1
|
Dainese-Marque O, Garcia V, Andrieu-Abadie N, Riond J. Contribution of Keratinocytes in Skin Cancer Initiation and Progression. Int J Mol Sci 2024; 25:8813. [PMID: 39201498 PMCID: PMC11354502 DOI: 10.3390/ijms25168813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Keratinocytes are major cellular components of the skin and are strongly involved in its homeostasis. Oncogenic events, starting mainly from excessive sun exposure, lead to the dysregulation of their proliferation and differentiation programs and promote the initiation and progression of non-melanoma skin cancers (NMSCs). Primary melanomas, which originate from melanocytes, initiate and develop in close interaction with keratinocytes, whose role in melanoma initiation, progression, and immune escape is currently being explored. Recent studies highlighted, in particular, unexpected modes of communication between melanocytic cells and keratinocytes, which may be of interest as sources of new biomarkers in melanomagenesis or potential therapeutic targets. This review aims at reporting the various contributions of keratinocytes in skin basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (cSCC), and melanoma, with a greater focus on the latter in order to highlight some recent breakthrough findings. The readers are referred to recent reviews when contextual information is needed.
Collapse
Affiliation(s)
| | | | - Nathalie Andrieu-Abadie
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31037 Toulouse, France
| | - Joëlle Riond
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31037 Toulouse, France
| |
Collapse
|
2
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
3
|
Masuda-Kuroki K, Alimohammadi S, Di Nardo A. S. epidermidis Rescues Allergic Contact Dermatitis in Sphingosine 1-Phosphate Receptor 2-Deficient Skin. Int J Mol Sci 2023; 24:13190. [PMID: 37685997 PMCID: PMC10487941 DOI: 10.3390/ijms241713190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Recent studies have identified a subtype of the S1P-receptor family called sphingosine-1-phosphate receptor 2 (S1PR2), which plays a crucial role in maintaining the skin barrier. It has been observed that S1PR2 and Staphylococcus epidermidis (S. epidermidis) work together to regulate the skin barrier. However, the interaction between these two factors is still unclear. To investigate this, a study was conducted on healthy skin and allergic contact dermatitis (ACD) using 3,4-Dibutoxy-3-cyclobutene-1,2-dione (SADBE) on the ears of S1pr2fl/fl and S1pr2fl/flK14-Cre mice and using 1 × 106 CFU of S. epidermidis to examine its effects on the skin. The results showed that in S. epidermidis-conditioned ACD, the ear thickness of S1pr2fl/flK14-Cre mice was lower than that of S1pr2fl/fl mice, and mRNA expressions of Il-1β and Cxcl2 of S1pr2fl/flK14-Cre mice were lower than that of S1pr2fl/fl mice in ACD with S. epidermidis. Furthermore, the gene expression of Claudin-1 and Occludin in S1pr2fl/flK14-Cre mice was higher than that of S1pr2fl/fl mice in ACD with S. epidermidis. The study concludes that S. epidermidis colonization improves the skin barrier and prevents ACD even when S1P signaling malfunctions.
Collapse
Affiliation(s)
| | | | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; (K.M.-K.); (S.A.)
| |
Collapse
|
4
|
Wang F, Tian Y, Huang L, Qin T, Ma W, Pei C, Xu B, Han H, Liu X, Pan P, Yu X, Chang Q, Wang Y, Zhang S, Pei X. Roles of follicle stimulating hormone and sphingosine 1-phosphate co-administered in the process in mouse ovarian vitrification and transplantation. J Ovarian Res 2023; 16:173. [PMID: 37620938 PMCID: PMC10463983 DOI: 10.1186/s13048-023-01206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/16/2023] [Indexed: 08/26/2023] Open
Abstract
Some major challenges of ovarian tissue vitrification and transplantation include follicle apoptosis induced by cryopreservation and ischemia-reperfusion injury, as well as ovarian follicle loss during post-transplantation. This research aimed to investigate the protective effects and underlying mechanisms of follicle-stimulating hormone (FSH) and Sphingosine-1-phosphate (S1P) on vitrified and post-transplantation ovaries. Ovaries from 21-day-old mice were cryopreservation by vitrification with 0.3 IU/mL FSH, 2 µM S1P, and 0.3 IU/mL FSH + 2 µM S1P, respectively, for follicle counting and detection of apoptosis-related indicators. The results demonstrated that FSH and S1P co-intervention during the vitrification process could preserve the primordial follicle pool and inhibit follicular atresia by suppressing cell apoptosis. The thawed ovaries were transplanted under the renal capsule of 6-8 week-old ovariectomized mice and removed 24 h or 7 days after transplantation. The results indicated that FSH and S1P co-intervention can inhibit apoptosis and autophagy in ovaries at 24 h after transplantation, and promote follicle survival by up-regulating Cx37 and Cx43 expression, enhanced angiogenesis in transplanted ovaries by promoting VEGF expression, as well as increased the E2 levels to restore ovarian endocrine function at 7 days after transplantation. The hypoxia and ischemia cell model was established by CoCl2 treatment for hypoxia in human granulosa-like tumor cell line (KGN), as well as serum-free culture system was used for ischemia. The results confirmed that ischemia-hypoxia-induced apoptosis in ovarian granulosa cells was reduced by FSH and S1P co-intervention, and granulosa cell autophagy was inhibited by up-regulating the AKT/mTOR signaling pathway. In summary, co-administration of FSH and S1P can maintain ovarian survival during ovarian vitrification and increase follicle survival and angiogenesis after transplantation.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yuan Tian
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liwen Huang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Tian Qin
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Wenye Ma
- Centre of Assisted Reproduction, Maternal and Children Health Care Hospital of Yinchuan, Yinchuan, China
| | - Chengbin Pei
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xinrui Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Pengge Pan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xiaoli Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Qin Chang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yanrong Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Shuya Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
5
|
Smith CJ, Williams JL, Hall C, Casas J, Caley MP, O'Toole EA, Prasad R, Metherell LA. Ichthyosis linked to sphingosine 1-phosphate lyase insufficiency is due to aberrant sphingolipid and calcium regulation. J Lipid Res 2023; 64:100351. [PMID: 36868360 PMCID: PMC10123262 DOI: 10.1016/j.jlr.2023.100351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/05/2023] Open
Abstract
Sphingosine 1-phosphate lyase (SGPL1) insufficiency (SPLIS) is a syndrome which presents with adrenal insufficiency, steroid-resistant nephrotic syndrome, hypothyroidism, neurological disease, and ichthyosis. Where a skin phenotype is reported, 94% had abnormalities such as ichthyosis, acanthosis, and hyperpigmentation. To elucidate the disease mechanism and the role SGPL1 plays in the skin barrier we established clustered regularly interspaced short palindromic repeats-Cas9 SGPL1 KO and a lentiviral-induced SGPL1 overexpression (OE) in telomerase reverse-transcriptase immortalised human keratinocytes (N/TERT-1) and thereafter organotypic skin equivalents. Loss of SGPL1 caused an accumulation of S1P, sphingosine, and ceramides, while its overexpression caused a reduction of these species. RNAseq analysis showed perturbations in sphingolipid pathway genes, particularly in SGPL1_KO, and our gene set enrichment analysis revealed polar opposite differential gene expression between SGPL1_KO and _OE in keratinocyte differentiation and Ca2+ signaling genesets. SGPL1_KO upregulated differentiation markers, while SGPL1_OE upregulated basal and proliferative markers. The advanced differentiation of SGPL1_KO was confirmed by 3D organotypic models that also presented with a thickened and retained stratum corneum and a breakdown of E-cadherin junctions. We conclude that SPLIS associated ichthyosis is a multifaceted disease caused possibly by sphingolipid imbalance and excessive S1P signaling, leading to increased differentiation and an imbalance of the lipid lamellae throughout the epidermis.
Collapse
Affiliation(s)
- Christopher J Smith
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
| | - Jack L Williams
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Charlotte Hall
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; Biomedical Research Centre (CIBEREHD), ISCIII, Madrid, Spain
| | - Matthew P Caley
- Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Edel A O'Toole
- Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Rathi Prasad
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
6
|
Kleuser B, Bäumer W. Sphingosine 1-Phosphate as Essential Signaling Molecule in Inflammatory Skin Diseases. Int J Mol Sci 2023; 24:ijms24021456. [PMID: 36674974 PMCID: PMC9863039 DOI: 10.3390/ijms24021456] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Sphingolipids are crucial molecules of the mammalian epidermis. The formation of skin-specific ceramides contributes to the formation of lipid lamellae, which are important for the protection of the epidermis from excessive water loss and protect the skin from the invasion of pathogens and the penetration of xenobiotics. In addition to being structural constituents of the epidermal layer, sphingolipids are also key signaling molecules that participate in the regulation of epidermal cells and the immune cells of the skin. While the importance of ceramides with regard to the proliferation and differentiation of skin cells has been known for a long time, it has emerged in recent years that the sphingolipid sphingosine 1-phosphate (S1P) is also involved in processes such as the proliferation and differentiation of keratinocytes. In addition, the immunomodulatory role of this sphingolipid species is becoming increasingly apparent. This is significant as S1P mediates a variety of its actions via G-protein coupled receptors. It is, therefore, not surprising that dysregulation in the signaling pathways of S1P is involved in the pathophysiological conditions of skin diseases. In the present review, the importance of S1P in skin cells, as well as the immune cells of the skin, is elaborated. In particular, the role of the molecule in inflammatory skin diseases will be discussed. This is important because interfering with S1P signaling pathways may represent an innovative option for the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Str. 2+4, 14195 Berlin, Germany
- Correspondence: (B.K.); (W.B.)
