1
|
Harskamp LR, Perez-Gomez MV, Heida JE, Engels GE, van Goor H, van den Heuvel MC, Streets AJ, Ong ACM, Ortiz A, Gansevoort RT. The association of urinary epidermal growth factors with ADPKD disease severity and progression. Nephrol Dial Transplant 2023; 38:2266-2275. [PMID: 36914219 PMCID: PMC10539218 DOI: 10.1093/ndt/gfad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) pathway is involved in kidney tissue repair and growth. Preclinical interventional data and scarce human data have suggested a role for this pathway in the pathophysiology of autosomal dominant polycystic kidney disease (ADPKD), while other data have suggested that its activation is causally linked to repair of damaged kidney tissue. We hypothesize that urinary EGFR ligands, as a reflection of EGFR activity, are associated with kidney function decline in ADPKD in the context of tissue repair following injury, and as the disease progresses as a sign of insufficient repair. METHODS In the present study, we measured the EGFR ligands, EGF and heparin binding-EGF (HB-EGF), in 24-h urine samples of 301 ADPKD patients and 72 age- and sex-matched living kidney donors to dissect the role of the EGFR pathway in ADPKD. During a median follow-up of 2.5 years, the association of urinary EGFR ligand excretion with annual change in estimated glomerular filtration rate (eGFR) and height-adjusted total kidney volume in ADPKD patients was analyzed using mixed-models methods, and the expression of three closely related EGFR family receptors in ADPKD kidney tissue was investigated by immunohistochemistry. Additionally, the effect of reducing renal mass (after kidney donation), was assessed to investigate whether urinary EGF matches this reduction and thus reflects the amount of remaining healthy kidney tissue. RESULTS At baseline, urinary HB-EGF did not differ between ADPKD patients and healthy controls (P = .6), whereas a lower urinary EGF excretion was observed in ADPKD patients [18.6 (11.8-27.8)] compared with healthy controls [51.0 (34.9-65.4) μg/24 h, P < .001]. Urinary EGF was positively associated with baseline eGFR (R = 0.54, P < .001) and a lower EGF was strongly associated with a more rapid GFR decline, even when adjusted for ADPKD severity markers (β = 1.96, P < .001), whereas HB-EGF was not. Expression of the EGFR, but not other EGFR-related receptors, was observed in renal cysts but was absent in non-ADPKD kidney tissue. Finally, unilateral nephrectomy resulted in a decrease of 46.4 (-63.3 to -17.6) % in urinary EGF excretion, alongside a decrease of 35.2 ± 7.2% in eGFR and 36.8 ± 6.9% in measured GFR (mGFR), whereas maximal mGFR (measured after dopamine induced hyperperfusion) decreased by 46.1 ± 7.8% (all P < .001). CONCLUSIONS Our data suggest that lower urinary EGF excretion may be a valuable novel predictor for kidney function decline in patients with ADPKD.
Collapse
Affiliation(s)
- Laura R Harskamp
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Judith E Heida
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | - Andrew J Streets
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Kidney Genetics Group, Academic Nephrology Unit, Sheffield, UK
| | - Albert C M Ong
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Kidney Genetics Group, Academic Nephrology Unit, Sheffield, UK
| | - Alberto Ortiz
- Department of Nephrology, Fundación Jiménez Díaz University Hospital and IIS-FJD, Madrid, Spain
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Zhou JX, Torres VE. Autosomal Dominant Polycystic Kidney Disease Therapies on the Horizon. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:245-260. [PMID: 37088527 DOI: 10.1053/j.akdh.2023.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 04/25/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous kidney cysts which leads to kidney failure. ADPKD is responsible for approximately 10% of patients with kidney failure. Overwhelming evidence supports that vasopressin and its downstream cyclic adenosine monophosphate signaling promote cystogenesis, and targeting vasopressin 2 receptor with tolvaptan and other antagonists ameliorates cyst growth in preclinical studies. Tolvaptan is the only drug approved by Food and Drug Administration to treat ADPKD patients at the risk of rapid disease progression. A major limitation of the widespread use of tolvaptan is aquaretic events. This review discusses the potential strategies to improve the tolerability of tolvaptan, the progress on the use of an alternative vasopressin 2 receptor antagonist lixivaptan, and somatostatin analogs. Recent advances in understanding the pathophysiology of PKD have led to new approaches of treatment via targeting different signaling pathways. We review the new pharmacotherapies and dietary interventions of ADPKD that are promising in the preclinical studies and investigated in clinical trials.
Collapse
|
3
|
Carullo N, Zicarelli MT, Casarella A, Nicotera R, Castagna A, Urso A, Presta P, Andreucci M, Russo E, Bolignano D, Coppolino G. Retarding Progression of Chronic Kidney Disease in Autosomal Dominant Polycystic Kidney Disease with Metformin and Other Therapies: An Update of New Insights. Int J Gen Med 2021; 14:5993-6000. [PMID: 34588803 PMCID: PMC8473846 DOI: 10.2147/ijgm.s305491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent single-gene disorder leading to renal failure. Current therapies are aimed to treat renal and extrarenal complications of ADPKD, but improved knowledge of the pathophysiological mechanisms leading to the generation and growth of cysts has permitted the identification of new drug candidates for clinical trials. Among these, in this review, we will examine above all the role of metformin, hypothesized to be able to activate the AMP-activated protein kinase (AMPK) pathway and potentially modulate some mechanisms implicated in the onset and the growth of the cysts.
Collapse
Affiliation(s)
- Nazareno Carullo
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | | | | | - Ramona Nicotera
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Alberto Castagna
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Alessandra Urso
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Pierangela Presta
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Michele Andreucci
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Emilio Russo
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Davide Bolignano
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Giuseppe Coppolino
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|
4
|
The cellular pathways and potential therapeutics of Polycystic Kidney Disease. Biochem Soc Trans 2021; 49:1171-1188. [PMID: 34156429 DOI: 10.1042/bst20200757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Polycystic Kidney Disease (PKD) refers to a group of disorders, driven by the formation of cysts in renal tubular cells and is currently one of the leading causes of end-stage renal disease. The range of symptoms observed in PKD is due to mutations in cilia-localising genes, resulting in changes in cellular signalling. As such, compounds that are currently in preclinical and clinical trials target some of these signalling pathways that are dysregulated in PKD. In this review, we highlight these pathways including cAMP, EGF and AMPK signalling and drugs that target them and may show promise in lessening the disease burden of PKD patients. At present, tolvaptan is the only approved therapy for ADPKD, however, it carries several adverse side effects whilst comparatively, no pharmacological drug is approved for ARPKD treatment. Aside from this, drugs that have been the subject of multiple clinical trials such as metformin, which targets AMPK signalling and somatostatins, which target cAMP signalling have shown great promise in reducing cyst formation and cellular proliferation. This review also discusses other potential and novel targets that can be used for future interventions, such as β-catenin and TAZ, where research has shown that a reduction in the overexpression of these signalling components results in amelioration of disease phenotype. Thus, it becomes apparent that well-designed preclinical investigations and future clinical trials into these pathways and other potential signalling targets are crucial in bettering disease prognosis for PKD patients and could lead to personalised therapy approaches.
