
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - K. Iwatsuki
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| |
Collapse
|
29
|
Celli A, Crumrine D, Meyer JM, Mauro TM. Endoplasmic Reticulum Calcium Regulates Epidermal Barrier Response and Desmosomal Structure. J Invest Dermatol 2016; 136:1840-1847. [PMID: 27255610 PMCID: PMC5070468 DOI: 10.1016/j.jid.2016.05.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 11/15/2022]
Abstract
Ca(2+) fluxes direct keratinocyte differentiation, cell-to-cell adhesion, migration, and epidermal barrier homeostasis. We previously showed that intracellular Ca(2+) stores constitute a major portion of the calcium gradient especially in the stratum granulosum. Loss of the calcium gradient triggers epidermal barrier homeostatic responses. In this report, using unfixed ex vivo epidermis and human epidermal equivalents we show that endoplasmic reticulum (ER) Ca(2+) is released in response to barrier perturbation, and that this release constitutes the major shift in epidermal Ca(2+) seen after barrier perturbation. We find that ER Ca(2+) release correlates with a transient increase in extracellular Ca(2+). Lastly, we show that ER calcium release resulting from barrier perturbation triggers transient desmosomal remodeling, seen as an increase in extracellular space and a loss of the desmosomal intercellular midline. Topical application of thapsigargin, which inhibits the ER Ca(2+) ATPase activity without compromising barrier integrity, also leads to desmosomal remodeling and loss of the midline structure. These experiments establish the ER Ca(2+) store as a master regulator of the Ca(2+) gradient response to epidermal barrier perturbation, and suggest that ER Ca(2+) homeostasis also modulates normal desmosomal reorganization, both at rest and after acute barrier perturbation.
Collapse
Affiliation(s)
- Anna Celli
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA.
| | - Debra Crumrine
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA
| | - Jason M Meyer
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA
| | - Theodora M Mauro
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA
| |
Collapse
|
30
|
Cubillos S, Norgauer J. Low vitamin D-modulated calcium-regulating proteins in psoriasis vulgaris plaques: S100A7 overexpression depends on joint involvement. Int J Mol Med 2016; 38:1083-92. [PMID: 27573000 PMCID: PMC5029959 DOI: 10.3892/ijmm.2016.2718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/01/2016] [Indexed: 11/06/2022] Open
Abstract
Psoriasis is an inflammatory skin disease with or without joint involvement. In this disease, the thickened epidermis and impaired barrier are associated with altered calcium gradients. Calcium and vitamin D are known to play important roles in keratinocyte differentiation and bone metabolism. Intracellular calcium is regulated by calcium-sensing receptor (CASR), calcium release-activated calcium modulator (ORAI) and stromal interaction molecule (STIM). Other proteins modulated by vitamin D play important roles in calcium regulation e.g., calbindin 1 (CALB1) and transient receptor potential cation channel 6 (TRPV6). In this study, we aimed to investigate the expression of calcium-regulating proteins in the plaques of patients with psoriasis vulgaris with or without joint inflammation. We confirmed low calcium levels, keratinocyte hyperproliferation and an altered epidermal barrier. The CASR, ORAI1, ORAI3, STIM1, CALB1 and TRPV6 mRNA, as well as the sterol 27-hydroxylase (CYP27A1), 25-hydroxyvitamin D3 1-α-hydroxylase (CYP27B1) and 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1) protein levels were low in the plaques of patients with psoriasis. We demonstrated S100 calcium-binding protein A7 (S100A7) overexpression in the plaques of patients with psoriasis vulgaris with joint inflammation, compared with those without joint involvement. We suggest an altered capacity to regulate the intracellular Ca2+ concentration ([Ca2+]i), characterized by a reduced expression of CASR, ORAI1, ORAI3, STIM1, CALB1 and TRPV6 associated with diminished levels of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], which may be associated with an altered balance between keratinocyte proliferation and differentiation in the psoriatic epidermis. Additionally, differences in S100A7 expression depend on the presence of joint involvement.