| | - Wolfgang Bäumer
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany
- Correspondence: (B.K.); (W.B.)
| |
Collapse
|
7
|
Masuda-Kuroki K, Di Nardo A. Sphingosine 1-Phosphate Signaling at the Skin Barrier Interface. BIOLOGY 2022; 11:biology11060809. [PMID: 35741330 PMCID: PMC9219813 DOI: 10.3390/biology11060809] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a product of membrane sphingolipid metabolism. S1P is secreted and acts via G-protein-coupled receptors, S1PR1-5, and is involved in diverse cellular functions, including cell proliferation, immune suppression, and cardiovascular functions. Recent studies have shown that the effects of S1P signaling are extended further by coupling the different S1P receptors and their respective downstream signaling pathways. Our group has recently reported that S1P inhibits cell proliferation and induces differentiation in human keratinocytes. There is a growing understanding of the connection between S1P signaling, skin barrier function, and skin diseases. For example, the activation of S1PR1 and S1PR2 during bacterial invasion regulates the synthesis of inflammatory cytokines in human keratinocytes. Moreover, S1P-S1PR2 signaling is involved in the production of inflammatory cytokines and can be triggered by epidermal mechanical stress and bacterial invasion. This review highlights how S1P affects human keratinocyte proliferation, differentiation, immunoreaction, and mast cell immune response, in addition to its effects on the skin barrier interface. Finally, studies targeting S1P-S1PR signaling involved in inflammatory skin diseases are also presented.
Collapse
|
8
|
Liu L, Wang J, Li HJ, Zhang S, Jin MZ, Chen ST, Sun XY, Zhou YQ, Lu Y, Yang D, Luo Y, Ru Y, Li B, Li X. Sphingosine-1-Phosphate and Its Signal Modulators Alleviate Psoriasis-Like Dermatitis: Preclinical and Clinical Evidence and Possible Mechanisms. Front Immunol 2022; 12:759276. [PMID: 34992595 PMCID: PMC8724303 DOI: 10.3389/fimmu.2021.759276] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Psoriasis is an autoimmune skin disease associated with lipid metabolism. Sphingosine-1-phosphate (S1P) is a bioactive lipid that plays a key role in the development of autoimmune diseases. However, there is currently a lack of comprehensive evidence of the effectiveness of S1P on psoriasis. Objective To assess the efficacy and possible mechanism of S1P and its signal modulators in the treatment of psoriasis-like dermatitis. Methods Six databases were searched through May 8, 2021, for studies reporting S1P and its signal modulators. Two reviewers independently extracted information from the enrolled studies. Methodological quality was assessed using SYRCLE’s risk of bias tool. RevMan 5.3 software was used to analyze the data. For clinical studies, the Psoriasis Area and Severity Index score were the main outcomes. For preclinical studies, we clarified the role of S1P and its regulators in psoriasis in terms of phenotype and mechanism. Results One randomized double-blind placebo-controlled trial and nine animal studies were included in this study. The pooled results showed that compared with control treatment, S1P receptor agonists [mean difference (MD): −6.80; 95% confidence interval (CI): −8.23 to −5.38; p<0.00001], and sphingosine kinase 2 inhibitors (MD: −0.95; 95% CI: −1.26 to −0.65; p<0.00001) alleviated psoriasis-like dermatitis in mice. The mechanism of S1P receptor agonists in treating psoriasis might be related to a decrease in the number of white blood cells, topical lymph node weight, interleukin-23 mRNA levels, and percentage of CD3+ T cells (p<0.05). Sphingosine kinase 2 inhibitors ameliorated psoriasis in mice, possibly by reducing spleen weight and cell numbers (p<0.05). Conclusions S1P receptor agonists and sphingosine kinase 2 inhibitors could be potential methods for treating psoriasis by decreasing immune responses and inflammatory factors.
Collapse
Affiliation(s)
- Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Jin Li
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shuo Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng-Zhu Jin
- Department of Dermatology, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Si-Ting Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Ying Sun
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Qiong Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Yang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.,Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Vietri Rudan M, Watt FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol 2022; 12:804824. [PMID: 35095565 PMCID: PMC8791442 DOI: 10.3389/fphys.2021.804824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian epidermis is a striking example of the role of lipids in tissue biology. In this stratified epithelium, highly specialized structures are formed that leverage the hydrophobic properties of lipids to form an impermeable barrier and protect the humid internal environment of the body from the dry outside. This is achieved through tightly regulated lipid synthesis that generates the molecular species unique to the tissue. Beyond their fundamental structural role, lipids are involved in the active protection of the body from external insults. Lipid species present on the surface of the body possess antimicrobial activity and directly contribute to shaping the commensal microbiota. Lipids belonging to a variety of classes are also involved in the signaling events that modulate the immune responses to environmental stress as well as differentiation of the epidermal keratinocytes themselves. Recently, high-resolution methods are beginning to provide evidence for the involvement of newly identified specific lipid molecules in the regulation of epidermal homeostasis. In this review we give an overview of the wide range of biological functions of mammalian epidermal lipids.
Collapse
|
10
|
Gray N, Limberg MM, Bräuer AU, Raap U. Novel functions of S1P in chronic itchy and inflammatory skin diseases. J Eur Acad Dermatol Venereol 2021; 36:365-372. [PMID: 34679239 DOI: 10.1111/jdv.17764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022]
Abstract
S1P is a pleotropic sphingolipid signalling molecule that acts through binding to five high-affinity G-protein coupled receptors. S1P-signaling affects cell fate in a multitude of ways, e.g. influencing cell differentiation, proliferation, and apoptosis, as well as playing an important role in immune cell trafficking. Though many effects of S1P-signaling in the human body have been discovered, the full range of functions is yet to be understood. For inflammatory skin diseases such as atopic dermatitis and psoriasis, evidence is emerging that dysfunction and imbalance of the S1P-axis is a contributing factor. Multiple studies investigating the efficacy of S1PR modulators in alleviating the severity and symptoms of skin conditions in various animal models and human clinical trials have shown promising results and validated the interest in the S1P-axis as a potential therapeutic target. Even though the involvement of S1P-signalling in inflammatory skin diseases still requires further clarification, the implications of the recent findings may prompt expansion of research to additional skin conditions and more S1P-axis modulatory pharmaceuticals.
Collapse
Affiliation(s)
- N Gray
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - M M Limberg
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - A U Bräuer
- Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - U Raap
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
11
|
Campione E, Cosio T, Di Prete M, Lanna C, Dattola A, Bianchi L. Experimental Pharmacological Management of Psoriasis. J Exp Pharmacol 2021; 13:725-737. [PMID: 34345187 PMCID: PMC8323855 DOI: 10.2147/jep.s265632] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/30/2021] [Indexed: 01/26/2023] Open
Abstract
Psoriasis is a chronic, relapsing, immune-mediated systemic disease. Its pathogenesis is complex and not fully understood yet. Genetic and epigenetic factors interact with molecular pathways involving TNF-α, IL-23/IL-17 axis, and peculiar cytokines, as IL-36 or phosphodiesterase 4. This review discusses the mechanisms involved in the development of the disease, as well as the therapeutic options proposed following the investigation of the inflammatory psoriatic pathways. We performed a comprehensive search using the words “psoriasis” and the newest molecules currently under investigation and approval. From these data, a new scenario in psoriasis is occurring to personalize the therapies - especially systemic ones and those using small molecules – and avoid topical and injectable drugs. We reported the newest therapeutic opportunities, including the inhibitors of Janus kinase/tyrosine kinase 2, phosphodiesterase-4 and IL-36 receptor. Today, more than 20 molecules are under investigation for the treatment of cutaneous psoriasis. Most of them are constituted by small molecules or biologic therapies. This underlines how psoriasis needs systemic therapies, due to its complex pathogenesis and multisystemic involvement.
Collapse
Affiliation(s)
- Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Terenzio Cosio
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Monia Di Prete
- Anatomic Pathology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Caterina Lanna
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Annunziata Dattola
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Luca Bianchi
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| |
Collapse
|
12
|
The Effectiveness of Anti-Apoptotic Agents to Preserve Primordial Follicles and Prevent Tissue Damage during Ovarian Tissue Cryopreservation and Xenotransplantation. Int J Mol Sci 2021; 22:ijms22052534. [PMID: 33802539 PMCID: PMC7961474 DOI: 10.3390/ijms22052534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study is to investigate the effectiveness of sphingosine-1-phosphate (S1P) and Z-VAD-FMK (Z-VAD) as anti-apoptotic agents to preserve ovarian function and prevent tissue damage during ovarian tissue cryopreservation and transplantation. This study consisted of two steps, in vitro and in vivo. In the first step, human ovarian tissues were cryopreserved using slow-freezing media alone, S1P, or Z-VAD (control, S1P, Z-VAD group); based on the outcomes in these groups, Z-VAD was selected for subsequent xenotransplantation. In the second step, human frozen/thawed ovarian tissues were grafted into fifty mice divided into three groups: slow-freezing/thawing and transplantation without an anti-apoptotic agent (Trans-control) and xenotransplantation with or without Z-VAD injection (Trans-Z-VAD-positive and Trams-Z-VAD-negative groups, respectively). In the first step, the Z-VAD group had a significantly higher primordial follicular count than the S1P (p = 0.005) and control groups (p = 0.04). Transplanted ovarian tissues were obtained 4 weeks after transplantation (second step). Angiogenesis was significantly increased in the Z-VAD-negative (p = 0.03) and -positive (p = 0.04) groups compared to the control group. This study demonstrated that slow-freezing and transplantation with Z-VAD is an effective method for preserving primordial follicle counts, decreasing double-strand DNA breaks, and increasing angiogenesis in a mouse model. Further molecular and clinical studies are needed to confirm these results.