Collapse
|
5
|
Cordido A, Vizoso-Gonzalez M, Garcia-Gonzalez MA. Molecular Pathophysiology of Autosomal Recessive Polycystic Kidney Disease. Int J Mol Sci 2021; 22:6523. [PMID: 34204582 PMCID: PMC8235086 DOI: 10.3390/ijms22126523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a rare disorder and one of the most severe forms of polycystic kidney disease, leading to end-stage renal disease (ESRD) in childhood. PKHD1 is the gene that is responsible for the vast majority of ARPKD. However, some cases have been related to a new gene that was recently identified (DZIP1L gene), as well as several ciliary genes that can mimic a ARPKD-like phenotypic spectrum. In addition, a number of molecular pathways involved in the ARPKD pathogenesis and progression were elucidated using cellular and animal models. However, the function of the ARPKD proteins and the molecular mechanism of the disease currently remain incompletely understood. Here, we review the clinics, treatment, genetics, and molecular basis of ARPKD, highlighting the most recent findings in the field.
Collapse
Affiliation(s)
- Adrian Cordido
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Marta Vizoso-Gonzalez
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Miguel A. Garcia-Gonzalez
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Fundación Publica Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Strubl S, Torres JA, Spindt AK, Pellegrini H, Liebau MC, Weimbs T. STAT signaling in polycystic kidney disease. Cell Signal 2020; 72:109639. [PMID: 32325185 PMCID: PMC7269822 DOI: 10.1016/j.cellsig.2020.109639] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The most common form of polycystic kidney disease (PKD) in humans is caused by mutations in the PKD1 gene coding for polycystin1 (PC1). Among the many identified or proposed functions of PC1 is its ability to regulate the activity of transcription factors of the STAT family. Most STAT proteins that have been investigated were found to be aberrantly activated in kidneys in PKD, and some have been shown to be drivers of disease progression. In this review, we focus on the role of signal transducer and activator of transcription (STAT) signaling pathways in various renal cell types in healthy kidneys as compared to polycystic kidneys, on the mechanisms of STAT regulation by PC1 and other factors, and on the possibility to target STAT signaling for PKD therapy.
Collapse
Affiliation(s)
- Sebastian Strubl
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jacob A Torres
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Alison K Spindt
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Hannah Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA.
| |
Collapse
|
8
|
Molecular pathways involved in injury-repair and ADPKD progression. Cell Signal 2020; 72:109648. [PMID: 32320858 DOI: 10.1016/j.cellsig.2020.109648] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
Abstract
The major hallmark of Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the formation of many fluid-filled cysts in the kidneys, which ultimately impairs the normal renal structure and function, leading to end-stage renal disease (ESRD). A large body of evidence suggests that injury-repair mechanisms are part of ADPKD progression. Once cysts have been formed, proliferation and fluid secretion contribute to the cyst size increase, which eventually causes stress on the surrounding tissue resulting in local injury and fibrosis. In addition, renal injury can cause or accelerate cyst formation. In this review, we will describe the various mechanisms activated during renal injury and tissue repair and show how they largely overlap with the molecular mechanisms activated during PKD progression. In particular, we will discuss molecular mechanisms such as proliferation, inflammation, cell differentiation, cytokines and growth factors secretion, which are activated following the renal injury to allow the remodelling of the tissue and a proper organ repair. We will also underline how, in a context of PKD-related gene mutations, aberrant or chronic activation of these developmental pathways and repair/remodelling mechanisms results in exacerbation of the disease.
Collapse
|
9
|
Testa F, Magistroni R. ADPKD current management and ongoing trials. J Nephrol 2019; 33:223-237. [PMID: 31853789 DOI: 10.1007/s40620-019-00679-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022]
Abstract
Among the diseases that require renal replacement therapy (RRT), ADPKD is the fourth for incidence and prevalence. In Italy, there are at least 32,000 patients affected by ADPKD, of which about 2900 in dialysis. The pure costs of dialysis treatment for the Italian National Health Service can be conservatively estimated at 87 million euros per year. Even a modest slowdown in the evolution of the disease would obtain an important result in terms of reduction of health expenditure. In recent years, many new or repurposed drugs have been evaluated in clinical trials for ADPKD. In this review we will mainly focus on advanced stage clinical trials (phase 2 and 3). We have grouped these studies according to the molecular pathway addressed by the experimental drug or the therapeutic strategy. More than 10 years after the start of the first Phase III clinical trials in ADPKD, the first drug active in slowing disease progression is finally available. It cannot be considered a goal but only the beginning of a journey because of the significant side effects and the high cost of Tolvaptan. An exuberant basic research activity in the field, together with the large number of ongoing protocols, keep the nephrologists and their patients positive with regard to the discovery of new and better therapies in a not-too-distant future.
Collapse
Affiliation(s)
- Francesca Testa
- UOC Divisione di Nefrologia Dialisi e Trapianto, AOU Policlinico di Modena, Modena, Italy
| | - Riccardo Magistroni
- UOC Divisione di Nefrologia Dialisi e Trapianto, AOU Policlinico di Modena, Modena, Italy. .,Dipartimento Chirurgico Medico Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università di Modena e Reggio Emilia, Modena, Italy.
| |
Collapse
|
10
|
Parker MI, Nikonova AS, Sun D, Golemis EA. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease. Cell Signal 2019; 67:109497. [PMID: 31830556 DOI: 10.1016/j.cellsig.2019.109497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
A primary pathological feature of polycystic kidney disease (PKD) is the hyperproliferation of epithelial cells in renal tubules, resulting in formation of fluid-filled cysts. The proliferative aspects of the two major forms of PKD-autosomal dominant PKD (ADPKD), which arises from mutations in the polycystins PKD1 and PKD2, and autosomal recessive PKD (ARPKD), which arises from mutations in PKHD1-has encouraged investigation into protein components of the core cell proliferative machinery as potential drivers of PKD pathogenesis. In this review, we examine the role of signaling by ERBB proteins and their effectors, with a primary focus on ADPKD. The ERBB family of receptor tyrosine kinases (EGFR/ERBB1, HER2/ERBB2, ERBB3, and ERBB4) are activated by extracellular ligands, inducing multiple pro-growth signaling cascades; among these, activation of signaling through the RAS GTPase, and the RAF, MEK1/2, and ERK1/2 kinases enhance cell proliferation and restrict apoptosis during renal tubuloepithelial cyst formation. Characteristics of PKD include overexpression and mislocalization of the ERBB receptors and ligands, leading to enhanced activation and increased activity of downstream signaling proteins. The altered regulation of ERBBs and their effectors in PKD is influenced by enhanced activity of SRC kinase, which is promoted by the loss of cytoplasmic Ca2+ and an increase in cAMP-dependent PKA kinase activity that stimulates CFTR, driving the secretory phenotype of ADPKD. We discuss the interplay between ERBB/SRC signaling, and polycystins and their depending signaling, with emphasis on thes changes that affect cell proliferation in cyst expansion, as well as the inflammation-associated fibrogenesis, which characterizes progressive disease. We summarize the current progress of preclinical and clinical trials directed at inhibiting this signaling axis, and discuss potential future strategies that may be productive for controlling PKD.