Collapse
Affiliation(s)
- Susana Cubillos
- Department of Dermatology, Jena University Hospital, D-07743 Jena, Germany
| | - Johannes Norgauer
- Department of Dermatology, Jena University Hospital, D-07743 Jena, Germany
| |
Collapse
|
31
|
Seo A, Kitagawa N, Matsuura T, Sato H, Inai T. Formation of keratinocyte multilayers on filters under airlifted or submerged culture conditions in medium containing calcium, ascorbic acid, and keratinocyte growth factor. Histochem Cell Biol 2016; 146:585-597. [PMID: 27480258 DOI: 10.1007/s00418-016-1472-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
Three-dimensional (3D) cell culture is a powerful in vitro technique to study the stratification and differentiation of keratinocytes. However, culture conditions, including culture media, supplements, and scaffolds (e.g., collagen gels with or without fibroblasts), can vary considerably. Here, we evaluated the roles of calcium, L-ascorbic acid phosphate magnesium salt n-hydrate (APM), and keratinocyte growth factor (KGF) in a chemically defined medium, EpiLife, in 3D cultures of primary human epidermal keratinocytes directly plated on polycarbonate filter inserts under airlifted or submerged conditions. Eight culture media containing various combinations of these three supplements were examined. Calcium was necessary for the stratification and differentiation of keratinocytes based on the localization of keratins and involucrin. However, the localization patterns of keratins and integrin β4 were partially disrupted and Ki67-positive basal cells almost disappeared 3 weeks after airlift. The addition of KGF, but not APM, prevented these changes. Further addition of APM markedly improved the tissue architecture, including basal cell morphology and the appearance of keratohyalin granules and localized involucrin in the upper suprabasal cells, even after 1 week. Although the submerged culture also formed cornified epithelium-like multilayers, involucrin was localized in the cornified layer, where nuclei were often found. Based on these results, it is most effective to culture keratinocytes at the air-liquid interface in EpiLife medium supplemented with calcium, APM, and KGF to form well-organized and orthokeratinized multilayers as skin analogues.
Collapse
Affiliation(s)
- Akira Seo
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Norio Kitagawa
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Takashi Matsuura
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Hironobu Sato
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Tetsuichiro Inai
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan.
| |
Collapse
|
32
|
Mathematical model for calcium-assisted epidermal homeostasis. J Theor Biol 2016; 397:52-60. [PMID: 26953648 DOI: 10.1016/j.jtbi.2016.02.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/13/2023]
Abstract
Using a mathematical model of the epidermis, we propose a mechanism of epidermal homeostasis mediated by calcium dynamics. We show that calcium dynamics beneath the stratum corneum can reduce spatio-temporal fluctuations of the layered structure of the epidermis. We also demonstrate that our model can reproduce experimental results that the recovery from a barrier disruption is faster when the disrupted site is exposed to air. In particular, simulation results indicate that the recovery speed depends on the size of barrier disruption.
Collapse
|
33
|
Kobayashi Y, Kitahata H, Nagayama M. Model for calcium-mediated reduction of structural fluctuations in epidermis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022709. [PMID: 26382434 DOI: 10.1103/physreve.92.022709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 06/05/2023]
Abstract
We propose a reaction-advection-diffusion model of epidermis consisting of two variables, the degree of differentiation and the calcium ion concentration, where calcium ions enhance differentiation. By analytically and numerically investigating this system, we show that a calcium localization layer formed beneath the stratum corneum helps reduce spatiotemporal fluctuations of the structure of the stratum corneum. In particular, spatially or temporally small-scale fluctuations in the lower structure are suppressed and do not affect the upper structure, due to acceleration of differentiation by calcium ions. Analytical expressions for the reduction rate of fluctuation amplitudes are shown.