Collapse
|
13
|
Alkaline ceramidase family: The first two decades. Cell Signal 2020; 78:109860. [PMID: 33271224 DOI: 10.1016/j.cellsig.2020.109860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022]
Abstract
Ceramidases are a group of enzymes that catalyze the hydrolysis of ceramide, dihydroceramide, and phytoceramide into sphingosine (SPH), dihydrosphingosine (DHS), and phytosphingosine (PHS), respectively, along with a free fatty acid. Ceramidases are classified into the acid, neutral, and alkaline ceramidase subtypes according to the pH optima for their catalytic activity. YPC1 and YDC1 were the first alkaline ceramidase genes to be identified and cloned from the yeast Saccharomyces cerevisiae two decades ago. Subsequently, alkaline ceramidase genes were identified from other species, including one Drosophila melanogaster ACER gene (Dacer), one Arabidopsis thaliana ACER gene (AtACER), three Mus musculus ACER genes (Acer1, Acer2, and Acer3), and three Homo sapiens ACER genes (ACER1, ACER2, and ACER3). The protein products of these genes constitute a large protein family, termed the alkaline ceramidase (ACER) family. All the biochemically characterized members of the ACER family are integral membrane proteins with seven transmembrane segments in the Golgi complex or endoplasmic reticulum, and they each have unique substrate specificity. An increasing number of studies suggest that the ACER family has diverse roles in regulating sphingolipid metabolism and biological processes. Here we discuss the discovery of the ACER family, the biochemical properties, structures, and catalytic mechanisms of its members, and its role in regulating sphingolipid metabolism and biological processes in yeast, insects, plants, and mammals.
Collapse
|
14
|
Donati C, Cencetti F, Bernacchioni C, Vannuzzi V, Bruni P. Role of sphingosine 1-phosphate signalling in tissue fibrosis. Cell Signal 2020; 78:109861. [PMID: 33253915 DOI: 10.1016/j.cellsig.2020.109861] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by the excessive accumulation of extracellular matrix components, leading to loss of tissue function in affected organs. Although the majority of fibrotic diseases have different origins, they have in common a persistent inflammatory stimulus and lymphocyte-monocyte interactions that determine the production of numerous fibrogenic cytokines. Treatment to contrast fibrosis is urgently needed, since some fibrotic diseases lead to systemic fibrosis and represent a major cause of death. In this article, the role of the bioactive sphingolipid sphingosine 1-phosphate (S1P) and its signalling pathway in the fibrosis of different tissue contexts is extensively reviewed, highlighting that it may represent an innovative and promising pharmacological therapeutic target for treating this devastating multifaceted disease. In multiple tissues S1P influences different aspects of fibrosis modulating the recruitment of inflammatory cells, as well as cell proliferation, migration and transdifferentiation into myofibroblasts, the cell type mainly involved in fibrosis development. Moreover, at the level of fibrotic lesions, S1P metabolism is profoundly influenced by multiple cross-talk with profibrotic mediators, such as transforming growth factor β, thus finely regulating the development of fibrosis. This article is part of a Special Issue entitled "Physiological and pathological roles of bioactive sphingolipids".
Collapse
Affiliation(s)
- Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy.
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Valentina Vannuzzi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
15
|
Tokuyama M, Mabuchi T. New Treatment Addressing the Pathogenesis of Psoriasis. Int J Mol Sci 2020; 21:ijms21207488. [PMID: 33050592 PMCID: PMC7589905 DOI: 10.3390/ijms21207488] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is an immune cell-mediated inflammatory skin disease. The interleukin (IL)23/IL17 axis plays an important role in the development of psoriasis. The effectiveness of biologic treatments such as tumor necrosis factor (TNF)α inhibitors (infliximab, adalimumab, certolizumab pegol), IL23 inhibitors (ustekinumab, guselkumab, tildrakizumab, risankizumab), and IL17 inhibitors (secukinumab, ixekizumab, brodalumab) have verified these findings. Immune-related cells such as dendritic cells (DCs) and macrophages, in addition to Toll-like receptors and cytokines such as interferon (IFN)α, TNFα, IFNɤ, IL12, IL22, IL23, and IL17, are related to the pathogenesis of psoriasis. Here, we first review new insights regarding the pathogenesis of psoriasis, as it relates to DCs, Langerhans cells, macrophages, the signal transducer and activator of transcription 3 pathway, and aryl hydrocarbon receptor in cutaneous vascular endothelial cells. Based on these findings, we summarize currently available oral treatments and biologics. Furthermore, we describe a new treatment option including Janus kinase inhibitor, tyrosine kinase 2 inhibitor, modulator of sphingosine 1-phosphate receptor 1, and Rho-associated kinase 2 inhibitor.
Collapse
|
16
|
Pedro MP, Lund K, Iglesias-Bartolome R. The landscape of GPCR signaling in the regulation of epidermal stem cell fate and skin homeostasis. Stem Cells 2020; 38:1520-1531. [PMID: 32896043 DOI: 10.1002/stem.3273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Continuous integration of signals from the micro and macro-environment is necessary for somatic stem cells to adapt to changing conditions, maintain tissue homeostasis and activate repair mechanisms. G-protein coupled receptors (GPCRs) facilitate this integration by binding to numerous hormones, metabolites and inflammatory mediators, influencing a diverse network of pathways that regulate stem cell fate. This adaptive mechanism is particularly relevant for tissues that are exposed to environmental assault, like skin. The skin is maintained by a set of basal keratinocyte stem and progenitor cells located in the hair follicle and interfollicular epidermis, and several GPCRs and their signaling partners serve as makers and regulators of epidermal stem cell activity. GPCRs utilize heterotrimeric G protein dependent and independent pathways to translate extracellular signals into intracellular molecular cascades that dictate the activation of keratinocyte proliferative and differentiation networks, including Hedgehog GLI, Hippo YAP1 and WNT/β-catenin, ultimately regulating stem cell identity. Dysregulation of GPCR signaling underlines numerous skin inflammatory diseases and cancer, with smoothened-driven basal cell carcinoma being a main example of a GPCR associated cancer. In this review, we discuss the impact of GPCRs and their signaling partners in skin keratinocyte biology, particularly in the regulation of the epidermal stem cell compartment.
Collapse
Affiliation(s)
- M Pilar Pedro
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine Lund
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. Int J Mol Sci 2019; 20:ijms20225545. [PMID: 31703256 PMCID: PMC6888058 DOI: 10.3390/ijms20225545] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
Tissue damage, irrespective from the underlying etiology, destroys tissue structure and, eventually, function. In attempt to achieve a morpho-functional recover of the damaged tissue, reparative/regenerative processes start in those tissues endowed with regenerative potential, mainly mediated by activated resident stem cells. These cells reside in a specialized niche that includes different components, cells and surrounding extracellular matrix (ECM), which, reciprocally interacting with stem cells, direct their cell behavior. Evidence suggests that ECM stiffness represents an instructive signal for the activation of stem cells sensing it by various mechanosensors, able to transduce mechanical cues into gene/protein expression responses. The actin cytoskeleton network dynamic acts as key mechanotransducer of ECM signal. The identification of signaling pathways influencing stem cell mechanobiology may offer therapeutic perspectives in the regenerative medicine field. Sphingosine 1-phosphate (S1P)/S1P receptor (S1PR) signaling, acting as modulator of ECM, ECM-cytoskeleton linking proteins and cytoskeleton dynamics appears a promising candidate. This review focuses on the current knowledge on the contribution of S1P/S1PR signaling in the control of mechanotransduction in stem/progenitor cells. The potential contribution of S1P/S1PR signaling in the mechanobiology of skeletal muscle stem cells will be argued based on the intriguing findings on S1P/S1PR action in this mechanically dynamic tissue.
Collapse
|
18
|
Igarashi N, Honjo M, Fujishiro T, Toyono T, Ono T, Mori Y, Miyata K, Obinata H, Aihara M. Activation of the Sphingosine 1 Phosphate-Rho Pathway in Pterygium and in Ultraviolet-Irradiated Normal Conjunctiva. Int J Mol Sci 2019; 20:ijms20194670. [PMID: 31547113 PMCID: PMC6801701 DOI: 10.3390/ijms20194670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Sphingosine 1 phosphate (S1P) is a bioactive lipid that regulates cellular activity, including proliferation, cytoskeletal organization, migration, and fibrosis. In this study, the potential relevance of S1P–Rho signaling in pterygium formation and the effects of ultraviolet (UV) irradiation on activation of the S1P/S1P receptor axis and fibrotic responses were investigated in vitro. Expressions of the S1P2, S1P4, and S1P5 receptors were significantly higher in pterygium tissue than in normal conjunctiva, and the concentration of S1P was significantly elevated in the lysate of normal conjunctival fibroblast cell (NCFC) irradiated with UV (UV-NCFCs). RhoA activity was significantly upregulated in pterygium fibroblast cells (PFCs) and UV-NCFCs, and myosin phosphatase–Rho interacting protein (MRIP) was upregulated, and myosin phosphatase target subunit 1 (MYPT1) was downregulated in PFCs. Fibrogenic changes were significantly upregulated in both PFCs and UV-NCFCs compared to NCFCs. We found that the activation of the S1P receptor–Rho cascade was observed in pterygium tissue. Additionally, in vitro examination showed S1P–rho activation and fibrogenic changes in PFCs and UV-NCFCs. S1P elevation and the resulting upregulation of the downstream Rho signaling pathway may be important in pterygium formation; this pathway offers a potential therapeutic target for suppressing pterygium generation.
