1
|
Hemha P, Chomphoo S, Polsan Y, Goto K, Watanabe M, Kondo H, Hipkaeo W. Discrete localization of phospholipase Cβ3 and diacylglycerol kinase ι along the renal proximal tubules of normal rat kidney and gentamicin-induced changes in their expression. Histochem Cell Biol 2023; 159:293-307. [PMID: 36478081 DOI: 10.1007/s00418-022-02166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
Many signaling enzymes have multiple isozymes that are localized discretely at varying molecular levels in different compartments of cells where they play specific roles. In this study, among the various isozymes of phospholipase C (PLC) and diacylglycerol kinase (DGK), which work sequentially in the phosphoinositide cycle, both PLCβ3 and DGKι were found in renal brush-border microvilli, but found to replace each other along the proximal tubules: PLCβ3 in the proximal straight tubules (PST) of the outer stripe of the outer medulla (OSOM) and the medullary ray (MR), and DGKι in the proximal convoluted tubules (PCT) in the cortex and partially in the PST of the MR. Following daily injection of gentamicin for 1 week, the expression of PLCβ3 and DGKι was transiently enhanced, as demonstrated by western blot, and the increases were found to most likely occur in their original sites, that is, in the brush borders of the PST for PLCβ3 and in the PCT for DGKι. These findings showing differences in expression along the tubules suggest that the exertion of reabsorption and secretion through various ion channels and transporters in the microvillus membranes and the maintenance of microvillus turnover are regulated by a PLC-mediated signal with the balance shifted toward relative augmentation of the DAG function in the PST, and by a DGK-mediated signal with the balance shifted to relative augmentation of the phosphatidic acid function in the PCT. Our results also suggest the possibility that these isozymes are potential diagnostic signs for the early detection of acute kidney injury caused by gentamicin.
Collapse
Affiliation(s)
- Premrudee Hemha
- Electron Microscopy Laboratory, Division of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Surang Chomphoo
- Electron Microscopy Laboratory, Division of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yada Polsan
- Electron Microscopy Laboratory, Division of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kaoru Goto
- Department of Anatomy, School of Medicine, Yamagata University, Yamagata, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisatake Kondo
- Electron Microscopy Laboratory, Division of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wiphawi Hipkaeo
- Electron Microscopy Laboratory, Division of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Skelton LA, Boron WF. Effect of acute acid-base disturbances on the phosphorylation of phospholipase C-γ1 and Erk1/2 in the renal proximal tubule. Physiol Rep 2015; 3:e12280. [PMID: 25780091 PMCID: PMC4393148 DOI: 10.14814/phy2.12280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 11/24/2022] Open
Abstract
The renal proximal tubule (PT) plays a major role in whole-body pH homeostasis by secreting H(+) into the tubule lumen. Previous work demonstrated that PTs respond to basolateral changes in [CO2] and [HCO3-] by appropriately altering H(+) secretion-responses blocked by the ErbB inhibitor PD168393, or by eliminating signaling through AT1 angiotensin receptors. In the present study, we analyze phosphorylation of three downstream targets of both ErbBs and AT1: phospholipase C-γ1 (PLC-γ1), extracellular-regulated kinase 1 (Erk1), and Erk2. We expose rabbit PT suspensions for 5 and 20 min to our control (Ctrl) condition (5% CO2, 22 mmol/L HCO3-, pH 7.40) or one of several conditions that mimic acid-base disturbances. We found that each disturbance produces characteristic phosphorylation patterns in the three enzymes. For example, respiratory acidosis (elevated [CO2], normal [HCO3-]) at 20 min decreases PLC-γ1 phosphorylation at tyrosine-783 (relative to Ctrl). Metabolic acidosis (normal [CO2], decreased [HCO3-]) for 5 min increases Erk1 phosphorylation (p-Erk1) but not p-Erk2, whereas metabolic alkalosis (normal [CO2], elevated [HCO3-]) for 5 min decreases p-Erk1 and p-Erk2. In the presence of CO2/HCO3-, PD168393 blocks only two of eight induced decreases in phosphorylation. In two cases in which disturbances have no remarkable effects on phosphorylation, PD168393 unmasks decreases and in two others, increases. These drug effects provide insight into the roles of PD168393-sensitive kinases. Our results indicate that PLC-γ1.pY783, p-Erk1, and p-Erk2 in the PT change in characteristic ways in response to acute acid-base disturbances, and thus presumably contribute to the transduction of acid-base signals.