Collapse
Affiliation(s)
- Yasuaki Kobayashi
- Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
- JST CREST, Saitama 332-0012, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
- JST CREST, Saitama 332-0012, Japan
| |
Collapse
|
34
|
Cursons J, Gao J, Hurley DG, Print CG, Dunbar PR, Jacobs MD, Crampin EJ. Regulation of ERK-MAPK signaling in human epidermis. BMC SYSTEMS BIOLOGY 2015. [PMID: 26209520 PMCID: PMC4514964 DOI: 10.1186/s12918-015-0187-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background The skin is largely comprised of keratinocytes within the interfollicular epidermis. Over approximately two weeks these cells differentiate and traverse the thickness of the skin. The stage of differentiation is therefore reflected in the positions of cells within the tissue, providing a convenient axis along which to study the signaling events that occur in situ during keratinocyte terminal differentiation, over this extended two-week timescale. The canonical ERK-MAPK signaling cascade (Raf-1, MEK-1/2 and ERK-1/2) has been implicated in controlling diverse cellular behaviors, including proliferation and differentiation. While the molecular interactions involved in signal transduction through this cascade have been well characterized in cell culture experiments, our understanding of how this sequence of events unfolds to determine cell fate within a homeostatic tissue environment has not been fully characterized. Methods We measured the abundance of total and phosphorylated ERK-MAPK signaling proteins within interfollicular keratinocytes in transverse cross-sections of human epidermis using immunofluorescence microscopy. To investigate these data we developed a mathematical model of the signaling cascade using a normalized-Hill differential equation formalism. Results These data show coordinated variation in the abundance of phosphorylated ERK-MAPK components across the epidermis. Statistical analysis of these data shows that associations between phosphorylated ERK-MAPK components which correspond to canonical molecular interactions are dependent upon spatial position within the epidermis. The model demonstrates that the spatial profile of activation for ERK-MAPK signaling components across the epidermis may be maintained in a cell-autonomous fashion by an underlying spatial gradient in calcium signaling. Conclusions Our data demonstrate an extended phospho-protein profile of ERK-MAPK signaling cascade components across the epidermis in situ, and statistical associations in these data indicate canonical ERK-MAPK interactions underlie this spatial profile of ERK-MAPK activation. Using mathematical modelling we have demonstrated that spatially varying calcium signaling components across the epidermis may be sufficient to maintain the spatial profile of ERK-MAPK signaling cascade components in a cell-autonomous manner. These findings may have significant implications for the wide range of cancer drugs which therapeutically target ERK-MAPK signaling components. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0187-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph Cursons
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,NICTA Victoria Research Lab, Melbourne, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.
| | - Jerry Gao
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia.
| | - Daniel G Hurley
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,NICTA Victoria Research Lab, Melbourne, Australia. .,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand. .,Bioinformatics Institute, University of Auckland, Auckland, New Zealand. .,Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Cristin G Print
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand. .,Bioinformatics Institute, University of Auckland, Auckland, New Zealand. .,Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - P Rod Dunbar
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand. .,School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Marc D Jacobs
- Department of Biology, New Zealand International College, ACG New Zealand, Auckland, New Zealand.
| | - Edmund J Crampin
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand. .,School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia. .,School of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
35
|
Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules 2015; 5:545-89. [PMID: 25906193 PMCID: PMC4496685 DOI: 10.3390/biom5020545] [Citation(s) in RCA: 508] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis.
Collapse
Affiliation(s)
- Mark Rinnerthaler
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Johannes Bischof
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Maria Karolin Streubel
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Andrea Trost
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria.
