1
|
Breakspear S, Noecker B, Popescu C. Mechanical anisotropy of hair affected by genetic diseases highlights structural information related to differential crosslinking in keratins. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:53-67. [PMID: 36853344 DOI: 10.1007/s00249-023-01635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/01/2022] [Accepted: 02/04/2023] [Indexed: 03/01/2023]
Abstract
Previous work with Atomic Force Microscope (AFM) nanoindentation, on longitudinal and cross-sections of the human hair fibre, allowed for the derivation of a model for the mechanical behaviour of human hair, called the Anisotropic Index. Expanding that research further, and by applying this model, the nanomechanical behaviour of hairs from patients with the disease Trichothiodystrophy (TTD) has been examined and structural insights, gained from combining the AFM results with Differential Scanning Calorimetry (DSC) experiments and tensile measurements, suggests that TTD-affected hairs have a relatively increased amount of Keratin Intermediate Filaments, contained in compartments of differing crosslinking extent. The associated calculations of axial and transverse Young's Moduli deliver values in good agreement with the measured fibre mechanics. Furthermore, comparing these findings with the results previously obtained from the study of hairs from patients with the disease Monilethrix, it is shown that the Anisotropic Index correlates well with the known deficiencies in both hair types obtained from such patients and allows for discerning between the Control hair and from those affected by the two diseases. AFM nanoindentation along and across the fibre axis and the Anisotropic Index thus appear to reveal structural details of hair not otherwise acquirable, whilst DSC may offer a quick and simple method for distinguishing between different severities of TTD.
Collapse
Affiliation(s)
- Steven Breakspear
- KAO European Research Laboratories, KAO Germany GmbH, 64297, Darmstadt, Germany
| | - Bernd Noecker
- KAO European Research Laboratories, KAO Germany GmbH, 64297, Darmstadt, Germany
| | - Crisan Popescu
- KAO European Research Laboratories, KAO Germany GmbH, 64297, Darmstadt, Germany.
| |
Collapse
|
2
|
Nanomechanical properties of Monilethrix affected hair are independent of phenotype. J Struct Biol 2020; 213:107679. [PMID: 33309724 DOI: 10.1016/j.jsb.2020.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 11/21/2022]
Abstract
Utilising the AFM nanoindentation technique for the study of hair cross- and longitudinal sections, the mechanical anisotropy of human hair fibres affected by a rare congenital condition, Monilethrix, has been investigated for the first time. Supported by X-ray microdiffraction data, and applying a model based on an ideal composite material consisting of rods (KIFs) and matrix (KAPs) to Monilethrix affected fibres, it has been shown that the results could be grouped into clearly different classes, namely: almost isotropic behaviour for Monilethrix affected hairs and anisotropic behaviour for Control hair. Moreover, AFM nanoindentation of hair cross sections has demonstrated, also for the first time that hairs affected by Monilethrix have a continuous, and not periodic, weakness within the cortex. This has been attributed to disruptions in the KIF-KIF, KIF-intermacrofibrillar matrix or KIF-desmosome complexes within the hair shaft, as suggested by X-ray microdiffraction examination. Hairs from a patient exhibiting no obvious phenotype exhibited similar mechanical weakness despite the otherwise normal visual appearance of the fibre. This further supports a hypothesis that the beaded appearance of Monilethrix hair is a secondary factor, unrelated to the inherent structural weakness.