Collapse
Affiliation(s)
- Nozomi Igarashi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Takashi Fujishiro
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Tetsuya Toyono
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Takashi Ono
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
- Miyata eye hospital, Miyazaki 885-0051, Japan.
| | - Yosai Mori
- Miyata eye hospital, Miyazaki 885-0051, Japan.
| | | | - Hideru Obinata
- Gunma University Initiative for Advanced Research (GIAR), Gunma 371-8511, Japan.
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| |
Collapse
|
19
|
Igawa S, Choi JE, Wang Z, Chang YL, Wu CC, Werbel T, Ishida-Yamamoto A, Nardo AD. Human Keratinocytes Use Sphingosine 1-Phosphate and its Receptors to Communicate Staphylococcus aureus Invasion and Activate Host Defense. J Invest Dermatol 2019; 139:1743-1752.e5. [PMID: 30807768 PMCID: PMC7682680 DOI: 10.1016/j.jid.2019.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/16/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator generated when a cell membrane or its components are damaged by various factors. S1P regulates diverse cell activities via S1P receptors (S1PRs). Keratinocytes express S1PR1-5. Although it is known that S1PRs control keratinocyte differentiation, apoptosis, and wound healing, S1PR functions in keratinocyte infections have not been fully elucidated. We propose that the S1P-S1PR axis in keratinocytes works as a biosensor for bacterial invasion. Indeed, in human impetigo infection, we found high epidermal expression of S1PR1 and S1PR2 in the skin. Furthermore, in normal human epidermal keratinocytes in vitro, treatment with Staphylococcus aureus bacterial supernatant not only induced S1P production but also increased the transcription of S1PR2, confirming our in vivo observation, as well as increased the levels of TNFA, IL36G, IL6, and IL8 mRNAs. However, direct treatment of normal human epidermal keratinocytes with S1P increased the expressions of IL36G, TNFA, and IL8, but not IL6. In both S1P- and S. aureus bacterial supernatant-treated normal human epidermal keratinocytes, S1PR1 knockdown reduced IL36G, TNFA, and IL8 transcription, and the S1PR2 antagonist JTE013 blocked the secretion of these cytokines. Overall, we have proven that during infections, keratinocytes communicate damage by using S1P release and tight control of S1PR1 and 2.
Collapse
Affiliation(s)
- Satomi Igawa
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Jae Eun Choi
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Zhenping Wang
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Yu-Ling Chang
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Chia Chi Wu
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Tyler Werbel
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | | | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA,Corresponding author: Anna Di Nardo, Department of Dermatology, School of Medicine, University of California, San Diego, 9500 Gilman Drive #0869, La Jolla, CA 92093, Tel: 858-822-6712, Fax: 858-822-6985, , ORCiD: https://orcid.org/0000-0002-5575-9968
| |
Collapse
|
20
|
Morikawa S, Iribar H, Gutiérrez-Rivera A, Ezaki T, Izeta A. Pericytes in Cutaneous Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:1-63. [DOI: 10.1007/978-3-030-16908-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Shin KO, Choe SJ, Uchida Y, Kim I, Jeong Y, Park K. Ginsenoside Rb1 Enhances Keratinocyte Migration by a Sphingosine-1-Phosphate-Dependent Mechanism. J Med Food 2018; 21:1129-1136. [PMID: 30148701 DOI: 10.1089/jmf.2018.4246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cutaneous wound healing process is tightly regulated by a range of cellular responses, including migration. Sphingosine-1-phosphate (S1P) is a signaling lipid produced in keratinocytes (KC) and it is known to stimulate skin wound repair through increased KC migration. Of the multifunctional triterpene ginsenosides, Rb1 enhances cutaneous wound healing process by increasing KC migration, but cellular mechanisms responsible for the Rb1-mediated increase in KC migration are largely unknown. Therefore, we hypothesized that, and assessed whether, Rb1 could stimulate KC migration through S1P-dependent mechanisms. Rb1 significantly increases S1P production by regulating the activity of metabolic conversion enzymes associated with S1P generation and degradation, sphingosine kinase 1 (SPHK1) and S1P lyase, respectively, in parallel with enhanced KC migration. However, blockade of ceramide to S1P metabolic conversion using a specific inhibitor of SPHK1 attenuated the expected Rb1-mediated increase in KC migration. Furthermore, a pan-S1P receptor inhibitor pertussis toxin significantly attenuated Rb1-induced stimulation of KC migration. Moreover, the Rb1-induced increases in KC migration required S1P receptor(s)-mediated activation of ERK1/2 and NF-κB, leading to production of key cutaneous migrating proteins, matrix metalloproteinase (MMP)-2 and MMP-9. Taken together, the results show that Rb1 stimulates KC migration through an S1P→S1P receptor(s)→ERK1/2→NF-κB→MMP-2/-9 pathway. This research revealed a previously unidentified cellular mechanism for Rb1 in enhancing KC migration and pointing to a new therapeutic approach to stimulate the cutaneous wound healing process.
Collapse
Affiliation(s)
- Kyong-Oh Shin
- 1 Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University , Chuncheon, Korea
| | - Sung Jay Choe
- 2 Department of Dermatology, Yonsei University Wonju College of Medicine , Wonju, Korea
| | - Yoshikazu Uchida
- 3 Department of Dermatology, School of Medicine, University of California , San Francisco, San Francisco, California, USA
- 4 Northern California Institute for Research and Education , Veterans Affairs Medical Center, San Francisco, California, USA
| | - Inyong Kim
- 5 Research Center for Industrialization of Natural Nutraceuticals, Dankook University , Cheonan, Korea
| | - Yoonhwa Jeong
- 5 Research Center for Industrialization of Natural Nutraceuticals, Dankook University , Cheonan, Korea
- 6 Department of Food Science and Nutrition, Dankook University , Cheonan, Korea
| | - Kyungho Park
- 1 Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University , Chuncheon, Korea
| |
Collapse
|
22
|
Moskot M, Bocheńska K, Jakóbkiewicz-Banecka J, Banecki B, Gabig-Cimińska M. Abnormal Sphingolipid World in Inflammation Specific for Lysosomal Storage Diseases and Skin Disorders. Int J Mol Sci 2018; 19:E247. [PMID: 29342918 PMCID: PMC5796195 DOI: 10.3390/ijms19010247] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/20/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Research in recent years has shown that sphingolipids are essential signalling molecules for the proper biological and structural functioning of cells. Long-term studies on the metabolism of sphingolipids have provided evidence for their role in the pathogenesis of a number of diseases. As many inflammatory diseases, such as lysosomal storage disorders and some dermatologic diseases, including psoriasis, atopic dermatitis and ichthyoses, are associated with the altered composition and metabolism of sphingolipids, more studies precisely determining the responsibilities of these compounds for disease states are required to develop novel pharmacological treatment opportunities. It is worth emphasizing that knowledge from the study of inflammatory metabolic diseases and especially the possibility of their treatment may lead to insight into related metabolic pathways, including those involved in the formation of the epidermal barrier and providing new approaches towards workable therapies.
Collapse
Affiliation(s)
- Marta Moskot
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | | | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdańsk, Poland.
| | - Magdalena Gabig-Cimińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
23
|
Ji M, Xue N, Lai F, Zhang X, Zhang S, Wang Y, Jin J, Chen X. Validating a Selective S1P 1 Receptor Modulator Syl930 for Psoriasis Treatment. Biol Pharm Bull 2018; 41:592-596. [DOI: 10.1248/bpb.b17-00939] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xiaoying Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Sen Zhang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yuchen Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Jing Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
24
|
Lin CL, Xu R, Yi JK, Li F, Chen J, Jones EC, Slutsky JB, Huang L, Rigas B, Cao J, Zhong X, Snider AJ, Obeid LM, Hannun YA, Mao C. Alkaline Ceramidase 1 Protects Mice from Premature Hair Loss by Maintaining the Homeostasis of Hair Follicle Stem Cells. Stem Cell Reports 2017; 9:1488-1500. [PMID: 29056331 PMCID: PMC5829345 DOI: 10.1016/j.stemcr.2017.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022] Open
Abstract
Ceramides and their metabolites are important for the homeostasis of the epidermis, but much remains unknown about the roles of specific pathways of ceramide metabolism in skin biology. With a mouse model deficient in the alkaline ceramidase (Acer1) gene, we demonstrate that ACER1 plays a key role in the homeostasis of the epidermis and its appendages by controlling the metabolism of ceramides. Loss of Acer1 elevated the levels of various ceramides and sphingoid bases in the skin and caused progressive hair loss in mice. Mechanistic studies revealed that loss of Acer1 widened follicular infundibulum and caused progressive loss of hair follicle stem cells (HFSCs) due to reduced survival and stemness. These results suggest that ACER1 plays a key role in maintaining the homeostasis of HFSCs, and thereby the hair follicle structure and function, by regulating the metabolism of ceramides in the epidermis. Acer1 is a skin-specific ceramidase that controls the catabolism of ceramides Acer1 plays a key role in the homeostasis of the epidermis and its appendages Acer1−/− mice suffer from progressive alopecia Loss of Acer1 progressively depletes the population of hair follicle stem cells
Collapse
Affiliation(s)
- Chih-Li Lin
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Department of Medicine and Stony Brook Cancer Center, Stony Brook University, HSC T15-023, Stony Brook, NY 11794, USA; Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA
| | - Ruijuan Xu
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Department of Medicine and Stony Brook Cancer Center, Stony Brook University, HSC T15-023, Stony Brook, NY 11794, USA
| | - Jae Kyo Yi
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Department of Medicine and Stony Brook Cancer Center, Stony Brook University, HSC T15-023, Stony Brook, NY 11794, USA; Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA
| | - Fang Li
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Department of Medicine and Stony Brook Cancer Center, Stony Brook University, HSC T15-023, Stony Brook, NY 11794, USA
| | - Jiang Chen
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA
| | - Evan C Jones
- Department of Dermatology, Stony Brook University, Stony Brook, NY, USA
| | - Jordan B Slutsky
- Department of Dermatology, Stony Brook University, Stony Brook, NY, USA
| | - Liqun Huang
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Basil Rigas
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jian Cao
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA
| | - Xiaoming Zhong
- Industrial Technology Research Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ashley J Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Department of Medicine and Stony Brook Cancer Center, Stony Brook University, HSC T15-023, Stony Brook, NY 11794, USA; Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Department of Medicine and Stony Brook Cancer Center, Stony Brook University, HSC T15-023, Stony Brook, NY 11794, USA; Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Department of Medicine and Stony Brook Cancer Center, Stony Brook University, HSC T15-023, Stony Brook, NY 11794, USA; Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Department of Medicine and Stony Brook Cancer Center, Stony Brook University, HSC T15-023, Stony Brook, NY 11794, USA; Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA; Department of Dermatology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
25
|
Dany M. Sphingosine metabolism as a therapeutic target in cutaneous melanoma. Transl Res 2017; 185:1-12. [PMID: 28528915 DOI: 10.1016/j.trsl.2017.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/26/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022]
Abstract
Melanoma is by far the most aggressive type of skin cancer with a poor prognosis in its advanced stages. Understanding the mechanisms involved in melanoma pathogenesis, response, and resistance to treatment has gained a lot of attention worldwide. Recently, the role of sphingolipid metabolism has been studied in cutaneous melanoma. Sphingolipids are bioactive lipid effector molecules involved in the regulation of various cellular signaling pathways such as inflammation, cancer cell proliferation, death, senescence, and metastasis. Recent studies suggest that sphingolipid metabolism impacts melanoma pathogenesis and is a potential therapeutic target. This review focuses on defining the role of sphingolipid metabolism in melanoma carcinogenesis, discussing sphingolipid-based therapeutic approaches, and highlighting the areas that require more extensive research.