| | - Klaus Richter
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| |
Collapse
|
36
|
Adams MP, Mallet DG, Pettet GJ. Towards a quantitative theory of epidermal calcium profile formation in unwounded skin. PLoS One 2015; 10:e0116751. [PMID: 25625723 PMCID: PMC4308082 DOI: 10.1371/journal.pone.0116751] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 12/12/2014] [Indexed: 12/24/2022] Open
Abstract
We propose and mathematically examine a theory of calcium profile formation in unwounded mammalian epidermis based on: changes in keratinocyte proliferation, fluid and calcium exchange with the extracellular fluid during these cells’ passage through the epidermal sublayers, and the barrier functions of both the stratum corneum and tight junctions localised in the stratum granulosum. Using this theory, we develop a mathematical model that predicts epidermal sublayer transit times, partitioning of the epidermal calcium gradient between intracellular and extracellular domains, and the permeability of the tight junction barrier to calcium ions. Comparison of our model’s predictions of epidermal transit times with experimental data indicates that keratinocytes lose at least 87% of their volume during their disintegration to become corneocytes. Intracellular calcium is suggested as the main contributor to the epidermal calcium gradient, with its distribution actively regulated by a phenotypic switch in calcium exchange between keratinocytes and extracellular fluid present at the boundary between the stratum spinosum and the stratum granulosum. Formation of the extracellular calcium distribution, which rises in concentration through the stratum granulosum towards the skin surface, is attributed to a tight junction barrier in this sublayer possessing permeability to calcium ions that is less than 15 nm s−1 in human epidermis and less than 37 nm s−1 in murine epidermis. Future experimental work may refine the presented theory and reduce the mathematical uncertainty present in the model predictions.
Collapse
Affiliation(s)
- Matthew P. Adams
- Mathematical Sciences School and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia, and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| | - Daniel G. Mallet
- Mathematical Sciences School and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Graeme J. Pettet
- Mathematical Sciences School and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
37
|
Hoffman DR, Kroll LM, Basehoar A, Reece B, Cunningham CT, Koenig DW. Immediate and extended effects of abrasion on stratum corneum natural moisturizing factor. Skin Res Technol 2015; 21:366-72. [DOI: 10.1111/srt.12201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2014] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - B. Reece
- Reliance Clinical Testing Services, Inc.; Irving TX USA
| | | | | |
Collapse
|
38
|
Rinnerthaler M, Streubel MK, Bischof J, Richter K. Skin aging, gene expression and calcium. Exp Gerontol 2014; 68:59-65. [PMID: 25262846 DOI: 10.1016/j.exger.2014.09.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 02/07/2023]
Abstract
The human epidermis provides a very effective barrier function against chemical, physical and microbial insults from the environment. This is only possible as the epidermis renews itself constantly. Stem cells located at the basal lamina which forms the dermoepidermal junction provide an almost inexhaustible source of keratinocytes which differentiate and die during their journey to the surface where they are shed off as scales. Despite the continuous renewal of the epidermis it nevertheless succumbs to aging as the turnover rate of the keratinocytes is slowing down dramatically. Aging is associated with such hallmarks as thinning of the epidermis, elastosis, loss of melanocytes associated with an increased paleness and lucency of the skin and a decreased barrier function. As the differentiation of keratinocytes is strictly calcium dependent, calcium also plays an important role in the aging epidermis. Just recently it was shown that the epidermal calcium gradient in the skin that facilitates the proliferation of keratinocytes in the stratum basale and enables differentiation in the stratum granulosum is lost in the process of skin aging. In the course of this review we try to explain how this calcium gradient is built up on the one hand and is lost during aging on the other hand. How this disturbed calcium homeostasis is affecting the gene expression in aged skin and is leading to dramatic changes in the composition of the cornified envelope will also be discussed. This loss of the epidermal calcium gradient is not only specific for skin aging but can also be found in skin diseases such as Darier disease, Hailey-Hailey disease, psoriasis and atopic dermatitis, which might be very helpful to get a deeper insight in skin aging.