Collapse
|
3
|
Sharma MK, Gupta S, Kumar R, Singhal AK, Jain SK, Sharma M. A Clinico-Epidemiological Study of Scalp Hair Loss in Children (0-18 Years) in Kota Region, South-East Rajasthan. Indian J Dermatol 2019; 64:285-291. [PMID: 31516137 PMCID: PMC6714197 DOI: 10.4103/ijd.ijd_393_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background: Currently, the studies related to hair loss in children showed the variable prevalence of different clinical patterns and causes of scalp hair loss, that had regional variation. Aims: The aim of this study is to evaluate the epidemiology and clinical pattern of scalp hair loss in children (0–18 years age group). Materials and Methods: A total of 300 children presenting with scalp hair loss were studied during a period of 1 year from April 2015 to March 2016. The results were recorded and analyzed. Results: The most common disorder found in this study was tinea capitis seen in 166 (55.33%) cases followed by alopecia areata, seborrheic dermatitis, pediculosis with secondary infection. Other uncommon causes were lichen planopilaris, tractional alopecia, telogen effluvium, nevus sebaceous, occipital neonatal alopecia, ectodermal dysplasia, scalp psoriasis, trichotillomania, and alopecia due to nutritional deficiency. Several other rare causes were identified in this study. Conclusion: This study showed that hair loss in children in our region is not an uncommon problem and results from a variety of causes. Early diagnosis and treatment are needed to prevent further hair loss and to avoid irreversible hair loss and scarring alopecia. As has been observed in this study, hair problem may be due to important nutritional deficiency. We should be aware of such presentation. These may be a clue to the diagnosis of systemic illness.
Collapse
Affiliation(s)
- Manoj Kumar Sharma
- Department of Dermatology, Venereology and Leprology, Government Medical College, Kota, Rajasthan, India
| | - Savera Gupta
- Department of Dermatology, Venereology and Leprology, Government Medical College, Kota, Rajasthan, India
| | - Ramesh Kumar
- Department of Dermatology, Venereology and Leprology, Government Medical College, Kota, Rajasthan, India
| | - Anil Kumar Singhal
- Department of Dermatology, Venereology and Leprology, Government Medical College, Kota, Rajasthan, India
| | - Suresh Kumar Jain
- Department of Dermatology, Venereology and Leprology, Government Medical College, Kota, Rajasthan, India
| | - Mukul Sharma
- Department of Dermatology, Venereology and Leprology, Government Medical College, Kota, Rajasthan, India
| |
Collapse
|
4
|
Differences between ultrastructure and protein composition in straight hair fibres. ZOOLOGY 2019; 133:40-53. [DOI: 10.1016/j.zool.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
|
5
|
Wu J, Lin Y, Xu W, Li Z, Fan W. A mutation in the type II hair keratin KRT86 gene in a Han family with monilethrix. J Biomed Res 2013; 25:49-55. [PMID: 23554671 PMCID: PMC3596676 DOI: 10.1016/s1674-8301(11)60006-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/12/2010] [Accepted: 01/11/2011] [Indexed: 12/18/2022] Open
Abstract
Monilethrix, a congenital disease of hair, is usually associated with mutations in keratin genes, like KRT81, KRT83 and KRT86. We conducted this study to investigate the mutation of type II human basic hair keratin hHb/KRT gene in a Han family with monilethrix and obtain information for potential pathogenic mechanism study of monilethrix. Peripheral blood samples were drawn for genomic DNA detection. Exon 1 and exon 7 of the KRT81, KRT83 and KRT86 genes were amplified by PCR. All PCR products were sequenced directly using an ABI 310 DNA sequencer. These sequences were aligned with the standard sequences in GenBank using the BLAST software. PCR products were digested with restriction endonuclease and restriction fragment length polymorphism (RFLP) analysis was performed. In this study, we identified one novel mutation, which is a heterozygous transitional mutation of G→A at position 1,289 in exon 7 of the KRT86 gene [R430Q (KRT86)]. RFLP assays for the novel mutation excluded the possibility of polymorphism. The R430Q mutation of the KRT86 gene may be pathogenic for monilethrix. Meanwhile, we did not find any novel mutation or recurrent mutation in exons 1 and 7 of KRT81 and KRT83 and exon 1 of KRT86. There is a potential pathogenic gene in the subjects and our results expand the spectrum of mutations in the hHb6 gene.