Collapse
Affiliation(s)
- Mitchell I Parker
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, 19102, USA
| | - Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA
| | - Danlin Sun
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Institute of Life Science, Jiangsu University, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA.
| |
Collapse
|
11
|
Chu H, Shillingford JM, Reddy JA, Westrick E, Nelson M, Wang EZ, Parker N, Felten AE, Vaughn JF, Xu LC, Lu YJ, Vlahov IR, Leamon CP. Detecting Functional and Accessible Folate Receptor Expression in Cancer and Polycystic Kidneys. Mol Pharm 2019; 16:3985-3995. [PMID: 31356752 DOI: 10.1021/acs.molpharmaceut.9b00624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Folate-based small molecule drug conjugates (SMDCs) are currently under development and have shown promising preclinical and clinical results against various cancers and polycystic kidney disease. Two requisites for response to a folate-based SMDC are (i) folate receptor alpha (FRα) protein is expressed in the diseased tissues, and (ii) FRα in those tissues is accessible and functionally competent to bind systemically administered SMDCs. Here we report on the development of a small molecule reporter conjugate (SMRC), called EC2220, which is composed of a folate ligand for FRα binding, a multilysine containing linker that can cross-link to FRα in the presence of formaldehyde fixation, and a small hapten (fluorescein) used for immunohistochemical detection. Data show that EC2220 produces a far greater IHC signal in FRα-positive tissues over that produced with EC17, a folate-fluorescein SMRC that is released from the formaldehyde-denatured FRα protein. Furthermore, the extent of the EC2220 IHC signal was proportional to the level of FRα expression. This EC2220-based assay was qualified both in vitro and in vivo using normal tissue, cancer tissue, and polycystic kidneys. Overall, EC2220 is a sensitive and effective reagent for evaluating functional and accessible receptor expression in vitro and in vivo.
Collapse
Affiliation(s)
- Haiyan Chu
- Endocyte, Inc. , 3000 Kent Avenue, Suite A1-100 , West Lafayette , Indiana 47906 , United States
| | - Jonathan M Shillingford
- Endocyte, Inc. , 3000 Kent Avenue, Suite A1-100 , West Lafayette , Indiana 47906 , United States
| | - Joseph A Reddy
- Endocyte, Inc. , 3000 Kent Avenue, Suite A1-100 , West Lafayette , Indiana 47906 , United States
| | - Elaine Westrick
- Endocyte, Inc. , 3000 Kent Avenue, Suite A1-100 , West Lafayette , Indiana 47906 , United States
| | - Melissa Nelson
- Endocyte, Inc. , 3000 Kent Avenue, Suite A1-100 , West Lafayette , Indiana 47906 , United States
| | - Emilia Z Wang
- Endocyte, Inc. , 3000 Kent Avenue, Suite A1-100 , West Lafayette , Indiana 47906 , United States
| | - Nikki Parker
- Endocyte, Inc. , 3000 Kent Avenue, Suite A1-100 , West Lafayette , Indiana 47906 , United States
| | - Albert E Felten
- Endocyte, Inc. , 3000 Kent Avenue, Suite A1-100 , West Lafayette , Indiana 47906 , United States
| | - Jeremy F Vaughn
- Endocyte, Inc. , 3000 Kent Avenue, Suite A1-100 , West Lafayette , Indiana 47906 , United States
| | - Le-Cun Xu
- Endocyte, Inc. , 3000 Kent Avenue, Suite A1-100 , West Lafayette , Indiana 47906 , United States
| | - Yingjuan J Lu
- Endocyte, Inc. , 3000 Kent Avenue, Suite A1-100 , West Lafayette , Indiana 47906 , United States
| | - Iontcho R Vlahov
- Endocyte, Inc. , 3000 Kent Avenue, Suite A1-100 , West Lafayette , Indiana 47906 , United States
| | - Christopher P Leamon
- Endocyte, Inc. , 3000 Kent Avenue, Suite A1-100 , West Lafayette , Indiana 47906 , United States
| |
Collapse
|
12
|
de Castro-Suárez N, Rodríguez-Vera L, Villegas C, Dávalos-Iglesias JM, Bacallao-Mendez R, Llerena-Ferrer B, Leyva-de la Torre C, Lorenzo-Luaces P, Troche-Concepción M, Ramos-Suzarte M. Pharmacokinetic Evaluation of Nimotuzumab in Patients With Autosomal Dominant Polycystic Kidney Disease. J Clin Pharmacol 2019; 59:863-871. [PMID: 30633365 DOI: 10.1002/jcph.1376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease characterized by an overexpression and mislocalization of epidermal growth factor receptor (EGFR) to the apical membranes of cystic epithelial cells. Nimotuzumab is a humanized antibody that recognizes an extracellular domain III of human EGFR. The aim of this study was to assess the pharmacokinetic behavior of nimotuzumab in patients with ADPKD given as a single dose. A phase I, single-center, and noncontrolled open clinical study was conducted. Five patients were enrolled at each of the following fixed-dose levels: 50, 100, 200, and 400 mg. Intravenous continuous infusions of nimotuzumab were administered every 14 days during a year, except the first administration, when blood samples were drawn during 28 days for pharmacokinetic assessments. Subjects were closely monitored during the trial and at completion of the administration of nimotuzumab, including the anti-idiotypic response. For the first time, nimotuzumab was used for treating a nononcological disease. The administration of nimotuzumab showed dose-dependent kinetics. Nimotuzumab does not develop anti-idiotypic response against the murine portion present in the hypervariable region of the antibody present in the serum of the patients treated. No significant differences were found in the systemic clearance between the 100- and 400-mg dose, which indicates that the optimal biological dose is in this range of dose.
Collapse
Affiliation(s)
- Niurys de Castro-Suárez
- Laboratory of Biopharmaceutics, Department of Pharmacology & Toxicology, Institute of Pharmacy & Foods, University of Havana, Havana, Cuba
| | - Leyanis Rodríguez-Vera
- Laboratory of Biopharmaceutics, Department of Pharmacology & Toxicology, Institute of Pharmacy & Foods, University of Havana, Havana, Cuba
| | - Carlos Villegas
- National Institute of Oncology and Radiobiology, Havana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediators Inflamm 2018; 2018:8739473. [PMID: 30670929 PMCID: PMC6323488 DOI: 10.1155/2018/8739473] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by persistent inflammation and progressive fibrosis, ultimately leading to end-stage renal disease. Although many studies have investigated the factors involved in the progressive deterioration of renal function, current therapeutic strategies only delay disease progression, leaving an unmet need for effective therapeutic interventions that target the cause behind the inflammatory process and could slow down or reverse the development and progression of CKD. Epidermal growth factor receptor (EGFR) (ERBB1), a membrane tyrosine kinase receptor expressed in the kidney, is activated after renal damage, and preclinical studies have evidenced its potential as a therapeutic target in CKD therapy. To date, seven official EGFR ligands have been described, including epidermal growth factor (EGF) (canonical ligand), transforming growth factor-α, heparin-binding epidermal growth factor, amphiregulin, betacellulin, epiregulin, and epigen. Recently, the connective tissue growth factor (CTGF/CCN2) has been described as a novel EGFR ligand. The direct activation of EGFR by its ligands can exert different cellular responses, depending on the specific ligand, tissue, and pathological condition. Among all EGFR ligands, CTGF/CCN2 is of special relevance in CKD. This growth factor, by binding to EGFR and downstream signaling pathway activation, regulates renal inflammation, cell growth, and fibrosis. EGFR can also be “transactivated” by extracellular stimuli, including several key factors involved in renal disease, such as angiotensin II, transforming growth factor beta (TGFB), and other cytokines, including members of the tumor necrosis factor superfamily, showing another important mechanism involved in renal pathology. The aim of this review is to summarize the contribution of EGFR pathway activation in experimental kidney damage, with special attention to the regulation of the inflammatory response and the role of some EGFR ligands in this process. Better insights in EGFR signaling in renal disease could improve our current knowledge of renal pathology contributing to therapeutic strategies for CKD development and progression.