Collapse
Affiliation(s)
- Mohammed Dany
- College of Medicine, Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
26
|
Thieme M, Zillikens D, Sadik CD. Sphingosine-1-phosphate modulators in inflammatory skin diseases - lining up for clinical translation. Exp Dermatol 2017; 26:206-210. [PMID: 27574180 DOI: 10.1111/exd.13174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 12/14/2022]
Abstract
The bioactive lysophospholipid sphingosine-1-phosphate (S1P) is best known for its activity as T-cell-active chemoattractant regulating the egress of T cells from the lymph node and, consequently, the availability of T cells for migration into peripheral tissues. This physiological role of S1P is exploited by the drug fingolimod, a first-line therapy for multiple sclerosis, which "detains" T cells in the lymph nodes. In recent year, it has been elucidated that S1P exerts regulatory functions far beyond T-cell egress from the lymph node. Thus, it additionally regulates, among others, homing of several immune cell populations into peripheral tissues under inflammatory conditions. In addition, evidence, mostly derived from mouse models, has accumulated that S1P may be involved in the pathogenesis of several inflammatory skin disorder and that S1P receptor modulators applied topically are effective in treating skin diseases. These recent developments highlight the pharmacological modulation of the S1P/S1P receptor system as a potential new therapeutic strategy for a plethora of inflammatory skin diseases. The impact of S1P receptor modulation on inflammatory skin diseases next requires testing in human patients.
Collapse
Affiliation(s)
- Markus Thieme
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
27
|
The role of epidermal sphingolipids in dermatologic diseases. Lipids Health Dis 2016; 15:13. [PMID: 26786937 PMCID: PMC4717587 DOI: 10.1186/s12944-016-0178-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids, a group of lipids containing the sphingoid base, have both structural and biological functions in human epidermis. Ceramides, as a part of extracellular lipids in the stratum corneum, are important elements of the skin barrier and are involved in the prevention of transepidermal water loss. In addition, ceramides regulate such processes as proliferation, differentiation and apoptosis of keratinocytes. Another important sphingolipid, sphingosine-1-phosphate (S1P), inhibits proliferation and induces differentiation of keratinocytes. A recent clinical study of the efficacy and safety of ponesimod (a selective modulator of the S1P receptor 1) suggested that sphingolipid metabolism may become a new target for the pharmacological treatment of psoriasis. The role of sphingolipids in some dermatologic diseases, including psoriasis, atopic dermatitis and ichthyoses was summarized in this article.
Collapse
|
28
|
Sphingosine 1-phospate differentially modulates maturation and function of human Langerhans-like cells. J Dermatol Sci 2016; 82:9-17. [PMID: 26803226 DOI: 10.1016/j.jdermsci.2016.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/19/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND As mediators between innate and adaptive immune responses, Langerhans cells (LCs) are in the focus of recent investigations to determine their role in allergic inflammatory diseases like allergic contact dermatitis and atopic dermatitis. Sphingosine 1-phosphate (S1P) is a crucial lipid mediator in the skin and potentially interferes with LC homeostasis but also functional properties, such as cytokine release, migration and antigen-uptake which are considered to be key events in the initiation and maintenance of pathological disorders. OBJECTIVE Here, we used human Langerhans-like cells to study the influence of S1P-mediated signalling on LC maturation, cytokine release, migration and endocytosis. METHODS Immature Langerhans-like cells were generated from the human acute myeloid leukaemia cell line MUTZ-3 (MUTZ-LCs) and human primary monocytes (MoLCs). S1P receptor expression was determined by quantitative RT-PCR and western blotting. Expression of maturation markers were investigated by flow cytometry. The influence of S1P signalling on cytokine release was quantified by ELISA. Migration assays and FITC-dextran uptake in the presence of S1P, specific S1 P receptor agonists and antagonists as well as fingolimod (FTY720) were analysed through fluorescence microscopy and flow cytometry. RESULTS S1P receptor protein expression was confirmed for S1P1, S1P2 and S1P4 in MUTZ-LCs and S1P1 and S1P2 in MoLCs. In mature cells S1P receptors were downregulated. S1P did not induce maturation in MUTZ-LCs, whereas in MoLCs CD83 and CD86 were slightly upregulated. IL-8 release of MUTZ-LCs matured in the presence of S1P was not altered, however, reduced IL-6 and IL-12p70 levels were observed in mature MoLCs. Interestingly, immature MUTZ-LCs revealed a significantly increased S1P-dependent migratory capacity, whereas CCL20 induced migration was significantly decreased in the presence of S1P. Furthermore, migratory capacity towards CCL21 in mature MUTZ-LCs but not MoLCs was significantly lower when cells were stimulated with S1P. S1P, FTY720 and specific S1P receptor agonists did not modulate the endocytotic capacity of immature MUTZ-LCs and MoLCs. These findings were further supported by testing specific antagonists of S1P1-4 in the absence or presence of S1P. CONCLUSION Our data demonstrate that S1P regulates key events of human LC maturation including cytokine release and migration. These findings are of particular importance when considering the potential use of S1P in inflammatory skin disorders.
Collapse
|
29
|
Role of Ceramide from Glycosphingolipids and Its Metabolites in Immunological and Inflammatory Responses in Humans. Mediators Inflamm 2015; 2015:120748. [PMID: 26609196 PMCID: PMC4644562 DOI: 10.1155/2015/120748] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 01/19/2023] Open
Abstract
Glycosphingolipids (GSLs) are composed of hydrophobic ceramide and hydrophilic sugar chains. GSLs cluster to form membrane microdomains (lipid rafts) on plasma membranes, along with several kinds of transducer molecules, including Src family kinases and small G proteins. However, GSL-mediated biological functions remain unclear. Lactosylceramide (LacCer, CDw17) is highly expressed on the plasma membranes of human phagocytes and mediates several immunological and inflammatory reactions, including phagocytosis, chemotaxis, and superoxide generation. LacCer forms membrane microdomains with the Src family tyrosine kinase Lyn and the Gαi subunit of heterotrimeric G proteins. The very long fatty acids C24:0 and C24:1 are the main ceramide components of LacCer in neutrophil plasma membranes and are directly connected with the fatty acids of Lyn and Gαi. These observations suggest that the very long fatty acid chains of ceramide are critical for GSL-mediated outside-in signaling. Sphingosine is another component of ceramide, with the hydrolysis of ceramide by ceramidase producing sphingosine and fatty acids. Sphingosine is phosphorylated by sphingosine kinase to sphingosine-1-phosphate, which is involved in a wide range of cellular functions, including growth, differentiation, survival, chemotaxis, angiogenesis, and embryogenesis, in various types of cells. This review describes the role of ceramide moiety of GSLs and its metabolites in immunological and inflammatory reactions in human.