Collapse
Affiliation(s)
- Lara A Skelton
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Bak HJ, Kim MS, Kim NY, Lee AR, Park JH, Lee JY, Kim BS, Ahn SJ, Lee HH, Chung JK. Expression analysis and enzymatic characterization of phospholipase Cδ4 from olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2013; 166:215-24. [PMID: 24029817 DOI: 10.1016/j.cbpb.2013.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
Phospholipase Cδ4 (PLCδ4) plays a significant role in cell proliferation, tumorigenesis, and in an early stage of fertilization. Despite the characterization of the mammalian PLCδ4, extensive study in aquatic organisms has not been carried out so far. Here, we performed the molecular and biochemical characterization of flatfish Paralichthys olivaceus PLCδ4 (PoPLCδ4) to understand its enzymatic properties and physiological functions. The olive flounder PLCδ4 cDNA has an open reading frame (ORF) of 2,268 bp, and encodes a 755 amino acid polypeptide with a predicted molecular weight of 86 kDa. All the characteristic domains found in mammalian PLCδ isoforms (PH domain, EF hands, an X-Y catalytic region, and a C2 domain) were found to be present in PoPLCδ4. The mRNA expression analysis of PoPLCδ4 showed that PoPLCδ4 is predominantly expressed in the brain, eye and heart tissues. Like other mammalian PLCδ proteins, the enzyme activity of recombinant PoPLCδ4 to phosphatidylinositol-4,5-bis-phosphate (PIP2) was noted to be concentration- and Ca(2+)-dependent. The structural features and biochemical characteristics of PoPLCδ4 were found to be similar to those of mammalian PLCδ4. This is the first demonstration of the expression analysis and enzymatic characterization of piscine PLCδ4.
Collapse
Affiliation(s)
- Hye Jin Bak
- Department of Biotechnology, Pukyong National University, Busan 608-737, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Guo J, Song L, Liu M, Mahon MJ. Fluorescent ligand-directed co-localization of the parathyroid hormone 1 receptor with the brush-border scaffold complex of the proximal tubule reveals hormone-dependent changes in ezrin immunoreactivity consistent with inactivation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2243-53. [PMID: 23036889 DOI: 10.1016/j.bbamcr.2012.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 01/12/2023]
Abstract
Through binding to parathyroid hormone (PTH), PTH1R interacts with kidney-specific scaffold proteins, including the sodium hydrogen exchanger regulatory factors 1 and 2 (NHERFs), and ezrin. To facilitate in vivo localization, tetramethylrhodamine-labeled PTH (PTH-TMR) was used as a fluorescent probe. In mice, PTH-TMR localizes to luminal surfaces of tubular S1 segments that overlap PTH1R immunostaining, but does not directly overlap with megalin-specific antibodies. PTH-TMR staining directly overlaps with Npt2a in nascent, endocytic vesicles, marking the location of transporter regulation. PKA substrate antibodies display marked staining increases in segments labeled with PTH-TMR, demonstrating a functional effect. In the presence of secondary hyperparathyroidism, PTH-TMR staining is markedly reduced and shifts to co-localizing with megalin. At 15min post-injection, PTH-TMR-labeled vesicles do not co-localize with either NHERF or ezrin, suggesting PTH1R dissociation from the scaffold complex. At the 5min time point, PTH-TMR stains the base of microvilli where it localizes with both NHERF2 and ezrin, and only partially with NHERF1. Strikingly, the bulk of ezrin protein becomes undetectable with the polyclonal, CS3145 antibody, revealing a PTH-induced conformational change in the scaffold. A second ezrin antibody (3C12) is capable of detecting the altered ezrin protein. The CS3145 antibody only binds to the active form of ezrin and fails to recognize the inactive form, while the 3C12 reagent can detect either active or inactive ezrin. Here we show that the PTH1R is part of the ezrin scaffold complex and that acute actions of PTH suggest a rapid inactivation of ezrin in a spatially defined manner.