Collapse
Affiliation(s)
- Jin Wu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | |
Collapse
|
6
|
Ferrando J, Galve J, Torres-Puente M, Santillán S, Nogués S, Grimalt R. Monilethrix: A New Family with the Novel Mutation in KRT81 Gene. Int J Trichology 2012; 4:53-5. [PMID: 22628999 PMCID: PMC3358948 DOI: 10.4103/0974-7753.96105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Juan Ferrando
- Department of Dermatology, Hospital Clínic, University of Barcelona, Valencia
| | | | | | | | | | | |
Collapse
|
7
|
De Cruz R, Horev L, Green J, Babay S, Sladden M, Zlotogorski A, Sinclair R. A novel monilethrix mutation in coil 2A of KRT86 causing autosomal dominant monilethrix with incomplete penetrance. Br J Dermatol 2012; 166 Suppl 2:20-6. [DOI: 10.1111/j.1365-2133.2012.10861.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Rossi A, Iorio A, Scali E, Fortuna MC, Mari E, Palese E, Greco P, Carlesimo M. Monilethrix treated with minoxidil. Int J Immunopathol Pharmacol 2011; 24:239-42. [PMID: 21496408 DOI: 10.1177/039463201102400129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In literature many different therapies are proposed to treat Monilethrix, but a definitive therapy still doe not exist. We decided to treat four patients affected by Monilethrix, with topical minoxidil 2%, 1 ml night and day for 1 year. Minoxidil led to a an increase of normal hair shaft without any side effects in all the patients. Therefore topical minoxidil 2% could be considered a good therapy to treat Monilethrix.
Collapse
|
9
|
|
10
|
Shimomura Y, Wajid M, Petukhova L, Kurban M, Christiano AM. Autosomal-dominant woolly hair resulting from disruption of keratin 74 (KRT74), a potential determinant of human hair texture. Am J Hum Genet 2010; 86:632-8. [PMID: 20346438 DOI: 10.1016/j.ajhg.2010.02.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/21/2010] [Accepted: 02/22/2010] [Indexed: 12/21/2022] Open
Abstract
Autosomal-dominant woolly hair (ADWH) is a rare disorder characterized by tightly curled hair. The molecular basis of ADWH has not previously been reported. In this study, we identified a Pakistani family with ADWH. The family showed linkage to chromosome 12q12-q14.1, containing the type II keratin gene cluster. We discovered a heterozygous mutation, p.Asn148Lys, within the helix initiation motif of the keratin 74 (KRT74) gene in all affected family members. KRT74 encodes the inner root sheath (IRS)-specific epithelial (soft) keratin 74. We demonstrate that the mutant K74 protein results in disruption of keratin intermediate filament formation in cultured cells, most likely in a dominant-negative manner. Furthermore, we sequenced the mouse Krt71-74 genes in the dominant Caracul-like 4 (Cal4) allele, which is characterized by a wavy-coat phenotype and maps to the same region of mouse chromosome 15 as the Caracul (Ca) and Reduced coat (Rco) alleles. We identified a heterozygous mutation, p.Glu440Lys, not in Krt74 but in the neighboring gene, Krt71. Krt71 was previously reported to harbor Ca and Rco mutations, as well as a coding SNP that is associated with curly-coated dogs. In this study, we define the ADWH phenotype resulting from a mutation in a hair-follicle-specific epithelial keratin in humans. Our findings not only further underscore the crucial roles of the IRS-specific epithelial keratin genes Krt71-74 in hair disorders but also open the possibility that these genes might function as genetic determinants of normal variation in hair texture across mammalian species.