Collapse
|
30
|
Mori H, Izawa T, Tanaka E. Smad3 Deficiency Leads to Mandibular Condyle Degradation via the Sphingosine 1-Phosphate (S1P)/S1P3 Signaling Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2742-56. [DOI: 10.1016/j.ajpath.2015.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/25/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023]
|
31
|
Xiu L, Chang N, Yang L, Liu X, Yang L, Ge J, Li L. Intracellular Sphingosine 1-Phosphate Contributes to Collagen Expression of Hepatic Myofibroblasts in Human Liver Fibrosis Independent of Its Receptors. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:387-98. [DOI: 10.1016/j.ajpath.2014.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/16/2014] [Accepted: 09/30/2014] [Indexed: 01/20/2023]
|
32
|
Schümann J, Grevot A, Ledieu D, Wolf A, Schubart A, Piaia A, Sutter E, Côté S, Beerli C, Pognan F, Billich A, Moulin P, Walker UJ. Reduced Activity of Sphingosine-1-Phosphate Lyase Induces Podocyte-related Glomerular Proteinuria, Skin Irritation, and Platelet Activation. Toxicol Pathol 2015; 43:694-703. [PMID: 25630683 DOI: 10.1177/0192623314565650] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sphingosine-1-phosphate (S1P) lyase is considered as a drug target in autoimmune diseases based on the protective effect of reducing activity of the enzyme in animal models of inflammation. Since S1P lyase deficiency in mice causes a severe, lethal phenotype, it was of interest to investigate any pathological alterations associated with only partially reduced activity of S1P lyase as may be encountered upon pharmacological inhibition. Both genetic reduction of S1P lyase activity in mice and inhibition of S1P lyase with a low-molecular-weight compound in rats consistently resulted in podocyte-based kidney toxicity, which is the most severe finding. In addition, skin irritation and platelet activation were observed in both instances. The similarity of the findings in both the genetic model and the pharmacological study supports the value of analyzing inducible partially target-deficient mice for safety assessment. If the findings described in rodents translate to humans, target-related toxicity, particularly podocyte dysfunction, may limit chronic systemic treatment of autoimmune diseases with S1P lyase inhibitors. Furthermore, partial deficiency or inhibition of S1P lyase appears to provide an in vivo rodent model to enable studies on the mechanism of podocyte dysfunction.
Collapse
Affiliation(s)
- Jens Schümann
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Armelle Grevot
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - David Ledieu
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Armin Wolf
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Anna Schubart
- Autoimmunity, Transplantation, and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Alessandro Piaia
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Esther Sutter
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Serge Côté
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Beerli
- Autoimmunity, Transplantation, and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - François Pognan
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andreas Billich
- Autoimmunity, Transplantation, and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Pierre Moulin
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ursula Junker Walker
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
33
|
Sphingosine kinase 1 improves cutaneous wound healing in diabetic rats. Injury 2014; 45:1054-8. [PMID: 24685054 DOI: 10.1016/j.injury.2014.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/28/2014] [Accepted: 03/03/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Diabetes is one of the most prevalent human metabolic diseases. Wound healing in diabetes is frequently impaired and treatment remains challenging. Sphingolipid metabolites play important roles in the regulation of glucose metabolism. SPK1 is the key enzyme in the sphingolipid metabolic pathway. S1P/SPK plays a pivotal role in the signalling pathways of diverse cellular processes including proliferation, differentiation, migration, apoptosis in diverse cell types. METHODS To investigate the role of sphingosine kinase 1 (SPK1) in skin injury, plasmids containing the SPK1 gene (pcDNA3-FLAG-SPK1) were applied to cutaneous wounds on a streptozotocin-induced diabetic rat model over a 21-day period. The wound area and rate of wound healing were determined. The histopathological features of the healed wounds were also observed, and SPK1 expression in the skin was detected by immunohistochemistry. RESULTS There was a significant decrease in wound area in diabetic rats treated with 125 and 60μg/wound pcDNA3-FLAG-SPK1 (P<0.001-0.01). The mean sizes of the wounds were 0.67±0.15cm(2), 0.83±0.18cm(2), and 1.09±0.23cm(2) in both treated and diabetic control group at the 7th day post-treatment respectively. In addition, wound healing in diabetic rats of test group was accelerated. At the 7th day, the mean rates of healing were 73.2±5.7% and 66±7.3% in test group of 125 and 60μg/wound respectively, and 55.4±9.9% in diabetic control group (P<0.001-0.01). Histology revealed that tissue sections from the treated diabetic rats contained more granulation tissue and capillaries than that of the control rats. There was high SPK1 expression in the skin of the treated diabetic rats. CONCLUSIONS SPK1 gene therapy may represent a novel approach to cutaneous wound healing.
Collapse
|
34
|
Hamidi S, Schäfer-Korting M, Weindl G. TLR2/1 and sphingosine 1-phosphate modulate inflammation, myofibroblast differentiation and cell migration in fibroblasts. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:484-94. [DOI: 10.1016/j.bbalip.2014.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/30/2013] [Accepted: 01/06/2014] [Indexed: 02/04/2023]
|
35
|
Uchida Y. Ceramide signaling in mammalian epidermis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:453-62. [PMID: 24055887 DOI: 10.1016/j.bbalip.2013.09.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/12/2022]
Abstract
Ceramide, the backbone structure of all sphingolipids, as well as a minor component of cellular membranes, has a unique role in the skin, by forming the epidermal permeability barrier at the extracellular domains of the outermost layer of the skin, the stratum corneum, which is required for terrestrial mammalian survival. In contrast to the role of ceramide in forming the permeability barrier, the signaling roles of ceramide and its metabolites have not yet been recognized. Ceramide and/or its metabolites regulate proliferation, differentiation, and apoptosis in epidermal keratinocytes. Recent studies have further demonstrated that a ceramide metabolite, sphingosine-1-phosphate, modulates innate immune function. Ceramide has already been applied to therapeutic approaches for treatment of eczema associated with attenuated epidermal permeability barrier function. Pharmacological modulation of ceramide and its metabolites' signaling can also be applied to cutaneous disease prevention and therapy. The author here describes the signaling roles of ceramide and its metabolites in mammalian cells and tissues, including the epidermis. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Yoshikazu Uchida
- Department of Dermatology, University of California, San Francisco, CA, USA; School of Medicine, University of California, San Francisco, CA, USA; Dermatology Service and Research Unit, Veterans Affairs Medical Center, San Francisco, CA, USA; Northern California Institute for Research and Education, San Francisco, CA, USA.
| |
Collapse
|
36
|
Allende ML, Sipe LM, Tuymetova G, Wilson-Henjum KL, Chen W, Proia RL. Sphingosine-1-phosphate phosphatase 1 regulates keratinocyte differentiation and epidermal homeostasis. J Biol Chem 2013; 288:18381-91. [PMID: 23637227 DOI: 10.1074/jbc.m113.478420] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid whose levels are tightly regulated by its synthesis and degradation. Intracellularly, S1P is dephosphorylated by the actions of two S1P-specific phosphatases, sphingosine-1-phosphate phosphatases 1 and 2. To identify the physiological functions of S1P phosphatase 1, we have studied mice with its gene, Sgpp1, deleted. Sgpp1(-/-) mice appeared normal at birth, but during the 1st week of life they exhibited stunted growth and suffered desquamation, with most dying before weaning. Both Sgpp1(-/-) pups and surviving adults exhibited multiple epidermal abnormalities. Interestingly, the epidermal permeability barrier developed normally during embryogenesis in Sgpp1(-/-) mice. Keratinocytes isolated from the skin of Sgpp1(-/-) pups had increased intracellular S1P levels and displayed a gene expression profile that indicated overexpression of genes associated with keratinocyte differentiation. The results reveal S1P metabolism as a regulator of keratinocyte differentiation and epidermal homeostasis.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
37
|
Schaper K, Dickhaut J, Japtok L, Kietzmann M, Mischke R, Kleuser B, Bäumer W. Sphingosine-1-phosphate exhibits anti-proliferative and anti-inflammatory effects in mouse models of psoriasis. J Dermatol Sci 2013; 71:29-36. [PMID: 23643308 DOI: 10.1016/j.jdermsci.2013.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/06/2013] [Accepted: 03/08/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND It has been indicated that the sphingolipid sphingosine-1-phosphate (S1P) restrains the ability of dendritic cells to migrate to lymph nodes. Furthermore S1P has been demonstrated to inhibit cell growth in human keratinocytes. However, only little is known about the effect of S1P in hyperproliferative and inflammatory in vivo models. OBJECTIVE In this study, locally acting S1P was explored in different experimental mouse models of psoriasis vulgaris. METHODS S1P and FTY720 were tested in the imiquimod-induced psoriasis mouse model, the mouse tail assay and a pilot study of the severe combined immunodeficiency mice (SCID). RESULTS In the imiquimod model the positive control diflorasone diacetate and S1P, but not FTY720 reduced the imiquimod-induced epidermal hyperproliferation of the ear skin. This effect was confirmed in the SCID model, where S1P treated skin from patients suffering from psoriasis showed a decrease in epidermal thickness compared to vehicle. In the imiquimod model, there was also significant inhibition of ear swelling and a moderate reduction of inflammatory cell influx and oedema formation in ear skin by S1P treatment. The inflammatory response on the back skin was, however, only reduced by diflorasone diacetate. In the mouse tail assay, the influence of S1P and FTY720 in stratum granulosum formation was tested compared to the positive control calcipotriol. Whereas topical administration of calcipotriol led to a low but significant increase of stratum granulosum, S1P and FTY720 lacked such an effect. CONCLUSION Taken together, these results imply that topical administration of S1P might be a new option for the treatment of mild to moderate psoriasis lesions.