Collapse
Affiliation(s)
- Jun Guo
- Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
5
|
Xie J, Sun B, Du J, Yang W, Chen HC, Overton JD, Runnels LW, Yue L. Phosphatidylinositol 4,5-bisphosphate (PIP(2)) controls magnesium gatekeeper TRPM6 activity. Sci Rep 2011; 1:146. [PMID: 22180838 PMCID: PMC3238349 DOI: 10.1038/srep00146] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/13/2011] [Indexed: 11/27/2022] Open
Abstract
TRPM6 is crucial for human Mg2+ homeostasis as patients carrying TRPM6 mutations develop hypomagnesemia and secondary hypocalcemia (HSH). However, the activation mechanism of TRPM6 has remained unknown. Here we demonstrate that phosphatidylinositol-4,5-bisphophate (PIP2) controls TRPM6 activation and Mg2+ influx. Stimulation of PLC-coupled M1-receptors to deplete PIP2 potently inactivates TRPM6. Translocation of over-expressed 5-phosphatase to cell membrane to specifically hydrolyze PIP2 also completely inhibits TRPM6. Moreover, depolarization-induced-activation of the voltage-sensitive-phosphatase (Ci-VSP) simultaneously depletes PIP2 and inhibits TRPM6. PLC-activation induced PIP2-depletion not only inhibits TRPM6, but also abolishes TRPM6-mediated Mg2+ influx. Furthermore, neutralization of basic residues in the TRP domain leads to nonfunctional or dysfunctional mutants with reduced activity by PIP2, suggesting that they are likely to participate in interactions with PIP2. Our data indicate that PIP2 is required for TRPM6 channel function; hydrolysis of PIP2 by PLC-coupled hormones/agonists may constitute an important pathway for TRPM6 gating, and perhaps Mg2+ homeostasis.
Collapse
Affiliation(s)
- Jia Xie
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Mahon MJ. The parathyroid hormone 1 receptor directly binds to the FERM domain of ezrin, an interaction that supports apical receptor localization and signaling in LLC-PK1 cells. Mol Endocrinol 2009; 23:1691-701. [PMID: 19608645 DOI: 10.1210/me.2009-0164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PTH 1 receptor (PTH1R) regulates mineral ion homeostasis. Both apical and basolateral PTH1R subpopulations exist within the renal proximal tubule. The purpose of this research was to examine determinants within the PTH1R that direct apical localization. When expressed in LLC-PK1 cells, a proximal tubule cell model, the PTH1R localizes to both apical and basolateral membranes. The C terminus of the PTH1R contains a psd-95, discs large, ZO-1 domain interaction motif that binds the sodium-hydrogen exchanger regulatory factor 1 (NHERF-1), a renal tubule scaffold protein. Receptors lacking the psd-95, discs large, ZO-1 domain interaction motif (PTH1R-CDelta4) partly localize to apical membranes, suggesting that additional factors may be involved. Ezrin, a membrane-cytoskeleton linking protein, directly binds NHERF-1 and thus links assembled complexes to actin. In vitro, subdomain C of the ezrin band 4.1, ezrin, radixin, domain interacts with the C-terminal tail of the PTH1R on a site that is mutually exclusive from the NHERF-1 interaction domain, suggesting the presence of a ternary complex. Mutating the lysine-arginine-lysine motif within the juxtamembrane region of the PTH1R C-terminal tail to alanines markedly disrupts interactions with the band 4.1, ezrin, radixin, domain of ezrin both in vitro and within cells. Inclusion of these mutations in the context of the full-length PTH1R disrupts apical localization with no effect on basolateral expression. Expression of a dominant-negative ezrin selectively disrupts apical expression and signaling of the PTH1R. However, dominant-negative ezrin does not affect expression or signaling of the basolateral PTH1R subpopulation. These findings reveal that direct ezrin interactions promote PTH1R apical localization and signaling in LLC-PK1 cells.