Collapse
Affiliation(s)
- Mark Rinnerthaler
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Maria Karolin Streubel
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Johannes Bischof
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Klaus Richter
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
39
|
Cui H, Li L, Wang W, Shen J, Yue Z, Zheng X, Zuo X, Liang B, Gao M, Fan X, Yin X, Shen C, Yang C, Zhang C, Zhang X, Sheng Y, Gao J, Zhu Z, Lin D, Zhang A, Wang Z, Liu S, Sun L, Yang S, Cui Y, Zhang X. Exome sequencing identifies SLC17A9 pathogenic gene in two Chinese pedigrees with disseminated superficial actinic porokeratosis. J Med Genet 2014; 51:699-704. [PMID: 25180256 DOI: 10.1136/jmedgenet-2014-102486] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Disseminated superficial actinic porokeratosis (DSAP) is a rare autosomal dominant genodermatosis characterised by annular lesions that has an atrophic centre and a prominent peripheral ridge distributed on sun exposed area. It exhibits high heterogeneity, and five linkage loci have been reported. The mevalonate kinase (MVK) gene located on 12q24 has been confirmed as one of the disease-causing genes. But, the pathogenesis of a large part of DSAP remains unclear so far. METHODS The recruited with DSAP carried no MVK coding mutations. Exome sequencing was performed in two affected and one unaffected individual in Family 1. Cosegregation of the candidate variants was tested in other family members. Sanger sequencing in 33 individuals with familial DSAP and 19 sporadic DSAP individuals was performed for validating the causative gene. RESULTS An average of 1.35×10(5) variants were generated from exome data and 133 novel NS/SS/indels were identified as being shared by two affected individuals but absent in the unaffected individual. After functional prediction, 25 possible deleterious variants were identified. In Family 1, a missense variant c.932G>A (p.Arg311Gln) in exon 10 of SLC17A9 was observed in cosegregation with the phenotype; this amino acid substitution was located in a highly conserved major facilitator superfamily (MFS) domain in multiple mammalian. One additional missense variant c.25C>T (p.Arg9Cys) in exon 2 of SLC17A9 was found in Family 2. CONCLUSIONS The result identified SLC17A9 as another pathogenic gene for DSAP, which suggests a correlation between the aberrant vesicular nucleotide transporter and the pathogenesis of DSAP.
Collapse
Affiliation(s)
- Hongzhou Cui
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China Department of Dermatology at No.2 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Longnian Li
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Wenjun Wang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Jie Shen
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Zhen Yue
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Xiaodong Zheng
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Xianbo Zuo
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Bo Liang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Min Gao
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Xing Fan
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Xianyong Yin
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Changbing Shen
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Chao Yang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Change Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Xiaoguang Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Yujun Sheng
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Jinping Gao
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Zhengwei Zhu
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Da Lin
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Anping Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Zaixing Wang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Shengxiu Liu
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Liangdan Sun
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Sen Yang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Yong Cui
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China Department of Dermatology at No.2 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| |
Collapse
|
40
|
Kobayashi Y, Sanno Y, Sakai A, Sawabu Y, Tsutsumi M, Goto M, Kitahata H, Nakata S, Kumamoto J, Denda M, Nagayama M. Mathematical modeling of calcium waves induced by mechanical stimulation in keratinocytes. PLoS One 2014; 9:e92650. [PMID: 24663805 PMCID: PMC3963930 DOI: 10.1371/journal.pone.0092650] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that the behavior of calcium in the epidermis is closely related to the conditions of the skin, especially the differentiation of the epidermal keratinocytes and the permeability barrier function, and therefore a correct understanding of the calcium dynamics is important in explaining epidermal homeostasis. Here we report on experimental observations of in vitro calcium waves in keratinocytes induced by mechanical stimulation, and present a mathematical model that can describe the experimentally observed wave behavior that includes finite-range wave propagation and a ring-shaped pattern. A mechanism of the ring formation hypothesized by our model may be related to similar calcium propagation patterns observed during the wound healing process in the epidermis. We discuss a possible extension of our model that may serve as a tool for investigating the mechanisms of various skin diseases.