Collapse
Affiliation(s)
- Katrin Schaper
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Sphingosine-1-phosphate-induced nociceptor excitation and ongoing pain behavior in mice and humans is largely mediated by S1P3 receptor. J Neurosci 2013; 33:2582-92. [PMID: 23392686 DOI: 10.1523/jneurosci.4479-12.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The biolipid sphingosine-1-phosphate (S1P) is an essential modulator of innate immunity, cell migration, and wound healing. It is released locally upon acute tissue injury from endothelial cells and activated thrombocytes and, therefore, may give rise to acute post-traumatic pain sensation via a yet elusive molecular mechanism. We have used an interdisciplinary approach to address this question, and we find that intradermal injection of S1P induced significant licking and flinching behavior in wild-type mice and a dose-dependent flare reaction in human skin as a sign of acute activation of nociceptive nerve terminals. Notably, S1P evoked a small excitatory ionic current that resulted in nociceptor depolarization and action potential firing. This ionic current was preserved in "cation-free" solution and blocked by the nonspecific Cl(-) channel inhibitor niflumic acid and by preincubation with the G-protein inhibitor GDP-β-S. Notably, S1P(3) receptor was detected in virtually all neurons in human and mouse DRG. In line with this finding, S1P-induced neuronal responses and spontaneous pain behavior in vivo were substantially reduced in S1P(3)(-/-) mice, whereas in control S1P(1) floxed (S1P(1)(fl/fl)) mice and mice with a nociceptor-specific deletion of S1P(1)(-/-) receptor (SNS-S1P(1)(-/-)), neither the S1P-induced responses in vitro nor the S1P-evoked pain-like behavior was altered. Therefore, these findings indicate that S1P evokes significant nociception via G-protein-dependent activation of an excitatory Cl(-) conductance that is largely mediated by S1P(3) receptors present in nociceptors, and point to these receptors as valuable therapeutic targets for post-traumatic pain.
Collapse
|
39
|
Moriue T, Igarashi J, Yoneda K, Hashimoto T, Nakai K, Kosaka H, Kubota Y. Sphingosine 1-phosphate attenuates peroxide-induced apoptosis in HaCaT cells culturedin vitro. Clin Exp Dermatol 2013; 38:638-45. [DOI: 10.1111/ced.12037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2012] [Indexed: 01/30/2023]
Affiliation(s)
- T. Moriue
- Departments of Dermatology; Faculty of Medicine; Kagawa University; Kagawal; Japan
| | - J. Igarashi
- Cardiovascular Physiology; Faculty of Medicine; Kagawa University; Kagawa; Japan
| | - K. Yoneda
- Departments of Dermatology; Faculty of Medicine; Kagawa University; Kagawal; Japan
| | - T. Hashimoto
- Cardiovascular Physiology; Faculty of Medicine; Kagawa University; Kagawa; Japan
| | - K. Nakai
- Cardiovascular Physiology; Faculty of Medicine; Kagawa University; Kagawa; Japan
| | - H. Kosaka
- Cardiovascular Physiology; Faculty of Medicine; Kagawa University; Kagawa; Japan
| | - Y. Kubota
- Departments of Dermatology; Faculty of Medicine; Kagawa University; Kagawal; Japan
| |
Collapse
|
40
|
Vasculogenic cytokines in wound healing. BIOMED RESEARCH INTERNATIONAL 2013; 2013:190486. [PMID: 23555076 PMCID: PMC3600243 DOI: 10.1155/2013/190486] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/08/2013] [Accepted: 01/23/2013] [Indexed: 01/13/2023]
Abstract
Chronic wounds represent a growing healthcare burden that particularly afflicts aged, diabetic, vasculopathic, and obese patients. Studies have shown that nonhealing wounds are characterized by dysregulated cytokine networks that impair blood vessel formation. Two distinct forms of neovascularization have been described: vasculogenesis (driven by bone-marrow-derived circulating endothelial progenitor cells) and angiogenesis (local endothelial cell sprouting from existing vasculature). Researchers have traditionally focused on angiogenesis but defects in vasculogenesis are increasingly recognized to impact diseases including wound healing. A more comprehensive understanding of vasculogenic cytokine networks may facilitate the development of novel strategies to treat recalcitrant wounds. Further, the clinical success of endothelial progenitor cell-based therapies will depend not only on the delivery of the cells themselves but also on the appropriate cytokine milieu to promote tissue regeneration. This paper will highlight major cytokines involved in vasculogenesis within the context of cutaneous wound healing.
Collapse
|
41
|
Abstract
Mammalian skin protects our body against external assaults due to a well-organized skin barrier. The formation of the skin barrier is a complex process, in which basal keratinocytes lose their mitotic activity and differentiate to corneocytes. These corneocytes are embedded in intercellular lipid lamellae composed of ceramides, cholesterol, fatty acids, and cholesterol esters. Ceramides are the dominant lipid molecules and their reduction is connected with a transepidermal water loss and an epidermal barrier dysfunction resulting in inflammatory skin diseases. Moreover, bioactive sphingolipid metabolites like ceramide-1-phosphate, sphingosylphosphorylcholine, and sphingosine-1-phosphate are also involved in the biological modulation of keratinocytes and immune cells of the skin. Therefore, it is not astonishing that a dysregulation of sphingolipid metabolism has been identified in inflammatory skin diseases such as atopic dermatitis and psoriasis vulgaris. This chapter will describe not only the specific sphingolipid species and their skin functions but also the dysregulation of sphingolipid metabolism in inflammatory skin diseases.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Department of Toxicology, University of Potsdam, Nuthetal, Potsdam, Germany.
| | | |
Collapse
|
42
|
A novel role of a lipid species, sphingosine-1-phosphate, in epithelial innate immunity. Mol Cell Biol 2012; 33:752-62. [PMID: 23230267 DOI: 10.1128/mcb.01103-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A variety of external perturbations can induce endoplasmic reticulum (ER) stress, followed by stimulation of epithelial cells to produce an innate immune element, the cathelicidin antimicrobial peptide (CAMP). ER stress also increases production of the proapoptotic lipid ceramide and its antiapoptotic metabolite, sphingosine-1-phosphate (S1P). We demonstrate here that S1P mediates ER stress-induced CAMP generation. Cellular ceramide and S1P levels rose in parallel with CAMP levels following addition of either exogenous cell-permeating ceramide (C2Cer), which increases S1P production, or thapsigargin (an ER stressor), applied to cultured human skin keratinocytes or topically to mouse skin. Knockdown of S1P lyase, which catabolizes S1P, enhanced ER stress-induced CAMP production in cultured cells and mouse skin. These and additional inhibitor studies show that S1P is responsible for ER stress-induced upregulation of CAMP expression. Increased CAMP expression is likely mediated via S1P-dependent NF-κB-C/EBPα activation. Finally, lysates of both ER-stressed and S1P-stimulated cells blocked growth of virulent Staphylococcus aureus in vitro, and topical C2Cer and LL-37 inhibited invasion of Staphylococcus aureus into murine skin. These studies suggest that S1P generation resulting in increased CAMP production comprises a novel regulatory mechanism of epithelial innate immune responses to external perturbations, pointing to a new therapeutic approach to enhance antimicrobial defense.
Collapse
|
43
|
Sphingosine 1-phosphate protects primary human keratinocytes from apoptosis via nitric oxide formation through the receptor subtype S1P₃. Mol Cell Biochem 2012; 371:165-76. [PMID: 22899173 DOI: 10.1007/s11010-012-1433-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/03/2012] [Indexed: 12/20/2022]
Abstract
Although the lipid mediator sphingosine 1-phosphate (S1P) has been identified to induce cell growth arrest of human keratinocytes, the sphingolipid effectively protects these epidermal cells from apoptosis. The molecular mechanism of the anti-apoptotic action induced by S1P is less characterized. Apart from S1P, endogenously produced nitric oxide (NO•) has been recognized as a potent modulator of apoptosis in keratinocytes. Therefore, it was of great interest to elucidate whether S1P protects human keratinocytes via a NO•-dependent signalling pathway. Indeed, S1P induced an activation of endothelial nitric oxide synthase (eNOS) in human keratinocytes leading to an enhanced formation of NO•. Most interestingly, the cell protective effect of S1P was almost completely abolished in the presence of the eNOS inhibitor L-NAME as well as in eNOS-deficient keratinocytes indicating that the sphingolipid metabolite S1P protects human keratinocytes from apoptosis via eNOS activation and subsequent production of protective amounts of NO•. It is well established that most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Therefore, the involvement of S1P-receptor subtypes in S1P-mediated eNOS activation has been examined. Indeed, this study clearly shows that the S1P(3) is the exclusive receptor subtype in human keratinocytes which mediates eNOS activation and NO• formation in response to S1P. In congruence, when the S1P(3) receptor subtype is abrogated, S1P almost completely lost its ability to protect human keratinocytes from apoptosis.
Collapse
|
44
|
Schwalm S, Pfeilschifter J, Huwiler A. Sphingosine-1-phosphate: a Janus-faced mediator of fibrotic diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:239-50. [PMID: 22889995 DOI: 10.1016/j.bbalip.2012.07.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/27/2012] [Accepted: 07/28/2012] [Indexed: 12/12/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that acts either on G protein-coupled S1P receptors on the cell surface or via intracellular target sites. In addition to the well established effects of S1P in angiogenesis, carcinogenesis and immunity, evidence is now continuously accumulating which demonstrates that S1P is an important regulator of fibrosis. The contribution of S1P to fibrosis is of a Janus-faced nature as S1P exhibits both pro- and anti-fibrotic effects depending on its site of action. Extracellular S1P promotes fibrotic processes in a S1P receptor-dependent manner, whereas intracellular S1P has an opposite effect and dampens a fibrotic reaction by yet unidentified mechanisms. Fibrosis is a result of chronic irritation by various factors and is defined by an excess production of extracellular matrix leading to tissue scarring and organ dysfunction. In this review, we highlight the general effects of extracellular and intracellular S1P on the multistep cascade of pathological fibrogenesis including tissue injury, inflammation and the action of pro-fibrotic cytokines that stimulate ECM production and deposition. In a second part we summarize the current knowledge about the involvement of S1P signaling in the development of organ fibrosis of the lung, kidney, liver, heart and skin. Altogether, it is becoming clear that targeting the sphingosine kinase-1/S1P signaling pathway offers therapeutic potential in the treatment of various fibrotic processes. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Stephanie Schwalm
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt am Main, Germany
| | | | | |
Collapse
|
45
|
A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012; 22:471-83. [PMID: 22863788 DOI: 10.1016/j.semcancer.2012.07.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT.