Collapse
Affiliation(s)
- Matthew J Mahon
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, Their 10, Boston, Massachusetts 02114, USA.
| |
Collapse
|
7
|
Hus-Citharel A, Iturrioz X, Corvol P, Marchetti J, Llorens-Cortes C. Tyrosine kinase and mitogen-activated protein kinase/extracellularly regulated kinase differentially regulate intracellular calcium concentration responses to angiotensin II/III and bradykinin in rat cortical thick ascending limb. Endocrinology 2006; 147:451-63. [PMID: 16210376 DOI: 10.1210/en.2005-0253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cortical thick ascending limb (CTAL) coexpresses angiotensin (Ang) II/Ang III receptor type 1A (AT(1A)-R) and bradykinin (BK) receptor type 2 (B2-R). In several cell types, these two receptors share the same signaling pathways, although their physiological functions are often opposite. In CTAL, little is known about the intracellular transduction events leading to the final physiological response induced by these two peptides. We investigated and compared in this segment the action of Ang II/III and BK on intracellular calcium concentration ([Ca2+]i) response and metabolic CO2 production, an index of Na+ transport, by using inhibitors of protein kinase C (bisindolylmaleimide), Src tyrosine kinase (herbimycin A and PP2), and MAPK/ERK (PD98059 and UO126). Ang II/III and BK (10(-7) mol/liter) released Ca2+ from the same intracellular pools but activated different Ca2+ entry pathways. Ang II/III- or BK-induced [Ca2+]i increases were similarly potentiated by bisindolylmaleimide. Herbimycin A and PP2 decreased similarly the [Ca2+]i responses induced by Ang II/III and BK. In contrast, PD98059 and UO126 affected the effects of BK to a larger extent than those of Ang II/III. Especially, the Ca2+ influx induced by BK was more strongly inhibited than that induced by Ang II/III in the presence of both compounds. The Na+ transport was inhibited by BK and stimulated by Ang II/III. The inhibitory action of BK on Na+ transport was blocked by UO126, whereas the stimulatory response of Ang II/III was potentiated by UO126 but blocked by bisindolylmaleimide. These data suggest that the inhibitory effect of BK on Na+ transport seems to be directly mediated by an increase in Ca2+ influx dependent on MAPK/ERK pathway activation. In contrast, the stimulatory effect of Ang II/III on Na+ transport is more complex and involves PKC and MAPK/ERK pathways.
Collapse
Affiliation(s)
- Annette Hus-Citharel
- Institut National de la Santé et de la Recherche Médicale Unité 691, Collège de France, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
8
|
Rangel LBA, Lopes AG, Lara LSM, Carvalho TLG, Silva IV, Oliveira MM, Einicker-Lamas M, Vieyra A, Nogaroli L, Caruso-Neves C. PI-PLCbeta is involved in the modulation of the proximal tubule Na+-ATPase by angiotensin II. ACTA ACUST UNITED AC 2005; 127:177-82. [PMID: 15680484 DOI: 10.1016/j.regpep.2004.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 12/01/2004] [Indexed: 01/27/2023]
Abstract
In previous papers we showed that Ang II increases the proximal tubule Na+-ATPase activity through AT1/PKC pathway [L.B. Rangel, C. Caruso-Neves, L.S. Lara, A.G. Lopes, Angiotensin II stimulates renal proximal tubule Na+-ATPase activity through the activation of protein kinase C. Biochim. Biophys. Acta 1564 (2002) 310-316, L.B.A. Rangel, A.G. Lopes, L.S. Lara, C. Caruso-Neves, Angiotensin II stimulates renal proximal tubule Na+)-ATPase activity through the activation of protein kinase C. Biochim. Biophys. Acta 1564 (2002) 310-316]. In the present paper, we study the involvement of PI-PLCbeta on the stimulatory effect of angiotensin II (Ang II) on the proximal tubule Na+-ATPase activity. Western blotting assays, using a polyclonal antibody for PI-PLCbeta, show a single band of about 150 KDa, which correspond to PI-PLCbeta isoforms. Ang II induces a rapid decrease in PIP2 levels, a PI-PLCbeta substrate, being the maximal effect observed after 30 s incubation. This effect of Ang II is completely abolished by 5 x 10(-8) M U73122, a specific inhibitor of PI-PLCbeta. In this way, the effect of 10(-8) M Ang II on the proximal tubule basolateral membrane (BLM) Na+-ATPase activity is completely abolished by 5 x 10(-8) M U73122. The increase in diacylglycerol (DAG) concentration, an product of PI-PLCbeta, from 0.1 to 10 nM raises the Na+-ATPase activity from 6.1+/-0.2 to 13.1+/-1.8 nmol Pi mg(-1) min(-1). This effect is similar and non-additive to that observed with Ang II. Furthermore, the stimulatory effect of 10 nM DAG is completely reversed by 10(-8) M calphostin C (Calph C), an inhibitor of PKC. Taken together these data indicate that Ang II stimulates the Na+-ATPase activity of proximal tubule BLM through a PI-PLCbeta/PKC pathway.