Collapse
|
14
|
Kipp KR, Kruger SL, Schimmel MF, Parker N, Shillingford JM, Leamon CP, Weimbs T. Comparison of folate-conjugated rapamycin versus unconjugated rapamycin in an orthologous mouse model of polycystic kidney disease. Am J Physiol Renal Physiol 2018; 315:F395-F405. [PMID: 29717938 DOI: 10.1152/ajprenal.00057.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a very common genetic disease leading to renal failure. Numerous aberrantly regulated signaling pathways have been identified as promising molecular drug targets for ADPKD therapy. In rodent models, many small-molecule drugs against such targets have proven effective in reducing renal cyst growth. For example, mammalian target of rapamycin (mTOR) inhibition with rapamycin greatly ameliorates renal cystic disease in several rodent models. However, clinical trials with mTOR inhibitors were disappointing largely due to the intolerable extrarenal side effects during long-term treatment with these drugs. Most other potential drug targets in ADPKD are also widely expressed in extrarenal tissues, which makes it likely that untargeted therapies with small-molecule inhibitors against such targets will lead to systemic adverse effects during the necessary long-term treatment of years and decades in ADPKD patients. To overcome this problem, we previously demonstrated that folate-conjugated rapamycin (FC-rapa) targets polycystic kidneys due to the high expression of the folate receptor (FRα) and that treatment of a nonortholgous PKD mouse model leads to inhibition of renal cyst growth. Here we show, in a head-to-head comparison with unconjugated rapamycin, that FCrapa inhibits renal cyst growth, mTOR activation, cell cycling, and fibrosis in an orthologous Pkd1 mouse model. Both unconjugated rapamycin and FC-rapa are similarly effective on polycystic kidneys in this model. However, FC-rapa lacks the extrarenal effects of unconjugated rapamycin, in particular immunosuppressive effects. We conclude that folate-conjugation is a promising avenue for increasing the tissue specificity of small-molecule compounds to facilitate very long-term treatment in ADPKD.
Collapse
Affiliation(s)
- Kevin R Kipp
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute, University of California , Santa Barbara, California
| | - Samantha L Kruger
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute, University of California , Santa Barbara, California
| | - Margaret F Schimmel
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute, University of California , Santa Barbara, California
| | | | | | | | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute, University of California , Santa Barbara, California
| |
Collapse
|
15
|
Molinari E, Sayer JA. Emerging treatments and personalised medicine for ciliopathies associated with cystic kidney disease. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1372282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elisa Molinari
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John A. Sayer
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Sweeney WE, Avner ED. Emerging Therapies for Childhood Polycystic Kidney Disease. Front Pediatr 2017; 5:77. [PMID: 28473970 PMCID: PMC5395658 DOI: 10.3389/fped.2017.00077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/30/2017] [Indexed: 12/28/2022] Open
Abstract
Cystic kidney diseases comprise a varied collection of hereditary disorders, where renal cysts comprise a major element of their pleiotropic phenotype. In pediatric patients, the term polycystic kidney disease (PKD) commonly refers to two specific hereditary diseases, autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD). Remarkable progress has been made in understanding the complex molecular and cellular mechanisms of renal cyst formation in ARPKD and ADPKD. One of the most important discoveries is that both the genes and proteins products of ARPKD and ADPKD interact in a complex network of genetic and functional interactions. These interactions and the shared phenotypic abnormalities of ARPKD and ADPKD, the "cystic phenotypes" suggest that many of the therapies developed and tested for ADPKD may be effective in ARPKD as well. Successful therapeutic interventions for childhood PKD will, therefore, be guided by knowledge of these molecular interactions, as well as a number of clinical parameters, such as the stage of the disease and the rate of disease progression.
Collapse
Affiliation(s)
- William E Sweeney
- Department of Pediatrics, Medical College of Wisconsin, Children's Research Institute, Children's Hospital Health System of Wisconsin, Milwaukee, WI, USA
| | - Ellis D Avner
- Department of Pediatrics, Medical College of Wisconsin, Children's Research Institute, Children's Hospital Health System of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
17
|
Abstract
The epidermal growth factor receptor (EGFR) pathway has a critical role in renal development, tissue repair and electrolyte handling. Numerous studies have reported an association between dysregulation of this pathway and the initiation and progression of various chronic kidney diseases such as diabetic nephropathy, chronic allograft nephropathy and polycystic kidney disease through the promotion of renal cell proliferation, fibrosis and inflammation. In the oncological setting, compounds that target the EGFR pathway are already in clinical use or have been evaluated in clinical trials; in the renal setting, therapeutic interventions targeting this pathway by decreasing ligand availability with disintegrin and metalloproteinase inhibitors or with ligand-neutralizing antibodies, or by inhibiting receptor activation with tyrosine kinase inhibitors or monoclonal antibodies are only just starting to be explored in animal models of chronic kidney disease and in patients with autosomal dominant polycystic kidney disease. In this Review we focus on the role of the EGFR signalling pathway in the kidney under physiological conditions and during the pathophysiology of chronic kidney diseases and explore the clinical potential of interventions in this pathway to treat chronic renal diseases.
Collapse
|
18
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a signalopathy of renal tubular epithelial cells caused by naturally occurring mutations in two distinct genes, polycystic kidney disease 1 (PKD1) and 2 (PKD2). Genetic variants in PKD1, which encodes the polycystin-1 (PC-1) protein, remain the predominant factor associated with the pathogenesis of nearly two-thirds of all patients diagnosed with PKD. Although the relationship between defective PC-1 with renal cystic disease initiation and progression remains to be fully elucidated, there are numerous clinical studies that have focused upon the control of effector systems involving heterotrimeric G protein regulation. A major regulator in the activation state of heterotrimeric G proteins are G protein-coupled receptors (GPCRs), which are defined by their seven transmembrane-spanning regions. PC-1 has been considered to function as an unconventional GPCR, but the mechanisms by which PC-1 controls signal processing, magnitude, or trafficking through heterotrimeric G proteins remains to be fully known. The diversity of heterotrimeric G protein signaling in PKD is further complicated by the presence of non-GPCR proteins in the membrane or cytoplasm that also modulate the functional state of heterotrimeric G proteins within the cell. Moreover, PC-1 abnormalities promote changes in hormonal systems that ultimately interact with distinct GPCRs in the kidney to potentially amplify or antagonize signaling output from PC-1. This review will focus upon the canonical and noncanonical signaling pathways that have been described in PKD with specific emphasis on which heterotrimeric G proteins are involved in the pathological reorganization of the tubular epithelial cell architecture to exacerbate renal cystogenic pathways.