Collapse
|
46
|
Härmä V, Knuuttila M, Virtanen J, Mirtti T, Kohonen P, Kovanen P, Happonen A, Kaewphan S, Ahonen I, Kallioniemi O, Grafström R, Lötjönen J, Nees M. Lysophosphatidic acid and sphingosine-1-phosphate promote morphogenesis and block invasion of prostate cancer cells in three-dimensional organotypic models. Oncogene 2012; 31:2075-89. [PMID: 21996742 PMCID: PMC3330266 DOI: 10.1038/onc.2011.396] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 06/26/2011] [Accepted: 07/28/2011] [Indexed: 12/12/2022]
Abstract
Normal prostate and some malignant prostate cancer (PrCa) cell lines undergo acinar differentiation and form spheroids in three-dimensional (3-D) organotypic culture. Acini formed by PC-3 and PC-3M, less pronounced also in other PrCa cell lines, spontaneously undergo an invasive switch, leading to the disintegration of epithelial structures and the basal lamina, and formation of invadopodia. This demonstrates the highly dynamic nature of epithelial plasticity, balancing epithelial-to-mesenchymal transition against metastable acinar differentiation. This study assessed the role of lipid metabolites on epithelial maturation. PC-3 cells completely failed to form acinar structures in delipidated serum. Adding back lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) rescued acinar morphogenesis and repressed invasion effectively. Blocking LPA receptor 1 (LPAR1) functions by siRNA (small interference RNA) or the specific LPAR1 inhibitor Ki16425 promoted invasion, while silencing of other G-protein-coupled receptors responsive to LPA or S1P mainly caused growth arrest or had no effects. The G-proteins Gα(12/13) and Gα(i) were identified as key mediators of LPA signalling via stimulation of RhoA and Rho kinases ROCK1 and 2, activating Rac1, while inhibition of adenylate cyclase and accumulation of cAMP may be secondary. Interfering with these pathways specifically impeded epithelial polarization in transformed cells. In contrast, blocking the same pathways in non-transformed, normal cells promoted differentiation. We conclude that LPA and LPAR1 effectively promote epithelial maturation and block invasion of PrCa cells in 3-D culture. The analysis of clinical transcriptome data confirmed reduced expression of LPAR1 in a subset of PrCa's. Our study demonstrates a metastasis-suppressor function for LPAR1 and Gα(12/13) signalling, regulating cell motility and invasion versus epithelial maturation.
Collapse
Affiliation(s)
- V Härmä
- Medical Biotechnology Knowledge Centre, VTT Technical Research Centre of Finland, Turku, Finland
| | - M Knuuttila
- Biotechnology Centre, University of Turku, Turku, Finland
| | - J Virtanen
- Medical Biotechnology Knowledge Centre, VTT Technical Research Centre of Finland, Turku, Finland
- Biotechnology Centre, University of Turku, Turku, Finland
| | - T Mirtti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| | - P Kohonen
- Biotechnology Centre, University of Turku, Turku, Finland
| | - P Kovanen
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| | - A Happonen
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - S Kaewphan
- Department of Information Technology, University of Turku, Turku, Finland
| | - I Ahonen
- Biotechnology Centre, University of Turku, Turku, Finland
| | - O Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - R Grafström
- Medical Biotechnology Knowledge Centre, VTT Technical Research Centre of Finland, Turku, Finland
- Laboratory for Toxicology, Karolinska Institute, Stockholm, Sweden
| | - J Lötjönen
- Knowledge Intensive Services, VTT Technical Research Centre of Finland, Tampere, Finland
| | - M Nees
- Medical Biotechnology Knowledge Centre, VTT Technical Research Centre of Finland, Turku, Finland
| |
Collapse
|
47
|
Yoshida N, Sawada E, Imokawa G. A reconstructed human epidermal keratinization culture model to characterize ceramide metabolism in the stratum corneum. Arch Dermatol Res 2012; 304:563-77. [DOI: 10.1007/s00403-012-1232-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 03/06/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
|
48
|
Kim J, Yun H, Cho Y. Analysis of ceramide metabolites in differentiating epidermal keratinocytes treated with calcium or vitamin C. Nutr Res Pract 2011; 5:396-403. [PMID: 22125676 PMCID: PMC3221824 DOI: 10.4162/nrp.2011.5.5.396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/17/2011] [Accepted: 09/22/2011] [Indexed: 01/07/2023] Open
Abstract
Ceramides (Cer) comprise the major constituent of sphingolipids in the epidermis and are known to play diverse roles in the outermost layers of the skin including water retention and provision of a physical barrier. In addition, they can be hydrolyzed into free sphingoid bases such as C18 sphingosine (SO) and C18 sphinganine (SA) or can be further metabolized to C18 So-1-phosphate (S1P) and C18 Sa-1-phosphate (Sa1P) in keratinocytes. The significance of ceramide metabolites emerged from studies reporting altered levels of SO and SA in skin disorders and the role of S1P and Sa1P as signaling lipids. However, the overall metabolism of sphingoid bases and their phosphates during keratinocyte differentiation remains not fully understood. Therefore, in this study, we analyzed these Cer metabolites in the process of keratinocyte differentiation. Three distinct keratinocyte differentiation stages were prepared using 0.07 mM calcium (Ca2+) (proliferation stage), 1.2 mM Ca2+ (early differentiation stage) in serum-free medium, or serum-containing medium with vitamin C (50 µL/mL) (late differentiation stage). Serum-containing medium was also used to determine whether vitamin C increases the concentrations of sphingoid bases and their phosphates. The production of sphingoid bases and their phosphates after hydrolysis by alkaline phosphatase was determined using high-performance liquid chromatography. Compared to cells treated with 0.07 mM Ca2+, levels of SO, SA, S1P, and SA1P were not altered after treatment with 1.2 mM Ca2+. However, in keratinocytes cultured in serum-containing medium with vitamin C, levels of SO, SA, S1P, and SA1P were dramatically higher than those in 0.07- and 1.2-mM Ca2+-treated cells; however, compared to serum-containing medium alone, vitamin C did not significantly enhance their production. Taken together, we demonstrate that late differentiation induced by vitamin C and serum was accompanied by dramatic increases in the concentration of sphingoid bases and their phosphates, although vitamin C alone had no effect on their production.
Collapse
Affiliation(s)
- Juyoung Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi 446-701, Korea
| | | | | |
Collapse
|
49
|
Huwiler A, Kotelevets N, Xin C, Pastukhov O, Pfeilschifter J, Zangemeister-Wittke U. Loss of sphingosine kinase-1 in carcinoma cells increases formation of reactive oxygen species and sensitivity to doxorubicin-induced DNA damage. Br J Pharmacol 2011; 162:532-43. [PMID: 20883472 DOI: 10.1111/j.1476-5381.2010.01053.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Sphingosine kinases (SK) catalyse the formation of sphingosine 1-phosphate, which is a key lipid mediator regulating cell responses such as proliferation, survival and migration. Here we have investigated the effect of targeted inhibition of SK-1 on cell damage and elucidated the mechanisms involved. EXPERIMENTAL APPROACH Three human carcinoma cell lines (colon HCT-116, breast MDA-MB-231, lung NCI-H358) were used, which were either transduced with shRNA constructs to deplete SK-1, or treated with a SK-1 inhibitor. Cell growth and viability were assayed by [(3) H]thymidine incorporation and colony formation. Reactive oxygen species (ROS) were measured by fluorescence and apoptosis by annexin V with flow cytometry. Proteins were analysed by Western blotting. DNA damage was induced by doxorubicin. KEY RESULTS Knock-down of SK-1 by shRNA strongly inhibited DNA synthesis and colony formation of carcinoma cells. SK-1 knock-down (SK-1kd) cells revealed dysfunctional extracellular signal-regulated protein kinase and PKB/Akt cascades, and contained increased levels of ROS. After SK-1kd, treatment with doxorubicin increased DNA damage, measured by histone-2AX phosphorylation. Similar effects were found in cells with a SK-1 inhibitor and doxorubicin. The increased damage response in SK-1kd cells was accompanied by greater reduction of DNA synthesis and colony formation, and by more pronounced apoptosis. Addition of a NADPH oxidase inhibitor reduced the increased apoptosis in doxorubicin-treated SK-1kd cells. CONCLUSIONS AND IMPLICATIONS SK-1kd in carcinoma cells triggered oxidative stress by increasing intracellular Ros production. Targeted inhibition of SK-1 represents a promising approach to sensitize cells to DNA damage and facilitate apoptosis upon doxorubicin treatment.
Collapse
Affiliation(s)
- Andrea Huwiler
- Institute of Pharmacology, University of Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
50
|
Jung M, Lee S, Park HY, Youm JK, Jeong S, Bae J, Kwon MJ, Park BD, Lee SH, Choi EH. Anti-ageing effects of a new synthetic sphingolipid (K6EAA-L12) on aged murine skin. Exp Dermatol 2011; 20:314-9. [DOI: 10.1111/j.1600-0625.2010.01185.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|