Collapse
Affiliation(s)
- Yasuaki Kobayashi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Yumi Sanno
- Graduate School of Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Akihiko Sakai
- Graduate School of Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Yusuke Sawabu
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Moe Tsutsumi
- Shiseido Research Center, Shiseido Co., Ltd., Yokohama, Japan
| | - Makiko Goto
- Shiseido Research Center, Shiseido Co., Ltd., Yokohama, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba, Japan
| | - Satoshi Nakata
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Junichi Kumamoto
- CREST, Japan Science and Technology Agency, Tokyo, Japan
- Shiseido Research Center, Shiseido Co., Ltd., Yokohama, Japan
| | - Mitsuhiro Denda
- CREST, Japan Science and Technology Agency, Tokyo, Japan
- Shiseido Research Center, Shiseido Co., Ltd., Yokohama, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
- * E-mail:
| |
Collapse
|
41
|
Hoffman DR, Kroll LM, Basehoar A, Reece B, Cunningham CT, Koenig DW. Immediate and extended effects of sodium lauryl sulphate exposure on stratum corneum natural moisturizing factor. Int J Cosmet Sci 2013; 36:93-101. [DOI: 10.1111/ics.12101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/15/2013] [Indexed: 12/19/2022]
Affiliation(s)
- D. R. Hoffman
- Kimberly-Clark Corporation; 2100 Winchester Road Neenah WI 54956 U.S.A
| | - L. M. Kroll
- Kimberly-Clark Corporation; 2100 Winchester Road Neenah WI 54956 U.S.A
| | - A. Basehoar
- Kimberly-Clark Corporation; 2100 Winchester Road Neenah WI 54956 U.S.A
| | - B. Reece
- Reliance Clinical Testing Services, Inc.; 3207 Esters Road Irving TX 75062-2879 U.S.A
| | - C. T. Cunningham
- Kimberly-Clark Corporation; 2100 Winchester Road Neenah WI 54956 U.S.A
| | - D. W. Koenig
- Kimberly-Clark Corporation; 2100 Winchester Road Neenah WI 54956 U.S.A
| |
Collapse
|
42
|
Xu W, Jia S, Xie P, Zhong A, Galiano RD, Mustoe TA, Hong SJ. The expression of proinflammatory genes in epidermal keratinocytes is regulated by hydration status. J Invest Dermatol 2013; 134:1044-1055. [PMID: 24226202 DOI: 10.1038/jid.2013.425] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 01/08/2023]
Abstract
Mucosal wounds heal more rapidly, exhibit less inflammation, and are associated with minimal scarring when compared with equivalent cutaneous wounds. We previously demonstrated that cutaneous epithelium exhibits an exaggerated response to injury compared with mucosal epithelium. We hypothesized that treatment of injured skin with a semiocclusive dressing preserves the hydration of the skin and results in a wound healing phenotype that more closely resembles that of mucosa. Here we explored whether changes in hydration status alter epidermal gene expression patterns in rabbit partial-thickness incisional wounds. Using microarray studies on injured epidermis, we showed that global gene expression patterns in highly occluded versus non-occluded wounds are distinct. Many genes including IL-1β, IL-8, TNF-α (tumor necrosis factor-α), and COX-2 (cyclooxygenase 2) are upregulated in non-occluded wounds compared with highly occluded wounds. In addition, decreased levels of hydration resulted in an increased expression of proinflammatory genes in human ex vivo skin culture (HESC) and stratified keratinocytes. Hierarchical analysis of genes using RNA interference showed that both TNF-α and IL-1β regulate the expression of IL-8 through independent pathways in response to reduced hydration. Furthermore, both gene knockdown and pharmacological inhibition studies showed that COX-2 mediates the TNF-α/IL-8 pathway by increasing the production of prostaglandin E2 (PGE2). IL-8 in turn controls the production of matrix metalloproteinase-9 in keratinocytes. Our data show that hydration status directly affects the expression of inflammatory signaling in the epidermis. The identification of genes involved in the epithelial hydration pathway provides an opportunity to develop strategies to reduce scarring and optimize wound healing.