Collapse
Affiliation(s)
- Taketsugu Hama
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
19
|
Hartung EA, Guay-Woodford LM. Autosomal recessive polycystic kidney disease: a hepatorenal fibrocystic disorder with pleiotropic effects. Pediatrics 2014; 134:e833-45. [PMID: 25113295 PMCID: PMC4143997 DOI: 10.1542/peds.2013-3646] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 12/31/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is an important cause of chronic kidney disease in children. The care of ARPKD patients has traditionally been the realm of pediatric nephrologists; however, the disease has multisystem effects, and a comprehensive care strategy often requires a multidisciplinary team. Most notably, ARPKD patients have congenital hepatic fibrosis, which can lead to portal hypertension, requiring close follow-up by pediatric gastroenterologists. In severely affected infants, the diagnosis is often first suspected by obstetricians detecting enlarged, echogenic kidneys and oligohydramnios on prenatal ultrasounds. Neonatologists are central to the care of these infants, who may have respiratory compromise due to pulmonary hypoplasia and massively enlarged kidneys. Surgical considerations can include the possibility of nephrectomy to relieve mass effect, placement of dialysis access, and kidney and/or liver transplantation. Families of patients with ARPKD also face decisions regarding genetic testing of affected children, testing of asymptomatic siblings, or consideration of preimplantation genetic diagnosis for future pregnancies. They may therefore interface with genetic counselors, geneticists, and reproductive endocrinologists. Children with ARPKD may also be at risk for neurocognitive dysfunction and may require neuropsychological referral. The care of patients and families affected by ARPKD is therefore a multidisciplinary effort, and the general pediatrician can play a central role in this complex web of care. In this review, we outline the spectrum of clinical manifestations of ARPKD and review genetics of the disease, clinical and genetic diagnosis, perinatal management, management of organ-specific complications, and future directions for disease monitoring and potential therapies.
Collapse
Affiliation(s)
- Erum A Hartung
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Lisa M Guay-Woodford
- Center for Translational Science, Children's National Health System, Washington, District of Columbia
| |
Collapse
|
20
|
Talbot JJ, Song X, Wang X, Rinschen MM, Doerr N, LaRiviere WB, Schermer B, Pei YP, Torres VE, Weimbs T. The cleaved cytoplasmic tail of polycystin-1 regulates Src-dependent STAT3 activation. J Am Soc Nephrol 2014; 25:1737-48. [PMID: 24578126 PMCID: PMC4116067 DOI: 10.1681/asn.2013091026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/06/2013] [Indexed: 12/30/2022] Open
Abstract
Polycystin-1 (PC1) mutations result in proliferative renal cyst growth and progression to renal failure in autosomal dominant polycystic kidney disease (ADPKD). The transcription factor STAT3 (signal transducer and activator of transcription 3) was shown to be activated in cyst-lining cells in ADPKD and PKD mouse models and may drive renal cyst growth, but the mechanisms leading to persistent STAT3 activation are unknown. A proteolytic fragment of PC1 corresponding to the cytoplasmic tail, PC1-p30, is overexpressed in ADPKD. Here, we show that PC1-p30 interacts with the nonreceptor tyrosine kinase Src, resulting in Src-dependent activation of STAT3 by tyrosine phosphorylation. The PC1-p30-mediated activation of Src/STAT3 was independent of JAK family kinases and insensitive to the STAT3 inhibitor suppressor of cytokine signaling 3. Signaling by the EGF receptor (EGFR) or cAMP amplified the activation of Src/STAT3 by PC1-p30. Expression of PC1-p30 changed the cellular response to cAMP signaling. In the absence of PC1-p30, cAMP dampened EGFR- or IL-6-dependent activation of STAT3; in the presence of PC1-p30, cAMP amplified Src-dependent activation of STAT3. In the polycystic kidney (PCK) rat model, activation of STAT3 in renal cystic cells depended on vasopressin receptor 2 (V2R) signaling, which increased cAMP levels. Genetic inhibition of vasopressin expression or treatment with a pharmacologic V2R inhibitor strongly suppressed STAT3 activation and reduced renal cyst growth. These results suggest that PC1, via its cleaved cytoplasmic tail, integrates signaling inputs from EGFR and cAMP, resulting in Src-dependent activation of STAT3 and a proliferative response.
Collapse
Affiliation(s)
- Jeffrey J Talbot
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California
| | - Xuewen Song
- Divisions of Nephrology and Genomic Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Cologne, Germany
| | - Nicholas Doerr
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California
| | - Wells B LaRiviere
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Cologne, Germany; Systems Biology of Aging Cologne (Sybacol), Cologne, Germany; and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - York P Pei
- Divisions of Nephrology and Genomic Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California;
| |
Collapse
|
21
|
Su X, Driscoll K, Yao G, Raed A, Wu M, Beales PL, Zhou J. Bardet-Biedl syndrome proteins 1 and 3 regulate the ciliary trafficking of polycystic kidney disease 1 protein. Hum Mol Genet 2014; 23:5441-51. [PMID: 24939912 DOI: 10.1093/hmg/ddu267] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) and autosomal dominant polycystic kidney disease (ADPKD) are two genetically distinct ciliopathies but share common phenotypes such as renal cysts. Seven BBS proteins form a complex called the BBSome which is localized at the basal body or ciliary axoneme and regulates the ciliary entry or flagellar exit of several signaling molecules. Here, we demonstrate that, unlike the seven-span somatostatin receptor 3 or the leptin receptor that interacts with all subunits of the BBSome, the ADPKD protein polycystin-1 (PC1) interacts with BBS1, BBS4, BBS5 and BBS8, four of the seven components of the BBSome. Only depletion or mutation of BBS1, but not depletion of BBS5 and BBS8, or knockout of BBS4, impairs ciliary trafficking of PC1 in kidney epithelial cells. Depletion of these BBS proteins affects neither the ciliary length nor the plasma membrane targeting of PC1. Expression of a pathogenic BBS3/Arl6 mutant (T31R) that locks Arl6 in the GDP form leads to stunted cilia and inhibition of PC1 on primary cilia. We propose that the 11-span membrane protein PC1 is a BBSome cargo and that the components of the BBSome may possess subunit-specific functions. Moreover, physical interactions between the BBS and ADPKD proteins may underline the overlapping renal phenotypes in these two diseases.