Collapse
Affiliation(s)
- L B A Rangel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro,CCS Bloco G, 21949-900, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lea JP, Jin SG, Roberts BR, Shuler MS, Marrero MB, Tumlin JA. Angiotensin II stimulates calcineurin activity in proximal tubule epithelia through AT-1 receptor-mediated tyrosine phosphorylation of the PLC-gamma1 isoform. J Am Soc Nephrol 2002; 13:1750-6. [PMID: 12089370 DOI: 10.1097/01.asn.0000022029.50356.2c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Angiotensin II (AngII) contributes to the maintenance of extracellular fluid volume by regulating sodium transport in the nephron. In nonepithelial cells, activation of phospholipase C (PLC) by AT-1 receptors stimulates the generation of 1,4,5-trisphosphate (IP(3)) and the release of intracellular calcium. Calcineurin, a serine-threonine phosphatase, is activated by calcium and calmodulin, and both PLC and calcineurin have been linked to sodium transport in the proximal tubule. An examination of whether AngII activates calcineurin in a model of proximal tubule epithelia (LLC-PK1 cells) was performed; AngII increased calcineurin activity within 30 s. An examination of whether AngII activates PLC in proximal tubule epithelia was also performed after first showing that all three families of PLC isoforms are present in LLC-PK1 cells. Application of AngII increased IP(3) generation by 60% within 15 s, which coincided with AngII-induced tyrosine phosphorylation of the PLC-gamma1 isoform also observed at 15 s. AngII-induced tyrosine phosphorylation was blocked by the AT-1 receptor antagonist, Losartan. Subsequently, an inhibitor of tyrosine phosphorylation blocked the AngII-induced activation of calcineurin, as did coincubation with an inhibitor of PLC activity and with an antagonist of the AT-1 receptor. It is therefore concluded that AngII stimulates calcineurin phosphatase activity in proximal tubule epithelial cells through a mechanism involving AT-1 receptor-mediated tyrosine phosphorylation of the PLC isoform.
Collapse
Affiliation(s)
- Janice P Lea
- Renal Division, Emory University School of Medicine, 1639 Pierce Drive NE, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Kim TT, Saunders T, Bieber E, Phillippe M. Protein expression of phospholipase C in pregnant and nonpregnant rat uterine tissue. Am J Obstet Gynecol 2001; 185:1191-7. [PMID: 11717656 DOI: 10.1067/mob.2001.118143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The phosphatidylinositol signaling pathway appears to play a significant role in the intracellular events leading to agonist-stimulated phasic myometrial contractions. The studies described in this report were performed to characterize phospholipase C isoform expression at the protein level and to confirm histologic localization of these proteins within the myometrial smooth muscle layers of the uterus. METHODS For these studies, uterine tissue was obtained from timed- pregnant and spontaneously cycling adult female Sprague-Dawley rats. After isolation of myometrial cell membranes and cytosolic proteins, Western blots were performed by using phospholipase C isoform-specific antibodies. Tissue cross-sections of near-term pregnant rat uterus were used with the phospholipase C isoform-specific antibodies for immunohistochemical studies. RESULTS The Western blot studies confirmed expression of the phospholipase C-beta3, -gamma1, -gamma2, and -delta1 proteins in both the membrane and cytosolic fractions of rat myometrium; in contrast, only trace amounts of the phospholipase C-beta1 protein was observed in this tissue. The immunohistochemical studies demonstrated localization of the phospholipase C-beta3, -gamma1, -gamma2, -delta1 and to a lesser degree phospholipase C-beta1 isoforms within the longitudinal and circular smooth muscle layers of the near-term pregnant rat uterus. CONCLUSION These studies have confirmed the simultaneous expression of several phospholipase C proteins within the smooth muscle cells of the pregnant and nonpregnant rat uterus, thereby providing support for the possible redundant role of these signal transduction enzymes during the generation of cytosolic calcium oscillations and phasic myometrial contractions.
Collapse
Affiliation(s)
- T T Kim
- Department of Obstetrics and Gynecology, University of Chicago, Ill, USA
| | | | | | | |
Collapse
|