Collapse
Affiliation(s)
- Wei Xu
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shengxian Jia
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ping Xie
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Aimei Zhong
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Robert D Galiano
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas A Mustoe
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Seok J Hong
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
43
|
Tsutsumi M, Goto M, Denda M. Dynamics of intracellular calcium in cultured human keratinocytes after localized cell damage. Exp Dermatol 2013; 22:367-9. [DOI: 10.1111/exd.12136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Moe Tsutsumi
- Shiseido Research Center; Yokohama Japan
- Japan Science and Technology Agency; CREST; Tokyo Japan
| | - Makiko Goto
- Shiseido Research Center; Yokohama Japan
- Japan Science and Technology Agency; CREST; Tokyo Japan
| | - Mitsuhiro Denda
- Shiseido Research Center; Yokohama Japan
- Japan Science and Technology Agency; CREST; Tokyo Japan
| |
Collapse
|
44
|
Cho KA, Kim JY, Woo SY, Park HJ, Lee KH, Pae CU. Interleukin-17 and Interleukin-22 Induced Proinflammatory Cytokine Production in Keratinocytes via Inhibitor of Nuclear Factor κB Kinase-α Expression. Ann Dermatol 2012. [PMID: 23197904 PMCID: PMC3505769 DOI: 10.5021/ad.2012.24.4.398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background The pathogenesis of psoriasis may involve the interleukin (IL)-23 and Th17-mediated immune responses. Th17 cells secret IL-17 and IL-22, which mediates dermal inflammation and acanthosis. Objective As inhibitor of nuclear factor κB kinase-α (IKKα) has been previously identified as a primary regulator of keratinocyte differentiation and proliferation, we proposed that IL-17 and IL-22 might affect keratinocyte differentiation by changing the expression of IKKα. Methods We employed HaCaT cells
maintained culture medium at a low calcium concentration (0.06 mM) and induced differentiation by switching to the high concentration (2.8 mM) media with IL-17 or IL-22, then compared the IKKα expression and the cell cycle. We employed reconstituted human epidermal skin (Neoderm) and mice ears for the in vivo studies. Results Elevated
calcium concentration induced IKKα expression and terminal differentiation with cell cycle arrest in HaCaT cell cultures. Moreover, IL-17 and IL-22 treatment also induced IKKα in HaCaT cells and reconstituted human epidermis. IKKα induction was also noted, following the injection of IL-17 and IL-22 into mice ears. Conclusion Although the induction of IKKα was accompanied by keratinocyte differentiation, IL-17 and IL-22 did not affect calcium-mediated differentiation or the cell cycle. Rather, IL-17 and IL-22 appear to contribute to the inflammation occurring via the induction of IKKα from keratinocytes or skin layers.
Collapse
Affiliation(s)
- Kyung-Ah Cho
- Department of Microbiology, School of Medicine, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Calcium is the major regulator of keratinocyte differentiation in vivo and in vitro. A calcium gradient within the epidermis promotes the sequential differentiation of keratinocytes as they traverse the different layers of the epidermis to form the permeability barrier of the stratum corneum. Calcium promotes differentiation by both outside-in and inside-out signaling. A number of signaling pathways involved with differentiation are regulated by calcium, including the formation of desmosomes, adherens junctions and tight junctions, which maintain cell-cell adhesion and play an important intracellular signaling role through their activation of various kinases and phospholipases that produce second messengers that regulate intracellular free calcium and PKC activity, critical for the differentiation process. The calcium receptor plays a central role by initiating the intracellular signaling events that drive differentiation in response to extracellular calcium. This review will discuss these mechanisms.
Collapse
Affiliation(s)
- Daniel D Bikle
- Veterans Administration Medical Center, University of California, San Francisco, CA, USA
| | - Zhongjian Xie
- Veterans Administration Medical Center, University of California, San Francisco, CA, USA
| | - Chia-Ling Tu
- Veterans Administration Medical Center, University of California, San Francisco, CA, USA
| |
Collapse
|
46
|
Active regulation of the epidermal calcium profile. J Theor Biol 2012; 301:112-21. [PMID: 22386578 DOI: 10.1016/j.jtbi.2012.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 12/23/2022]
Abstract
A distinct calcium profile is strongly implicated in regulating the multi-layered structure of the epidermis. However, the mechanisms that govern the regulation of this calcium profile are currently unclear. It clearly depends on the relatively impermeable barrier of the stratum corneum (passive regulation) but may also depend on calcium exchanges between keratinocytes and extracellular fluid (active regulation). Using a mathematical model that treats the viable sublayers of unwounded human and murine epidermis as porous media and assumes that their calcium profiles are passively regulated, we demonstrate that these profiles are also actively regulated. To obtain this result, we found that diffusion governs extracellular calcium motion in the viable epidermis and hence intracellular calcium is the main source of the epidermal calcium profile. Then, by comparison with experimental calcium profiles and combination with a hypothesised cell velocity distribution in the viable epidermis, we found that the net influx of calcium ions into keratinocytes from extracellular fluid may be constant and positive throughout the stratum basale and stratum spinosum, and that there is a net outflux of these ions in the stratum granulosum. Hence, the calcium exchange between keratinocytes and extracellular fluid differs distinctly between the stratum granulosum and the underlying sublayers, and these differences actively regulate the epidermal calcium profile. Our results also indicate that plasma membrane dysfunction may be an early event during keratinocyte disintegration in the stratum granulosum.