Collapse
Affiliation(s)
- Xuefeng Su
- Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and
| | - Kaitlin Driscoll
- Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and
| | - Gang Yao
- Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and
| | - Anas Raed
- Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and
| | - Maoqing Wu
- Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and
| | - Philip L Beales
- Molecular Medicine Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Jing Zhou
- Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and
| |
Collapse
|
22
|
Sweeney WE, Avner ED. Pathophysiology of childhood polycystic kidney diseases: new insights into disease-specific therapy. Pediatr Res 2014; 75:148-57. [PMID: 24336431 PMCID: PMC3953890 DOI: 10.1038/pr.2013.191] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/11/2013] [Indexed: 12/22/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are significant causes of morbidity and mortality in children and young adults. ADPKD, with an incidence of 1:400 to 1:1,000, affects more than 13 million individuals worldwide and is a major cause of end-stage renal disease in adults. However, symptomatic disease is increasingly recognized in children. ARPKD is a dual-organ hepatorenal disease with an incidence of 1:20,000 to 1:40,000 and a heterozygote carrier rate of 1 in 70. Currently, no clinically significant disease-specific therapy exists for ADPKD or ARPKD. The genetic basis of both ADPKD and ARPKD have been identified, and delineation of the basic molecular and cellular pathophysiology has led to the discovery that abnormal ADPKD and ARPKD gene products interact to create "polycystin complexes" located at multiple sites within affected cells. The extracellular matrix and vessels produce a variety of soluble factors that affect the biology of adjacent cells in many dynamic ways. This review will focus on the molecular and cellular bases of the abnormal cystic phenotype and discuss the clinical translation of such basic data into new therapies that promise to alter the natural history of disease for children with genetic PKDs.
Collapse
Affiliation(s)
- William E. Sweeney
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin and Children’s Hospital Health System of Wisconsin, Milwaukee, WI
| | - Ellis D. Avner
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin and Children’s Hospital Health System of Wisconsin, Milwaukee, WI,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
23
|
Apico-basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1239-48. [DOI: 10.1016/j.bbadis.2011.05.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 12/29/2022]
|
24
|
Nguyen ANT, Jansson K, Sánchez G, Sharma M, Reif GA, Wallace DP, Blanco G. Ouabain activates the Na-K-ATPase signalosome to induce autosomal dominant polycystic kidney disease cell proliferation. Am J Physiol Renal Physiol 2011; 301:F897-906. [PMID: 21697238 DOI: 10.1152/ajprenal.00095.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Na-K-ATPase is part of a cell signaling complex, the Na-K-ATPase signalosome, which upon activation by the hormone ouabain regulates the function of different cell types. We previously showed that ouabain induces proliferation of epithelial cells derived from renal cysts of patients with autosomal dominant polycystic kidney disease (ADPKD cells). Here, we investigated the signaling pathways responsible for mediating the effects of ouabain in these cells. Incubation of ADPKD cells with ouabain, in concentrations similar to those found in blood, stimulated phosphorylation of the epidermal growth factor receptor (EGFR) and promoted its association to the Na-K-ATPase. In addition, ouabain activated the kinase Src, but not the related kinase Fyn. Tyrphostin AG1478 and PP2, inhibitors of EGFR and Src, respectively, blocked ouabain-dependent ADPKD cell proliferation. Treatment of ADPKD cells with ouabain also caused phosphorylation of the caveolar protein caveolin-1, and disruption of cell caveolae with methyl-β-cyclodextrin prevented Na-K-ATPase-EGFR interaction and ouabain-induced proliferation of the cells. Downstream effects of ouabain in ADPKD cells included activation of B-Raf and MEK and phosphorylation of the extracellular regulated kinase ERK, which translocated into the ADPKD cell nuclei. Finally, ouabain reduced expression of the cyclin-dependent kinase inhibitors p21 and p27, which are suppressors of cell proliferation. Different from ADPKD cells, ouabain showed no significant effect on B-Raf, p21, and p27 in normal human kidney epithelial cells. Altogether, these results identify intracellular pathways of ouabain-dependent Na-K-ATPase-mediated signaling in ADPKD cells, including EGFR-Src-B-Raf-MEK/ERK, and establish novel mechanisms involved in ADPKD cell proliferation.
Collapse
Affiliation(s)
- Anh-Nguyet T Nguyen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Lee K, Battini L, Gusella GL. Cilium, centrosome and cell cycle regulation in polycystic kidney disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1263-71. [PMID: 21376807 DOI: 10.1016/j.bbadis.2011.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 01/10/2011] [Accepted: 02/16/2011] [Indexed: 12/19/2022]
Abstract
Polycystic kidney disease is the defining condition of a group of common life-threatening genetic disorders characterized by the bilateral formation and progressive expansion of renal cysts that lead to end stage kidney disease. Although a large body of information has been acquired in the past years about the cellular functions that characterize the cystic cells, the mechanisms triggering the cystogenic conversion are just starting to emerge. Recent findings link defects in ciliary functions, planar cell polarity pathway, and centrosome integrity in early cystic development. Many of the signals dysregulated during cystogenesis may converge on the centrosome for its central function as a structural support for cilia formation and a coordinator of protein trafficking, polarity, and cell division. Here, we will discuss the contribution of proliferation, cilium and planar cell polarity to the cystic signal and will analyze in particular the possible role that the basal bodies/centrosome may play in the cystogenetic mechanisms. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Kyung Lee
- Department of Medicine, The Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
26
|
Regner KR, Nozu K, Lanier SM, Blumer JB, Avner ED, Sweeney WE, Park F. Loss of activator of G-protein signaling 3 impairs renal tubular regeneration following acute kidney injury in rodents. FASEB J 2011; 25:1844-55. [PMID: 21343176 DOI: 10.1096/fj.10-169797] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intracellular mechanisms underlying renal tubular epithelial cell proliferation and tubular repair following ischemia-reperfusion injury (IRI) remain poorly understood. In this report, we demonstrate that activator of G-protein signaling 3 (AGS3), an unconventional receptor-independent regulator of heterotrimeric G-protein function, influences renal tubular regeneration following IRI. In rat kidneys exposed to IRI, there was a temporal induction in renal AGS3 protein expression that peaked 72 h after reperfusion and corresponded to the repair and recovery phase following ischemic injury. Renal AGS3 expression was localized predominantly to the recovering outer medullary proximal tubular cells and was highly coexpressed with Ki-67, a marker of cell proliferation. Kidneys from mice deficient in the expression of AGS3 exhibited impaired renal tubular recovery 7 d following IRI compared to wild-type AGS3-expressing mice. Mechanistically, genetic knockdown of endogenous AGS3 mRNA and protein in renal tubular epithelial cells reduced cell proliferation in vitro. Similar reductions in renal tubular epithelial cell proliferation were observed following incubation with gallein, a selective inhibitor of Gβγ subunit activity, and lentiviral overexpression of the carboxyl-terminus of G-protein-coupled receptor kinase 2 (GRK2ct), a scavenger of Gβγ subunits. In summary, these data suggest that AGS3 acts through a novel receptor-independent mechanism to facilitate renal tubular epithelial cell proliferation and renal tubular regeneration.