Collapse
|
11
|
The genetics of hair shaft disorders. J Am Acad Dermatol 2008; 59:1-22; quiz 23-6. [DOI: 10.1016/j.jaad.2008.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 04/03/2008] [Accepted: 04/07/2008] [Indexed: 11/23/2022]
|
12
|
Shimomura Y, Sakamoto F, Kariya N, Matsunaga K, Ito M. Mutations in the Desmoglein 4 Gene Are Associated with Monilethrix-like Congenital Hypotrichosis. J Invest Dermatol 2006; 126:1281-5. [PMID: 16439973 DOI: 10.1038/sj.jid.5700113] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gene encoding human desmoglein 4 (DSG4) was recently cloned, and a mutation in this gene has been reported in several consanguineous Pakistani families affected with localized autosomal recessive hypotrichosis (LAH). In addition, various mutations in the Dsg4 gene have been identified in animal models of hypotrichosis that share a characteristic phenotype called "lanceolate hair". To date, the features of the hair-shaft anomaly in patients with LAH have not been well described. We report a Japanese patient affected with congenital hypotrichosis that was originally diagnosed as monilethrix because she had a hair-shaft abnormality that resembled moniliform hair. However, no mutations were found in the type II hair keratin genes, hHb1, hHb3, and hHb6, whose mutations cause monilethrix. Instead, we identified novel compound heterozygous mutations in the DSG4 gene of our patient. On the maternal allele is a novel S192P transition within the extracellular cadherin II domain of DSG4; on the paternal allele is a novel 2039insT mutation leading to the generation of unstable transcripts. Here we present the observation that mutations in the DSG4 gene can cause monilethrix-like congenital hypotrichosis. Based on our findings, we propose that LAH and monilethrix could overlap.
Collapse
Affiliation(s)
- Yutaka Shimomura
- Department of Dermatology, Niigata University School of Medicine, Niigata, Japan.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Hair shaft abnormalities are fascinating and can provide a diagnostic challenge. Current knowledge of structural changes in hair has been amplified by scanning and transmission electron microscopy (SEM and TEM). Dermatologists using the light microscope and polarization in the office can diagnose the great majority of hair shaft defects. A number of these defects are illustrated here.
Collapse
Affiliation(s)
- David A Whiting
- University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
14
|
Abstract
Substantial progress has been made regarding the elucidation of differentiation processes of the human hair follicle. This review first describes the genomic organization of the human hair keratin gene family and the complex expression characteristics of hair keratins in the hair-forming compartment. Sections describe the role and fate of hair keratins in the diseased hair follicle, particularly hereditary disorders and hair follicle-derived tumors. Also included is a report on the actual state of knowledge concerning the regulation of hair keratin expression. In the second part of this review, essentially the same principles are applied to outline more recent and, thus, occasionally fewer data on specialized epithelial keratins expressed in various tissue constituents of the external sheaths and the companion layer of the follicle. A closing outlook highlights issues that need to be explored further to deepen our insight into the biology and genetics of the hair follicle.
Collapse
Affiliation(s)
- Lutz Langbein
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
15
|
Abstract
The association of keratin mutations with genetic skin fragility disorders is now one of the best-established examples of cytoskeleton disorders. It has served as a paradigm for many other diseases and has been highly informative for the study of intermediate filaments and their associated components, in helping to understand the functions of this large family of structural proteins. The keratin diseases have shown unequivocally that, at least in the case of the epidermal keratins, a major function of intermediate filaments is to provide physical resilience for epithelial cells. This review article reflects on the variety of phenotypes arising from mutations in keratins and the reasons for this variation.
Collapse
Affiliation(s)
- E B Lane
- Cancer Research UK Cell Structure Research Group, Division of Cell and Developmental Biology, University of Dundee School of Life Sciences, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK.
| | | |
Collapse
|
16
|
Horev L, Djabali K, Green J, Sinclair R, Martinez-Mir A, Ingber A, Christiano AM, Zlotogorski A. De novo mutations in monilethrix. Exp Dermatol 2004; 12:882-5. [PMID: 14714571 DOI: 10.1111/j.0906-6705.2003.00022.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the hair keratins hHb1 and hHb6 have been recently reported to cause monilethrix, an autosomal dominant hair shaft disorder, characterized by variable degrees of hair fragility and follicular hyperkeratosis. We found 10 families with monilethrix in whicn the parents were not clinically affected, and sequenced the hair keratin hHb1, hHb2 and hHb6 genes in seven patients. In five patients no mutations were found, while in two patients we identified de novo germline missense mutations at the helix termination motif: E402K (hHb6) and E413K (hHb1).