Collapse
|
47
|
Yoneda K, Nakagawa T, Lawrence OT, Huard J, Demitsu T, Kubota Y, Presland RB. Interaction of the profilaggrin N-terminal domain with loricrin in human cultured keratinocytes and epidermis. J Invest Dermatol 2012; 132:1206-14. [PMID: 22277945 DOI: 10.1038/jid.2011.460] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The relationship between the two coexpressed differentiation markers, profilaggrin and loricrin, is not clear right now. In this study, we explored the interaction of profilaggrin N-terminal domain (PND) with loricrin in keratinocytes and epidermis. Confocal immunofluorescence microscopic analysis of human epidermis showed that PND colocalized with loricrin. Loricrin nucleofected into HaCaT cells colocalized with PND in the nucleus and cytoplasm. The PND localizes to both the nucleus and cytoplasm of epidermal granular layer cells. Nucleofected PND also colocalized with keratin 10 (K10) in the nucleus and cytoplasm. Immunoelectron microscopic analysis of human epidermis confirmed the findings in nucleofected keratinocytes. Yeast two-hybrid assays showed that the B domain of human and mouse PND interacted with loricrin. The glutathione S-transferase (GST) pull-down analysis using recombinant GST-PND revealed that PND interacted with loricrin and K10. Knockdown of PND in an organotypic skin culture model caused loss of filaggrin expression and a reduction in both the size and number of keratohyalin granules, as well as markedly reduced expression of loricrin. Considering that expression of PND is closely linked to keratinocyte terminal differentiation, we conclude that PND interacts with loricrin and K10 in vivo and that these interactions are likely to be relevant for cornified envelope assembly and subsequent epidermal barrier formation.
Collapse
Affiliation(s)
- Kozo Yoneda
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Behne MJ, Jensen JM. Calcium in epidermis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:945-53. [PMID: 22453978 DOI: 10.1007/978-94-007-2888-2_43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Martin J Behne
- University Medical Center Hamburg-Eppendorf, Department of Dermatology and Venerology, Martinistr. 52, 20246, Hamburg, Germany.
| | | |
Collapse
|
49
|
Ryanodine Receptors Are Expressed in Epidermal Keratinocytes and Associated with Keratinocyte Differentiation and Epidermal Permeability Barrier Homeostasis. J Invest Dermatol 2012; 132:69-75. [DOI: 10.1038/jid.2011.256] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Abstract
The keratinocytes of the skin are unique in being not only the primary source of vitamin D for the body, but in possessing the enzymatic machinery to metabolize vitamin D to its active metabolite 1,25(OH)(2)D. Furthermore, these cells also express the vitamin D receptor (VDR) that enables them to respond to the 1,25(OH)(2)D they produce. Numerous functions of the skin are regulated by 1,25(OH)(2)D and/or its receptor. These include inhibition of proliferation, stimulation of differentiation including formation of the permeability barrier, promotion of innate immunity, and promotion of the hair follicle cycle. Regulation of these actions is exerted by a number of different coregulators including the coactivators DRIP and SRC, the cosuppressor hairless (Hr), and β-catenin. This review will examine the regulation of vitamin D production and metabolism in the skin, and explore the various functions regulated by 1,25(OH)(2)D and its receptor.
Collapse
Affiliation(s)
- Daniel D Bikle
- Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA.
| |
Collapse
|