Collapse
Affiliation(s)
- Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Belibi FA, Edelstein CL. Novel targets for the treatment of autosomal dominant polycystic kidney disease. Expert Opin Investig Drugs 2010; 19:315-28. [PMID: 20141351 DOI: 10.1517/13543781003588491] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Autosomal dominant (AD) polycystic kidney disease (PKD) is the most common life-threatening hereditary disorder. There is currently no therapy that slows or prevents cyst formation and kidney enlargement in humans. An increasing number of animal studies have advanced our understanding of molecular and cellular targets of PKD. AREAS COVERED IN THE REVIEW The purpose of this review is to summarize the molecular and cellular targets involved in cystogenesis and to update on the promising therapies that are being developed and tested based on knowledge of these molecular and cellular targets. WHAT THE READER WILL GAIN Insight into the pathogenesis of PKD and how a better understanding of the pathogenesis of PKD has led to the development of potential therapies to inhibit cyst formation and/or growth and improve kidney function. TAKE HOME MESSAGE The results of animal studies in PKD have led to the development of clinical trials testing potential new therapies to reduce cyst formation and/or growth. A vasopressin V2 receptor antagonist, mTOR inhibitors, blockade of the renin-angiotensin system and statins that reduce cyst formation and improve renal function in animal models of PKD are being tested in interventional studies in humans.
Collapse
Affiliation(s)
- Franck A Belibi
- University of Colorado Denver, Division of Renal Diseases and Hypertension, Box C281, 12700 East 19th Ave, Aurora, CO 80045, USA
| | | |
Collapse
|
28
|
Abstract
Cystic kidney diseases are characterized by dilated or cystic kidney tubular segments. Changes in planar cell polarity, flow sensing, and/or proliferation have been proposed to explain these disorders. Over the last few years, several groups have suggested that ciliary dysfunction is a central component of cyst formation. We review evidence for and against each of these models, stressing some of the inconsistencies that should be resolved if an accurate understanding of cyst formation is to be achieved. We also comment on data supporting a model in which ciliary function could play different roles at different developmental stages and on the relevance of dissecting potential differences between pathways required for tubule formation and/or maintenance.
Collapse
Affiliation(s)
- Luis F Menezes
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
29
|
van Goor H, Melenhorst WBWH, Turner AJ, Holgate ST. Adamalysins in biology and disease. J Pathol 2009; 219:277-86. [DOI: 10.1002/path.2594] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Coaxum SD, Garnovskaya MN, Gooz M, Baldys A, Raymond JR. Epidermal growth factor activates Na(+/)H(+) exchanger in podocytes through a mechanism that involves Janus kinase and calmodulin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1174-81. [PMID: 19341767 DOI: 10.1016/j.bbamcr.2009.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 02/28/2009] [Accepted: 03/19/2009] [Indexed: 01/23/2023]
Abstract
Sodium-proton exchanger type 1 (NHE-1) is ubiquitously expressed, is activated by numerous growth factors, and plays significant roles in regulating intracellular pH and cellular volume, proliferation and cytoskeleton. Despite its importance, little is known about its regulation in renal glomerular podocytes. In the current work, we studied the regulation of NHE-1 activity by the epidermal growth factor receptor (EGFR) in cultured podocytes. RT-PCR demonstrated mRNAs for NHE-1 and NHE-2 in differentiated podocytes, as well as for EGFR subunits EGFR/ErbB1, Erb3, and ErbB4. EGF induced concentration-dependent increases in proton efflux in renal podocytes as assessed using a Cytosensor microphysiometer, were diminished in the presence of 5-(N-methyl-N-isobutyl) amiloride or in a sodium-free solution. Furthermore, pharmacological inhibitors of Janus kinase (Jak2) and calmodulin (CaM) attenuated EGF-induced NHE-1 activity. Co-immunoprecipitation studies determined that EGF induced formation of complexes between Jak2 and CaM, as well as between CaM and NHE-1. In addition, EGF increased levels of tyrosine phosphorylation of Jak2 and CaM. The EGFR kinase inhibitor, AG1478, blocked activation of NHE-1, but did not block EGF-induced phosphorylation of Jak2 or CaM. These results suggest that EGF induces NHE-1 activity in podocytes through two pathways: (1) EGF-->EGFR-->Jak2 activation (independent of EGFR tyrosine kinase activity)-->tyrosine phosphorylation of CaM-->CaM binding to NHE-1-->conformational change of NHE-1-->activation of NHE-1; and (2) EGF-->EGFR-->EGFR kinase activation-->association of CaM with NHE-1 (independent of Jak2)-->conformational change of NHE-1-->activation of NHE-1.
Collapse
Affiliation(s)
- Sonya D Coaxum
- Medical and Research Services, Ralph H. Johnson VA Medical Center, USA
| | | | | | | | | |
Collapse
|
31
|
Fischer DC, Jacoby U, Pape L, Ward CJ, Kuwertz-Broeking E, Renken C, Nizze H, Querfeld U, Rudolph B, Mueller-Wiefel DE, Bergmann C, Haffner D. Activation of the AKT/mTOR pathway in autosomal recessive polycystic kidney disease (ARPKD). Nephrol Dial Transplant 2009; 24:1819-27. [DOI: 10.1093/ndt/gfn744] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Park F, Sweeney WE, Jia G, Akbulut T, Mueller B, Falck JR, Birudaraju S, Roman RJ, Avner ED. Chronic blockade of 20-HETE synthesis reduces polycystic kidney disease in an orthologous rat model of ARPKD. Am J Physiol Renal Physiol 2009; 296:F575-82. [PMID: 19129252 DOI: 10.1152/ajprenal.90705.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) has been implicated as a potential mediator in epithelial cell proliferation and cyst formation in polycystic kidney disease (PKD). In the present study, we studied the effects of chronic blockade of 20-HETE synthesis in an orthologous rodent model of autosomal recessive polycystic kidney disease (ARPKD), the PCK rat. RT-PCR analysis indicated that the expression of CYP4A1, CYP4A2, CYP4A3, and CYP4A8 mRNA was increased two- to fourfold in cystic PCK compared with noncystic Sprague-Dawley rat kidneys. Daily administration of a 20-HETE synthesis inhibitor, HET-0016 (10 mg x kg(-1) x day(-1) ip) for 4-7 wk significantly reduced kidney size by 24% from 4.95 +/- 0.19 g in vehicle-treated PCK rats to 3.76 +/- 0.15 g (n = 4). Collecting tubule morphometric cystic indices were reduced in HET-0016-treated PCK rats (2.1 +/- 0.2; n = 4) compared with vehicle-treated PCK rats (4.4 +/- 0.1; n = 4). The cellular mechanism by which 20-HETE may play a role in cyst formation has not been well characterized, but there was a significantly lower (P < 0.05) level of intracellular cAMP and decreased phosphorylation (activation) of ERK1/2 protein in PCK rat kidneys (n = 3) treated with HET-0016 . These studies indicate a potential role of 20-HETE in cyst formation in the orthologous rodent PCK model of ARPKD.