Collapse
Affiliation(s)
- Liran Horev
- Department of Dermatology, Hadassah University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bairwa NK, Malhotra D, Saha A, Bamezai R. A novel promoter polymorphism (-71C>T) in KRTHB6 gene in Indian population. ANNALES DE GENETIQUE 2004; 47:125-7. [PMID: 15183744 DOI: 10.1016/j.anngen.2004.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Accepted: 12/23/2003] [Indexed: 04/29/2023]
Abstract
We have screened the basal promoter region, of KRTHB6 gene involving CAAT and TATA boxes in randomly selected 125 individuals of Indian origin by PCR-SSCP and DNA sequencing. We observed a novel promoter polymorphism (-71C>T) which could be differentiated by using LweI restriction enzyme. The frequency of -71 C allele, allele A (Accession no AY203963), was observed to be higher ( 0.712) in comparison to -71 T allele, allele B (0.288) (Accession no. AY037552).
Collapse
Affiliation(s)
- Narendra K Bairwa
- National Centre of Applied Human Genetics, Human Genetics Section, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | | | |
Collapse
|
18
|
Khandpur S, Bairwa NK, Reddy BSN, Bamezai R. A study of phenotypic correlation with the genotypic status of HTM regions of KRTHB6 and KRTHB1 genes in monilethrix families of Indian origin. ACTA ACUST UNITED AC 2004; 47:77-84. [PMID: 15050877 DOI: 10.1016/j.anngen.2003.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2003] [Accepted: 07/17/2003] [Indexed: 10/27/2022]
Abstract
We investigated 21 affected individuals in two unrelated monilethrix families of Indian origin and identified point mutation (g.4624G>A) in the HTM motif (exon-7) of the KRTHB6 gene in all the affected members leading to E413K change in this basic keratin. The HTM motif of KRTHB1, however, showed previously unreported two allelic variants, one with three novel variations (SNPs) in cis: g.4421insT (intronic); g.4461T>C (exonic); g.4485A>G (exonic) and second with only intronic variation (SNP) (g.4421insT). Interestingly, the two distinct phenotypes of: localized severe hair defect with beaded appearance confined to the scalp of all the affected members of Family 1 and of generalized unbeaded hair defect of moderate severity in Family 2, segregated in the two families, respectively, correlating with the two separate genotypes for the functionally critical HTM region of KRTHB1 gene in the background of E413K mutation in the KRTHB6 gene. Presence of E413K mutation in the HTM of KRTHB6 gene was not observed in the background of the allelic variant with three SNPs in KRTHB1 gene in homozygous condition in all the affected members of Family 1, affected with a localized but severe form of the disease. However, the same (E413K) mutation existed in the KRTHB6 gene in the background of the allelic variant with three SNPs in the KRTHB1 gene in homozygous condition, consistently in all the affected members of Family 2, where all its affected members showed the segregation of a milder form of the disease. Presence of both E413K mutation in the KRTHB6 and the variations in the KRTHB1 genes were not observed together in randomly selected 150 unaffected controls outside the two affected families. This is also the first report of HTM mutation of KRTHB6 gene in monilethrix cases of Indian origin and the first report of SNPs in the KRTHB1 gene in literature to our knowledge.
Collapse
Affiliation(s)
- Sujay Khandpur
- Department of Dermatology, Lok Nayak Hospital, New Delhi 110002, India
| | | | | | | |
Collapse
|
19
|
Djabali K, Panteleyev AA, Lalin T, Garzon MC, Longley BJ, Bickers DR, Zlotogorski A, Christiano AM. Recurrent missense mutations in the hair keratin gene hHb6 in monilethrix. Clin Exp Dermatol 2003; 28:206-10. [PMID: 12653715 DOI: 10.1046/j.1365-2230.2003.01196.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Monilethrix is an autosomal dominant hair disorder characterized by a beaded appearance of the hair resulting from periodic thinning of the shaft (MIM 158000). The phenotype shows variable penetrance and results in hair fragility and patchy dystrophic alopecia. Mutations of the helix-encoded region in two hair-specific keratins (hHb1 and hHb6) have been identified as responsible for this disorder. We investigated two unrelated families from Russia and Colombia with monilethrix and found two missense mutations in hHb6. In the Russian family, we found a G to A transition at the first base of codon 402, resulting in a lysine substitution (GAG to AAG), designated E402K. In the Colombian family, affected patients carried a missense mutation of codon 413, involving a transition from G to A causing a lysine substitution (GAG to AAG), designated E413K. These two mutations have been identified in other monilethrix families from Europe. Our findings extend the body of evidence implicating recurrent hHb6 and hHb1 mutations in monilethrix families from around the world.
Collapse
Affiliation(s)
- K Djabali
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hofmann I, Winter H, Mücke N, Langowski J, Schweizer J. The in vitro assembly of hair follicle keratins: comparison of cortex and companion layer keratins. Biol Chem 2002; 383:1373-81. [PMID: 12437130 DOI: 10.1515/bc.2002.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hair follicle consists of a complex system of multiple tissue compartments that are clearly distinguishable by their morphology and type of differentiation. We have synthesized hair follicle-specific keratins from the companion layer (K6hf, K17) and the hair cortex (Ha1, Hb3, Hb6) in Escherichia coli. The assembly of purified keratins in mixtures of K6hf/K17 and in mixtures of hair cortex keratins was compared in urea solutions, low ionic strength and physiological strength buffers, by urea melting gels, electron microscopy and analytical ultracentrifugation. Both types of keratin mixtures, keratins from the companion layer and keratins from the hair cortex, formed heterotypic complexes at 5 M urea. In low ionic strength buffers, the keratins from the companion layer were assembled to bona fide intermediate filaments. In contrast, mixtures of hair cortex keratins stayed in an oligomeric state with a mean s value of 9 as determined in sedimentation velocity experiments. Hair cortex keratins were, however, assembled into intermediate filaments at physiological salt conditions. A point mutated hair cortex keratin [Hb6(Glu402Lys)] formed no long filaments when mixed with Ha1; instead, the assembled structures showed a length distribution of 50.8 +/- 13.4 nm, comparable to the size distribution of assembly intermediates called 'unit-length' filaments.
Collapse
Affiliation(s)
- Ilse Hofmann
- Division of Cell Biology, German Cancer Research Center, Heidelberg
| | | | | | | | | |
Collapse
|
21
|
Whittock NV, Ashton GH, Griffiths WA, Eady RA, McGrath JA. New mutations in keratin 1 that cause bullous congenital ichthyosiform erythroderma and keratin 2e that cause ichthyosis bullosa of Siemens. Br J Dermatol 2001; 145:330-5. [PMID: 11531804 DOI: 10.1046/j.1365-2133.2001.04327.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The intermediate filaments of epithelial cells are formed by keratins, a family of structurally related proteins, which are expressed in pairs of acidic (type I) and basic (type II) polypeptides in a tissue- and differentiation-specific manner. Mutations in the genes encoding several keratins have been implicated in the pathogenesis of diseases of keratinization. We report molecular analysis of two patients with the rare autosomal dominant disorders bullous congenital ichthyosiform erythroderma (BCIE) and ichthyosis bullosa of Siemens (IBS). Previous studies have shown that these genodermatoses are due to mutations in the KRT1 and KRT2E genes, respectively. We report a new amino acid substitution mutation in codon 155 of KRT1 (valine to aspartic acid) in the conserved H1 domain of the protein in the patient with BCIE. We also report a novel amino acid substitution mutation in codon 192 of KRT2E (asparagine to lysine) in the conserved 1A helix initiation peptide of the protein in the patient with IBS. Our results demonstrate that these mutations are deleterious to keratin filament network stability and lead to specific clinical inherited disorders of keratinization.
Collapse
Affiliation(s)
- N V Whittock
- Department of Cell and Molecular Pathology, St John's Institute of Dermatology, The Guy's, King's College, London, UK.
| | | | | | | | | |
Collapse
|