Collapse
Affiliation(s)
- Frank Park
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, 8701 Watertown Plank Rd., HRC 4100, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
A number of inherited disorders result in renal cyst development. The most common form, autosomal dominant polycystic kidney disease (ADPKD), is a disorder most often diagnosed in adults and caused by mutation in PKD1 or PKD2. The PKD1 protein, polycystin-1, is a large receptor-like protein, whereas polycystin-2 is a transient receptor potential channel. The polycystin complex localizes to primary cilia and may act as a mechanosensor essential for maintaining the differentiated state of epithelia lining tubules in the kidney and biliary tract. Elucidation of defective cellular processes has highlighted potential therapies, some of which are now being tested in clinical trials. ARPKD is the neonatal form of PKD and is associated with enlarged kidneys and biliary dysgenesis. The disease phenotype is highly variable, ranging from neonatal death to later presentation with minimal kidney disease. ARPKD is caused by mutation in PKHD1, and two truncating mutations are associated with neonatal lethality. The ARPKD protein, fibrocystin, is localized to cilia/basal body and complexes with polycystin-2. Rare, syndromic forms of PKD also include defects of the eye, central nervous system, digits, and/or neural tube and highlight the role of cilia and pathways such as Wnt and Hh in their pathogenesis.
Collapse
Affiliation(s)
- Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
34
|
Melenhorst WBWH, Mulder GM, Xi Q, Hoenderop JGJ, Kimura K, Eguchi S, van Goor H. Epidermal growth factor receptor signaling in the kidney: key roles in physiology and disease. Hypertension 2008; 52:987-93. [PMID: 18981331 DOI: 10.1161/hypertensionaha.108.113860] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wynand B W H Melenhorst
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
35
|
Park F, Sweeney WE, Jia G, Roman RJ, Avner ED. 20-HETE mediates proliferation of renal epithelial cells in polycystic kidney disease. J Am Soc Nephrol 2008; 19:1929-39. [PMID: 18596124 DOI: 10.1681/asn.2007070771] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Polycystic kidney diseases are characterized by abnormal proliferation of renal epithelial cells. In this study, the role of 20-hydroxyeicosatetraenoic acid (20-HETE), an endogenous cytochrome P450 metabolite of arachidonic acid with mitogenic properties, was evaluated in cystic renal disease. Daily administration of HET-0016, an inhibitor of 20-HETE synthesis, significantly reduced kidney size by half in the BPK mouse model of autosomal recessive polycystic kidney disease. In addition, compared with untreated BPK mice, this treatment significantly reduced collecting tubule cystic indices and approximately doubled survival. For evaluation of the role of 20-HETE as a mediator of epithelial cell proliferation, principal cells isolated from cystic BPK and noncystic Balb/c mice were genetically modified using lentiviral vectors. Noncystic Balb/c cells overproducing Cyp4a12 exhibited a four- to five-fold increase in cell proliferation compared with control Balb/c cells, and this increase was completely abolished when 20-HETE synthesis was inhibited; therefore, this study suggests that 20-HETE mediates proliferation of epithelial cells in the formation of renal cysts.
Collapse
Affiliation(s)
- Frank Park
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
36
|
Sweeney WE, von Vigier RO, Frost P, Avner ED. Src inhibition ameliorates polycystic kidney disease. J Am Soc Nephrol 2008; 19:1331-41. [PMID: 18385429 PMCID: PMC2440293 DOI: 10.1681/asn.2007060665] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 02/02/2008] [Indexed: 01/08/2023] Open
Abstract
Despite identification of the genes responsible for autosomal dominant polycystic kidney disease (PKD) and autosomal recessive PKD (ARPKD), the precise functions of their cystoprotein products remain unknown. Recent data suggested that multimeric cystoprotein complexes initiate aberrant signaling cascades in PKD, and common components of these signaling pathways may be therapeutic targets. This study identified c-Src (pp60(c-Src)) as one such common signaling intermediate and sought to determine whether Src activity plays a role in cyst formation. With the use of the nonorthologous BPK murine model and the orthologous PCK rat model of ARPKD, greater Src activity was found to correlate with disease progression. Inhibition of Src activity with the pharmacologic inhibitor SKI-606 resulted in amelioration of renal cyst formation and biliary ductal abnormalities in both models. Furthermore, the effects of Src inhibition in PCK kidneys suggest that the ErbB2 and B-Raf/MEK/ERK pathways are involved in Src-mediated signaling in ARPKD and that this occurs without reducing elevated cAMP. These data suggest that Src inhibition may provide therapeutic benefit in PKD.
Collapse
Affiliation(s)
- William E Sweeney
- Children's Research Institute, Children's Hospital Health System of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | |
Collapse
|
37
|
Battini L, Macip S, Fedorova E, Dikman S, Somlo S, Montagna C, Gusella GL. Loss of polycystin-1 causes centrosome amplification and genomic instability. Hum Mol Genet 2008; 17:2819-33. [PMID: 18566106 DOI: 10.1093/hmg/ddn180] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenetic disease predominantly caused by alteration or dysregulation of the PKD1 gene, which encodes polycystin-1 (PC1). The disease is characterized by the progressive expansion of bilateral fluid-filled renal cysts that ultimately lead to renal failure. Individual cysts, even within patients with germline mutations, are genetically heterogeneous, displaying diverse chromosomal abnormalities. To date, the molecular mechanisms responsible for this genetic heterogeneity remain unknown. Using a lentiviral-mediated siRNA expression model of Pkd1 hypomorphism, we show that loss of PC1 function is sufficient to produce centrosome amplification and multipolar spindle formation. These events lead to genomic instability characterized by gross polyploidism and mitotic catastrophe. Following these dramatic early changes, the cell population rapidly converges toward a stable ploidy in which centrosome amplification is significantly decreased, though cytological abnormalities such as micronucleation, chromatin bridges and aneuploidy remain common. In agreement with our in vitro findings, we provide the first in vivo evidence that significant centrosome amplification occurs in kidneys from conditional Pkd1 knockout mice at early and late time during the disease progression as well as in human ADPKD patients. These findings establish a novel function of PC1 in ADPKD pathogenesis and a genetic mechanism that may underlie the intrafamilial variability of ADPKD progression.
Collapse
Affiliation(s)
- Lorenzo Battini
- Division of Renal Medicine, Mount Sinai School of Medicine, One Gustave Levy Place, Box 1243 New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat Med 2007; 13:1490-5. [PMID: 17965720 DOI: 10.1038/nm1675] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/01/2007] [Indexed: 12/23/2022]
Abstract
Autosomal dominant polycystic kidney disease is an important cause of end-stage renal disease, for which there is no proven therapy. Mutations in PKD1 (the gene encoding polycystin-1) are the principal cause of this disease. The disease begins in utero and is slowly progressive, but it is not known whether cystogenesis is an ongoing process during adult life. We now show that inactivation of Pkd1 in mice before postnatal day 13 results in severely cystic kidneys within 3 weeks, whereas inactivation at day 14 and later results in cysts only after 5 months. We found that cellular proliferation was not appreciably higher in cystic specimens than in age-matched controls, but the abrupt change in response to Pkd1 inactivation corresponded to a previously unrecognized brake point during renal growth and significant changes in gene expression. These findings suggest that the effects of Pkd1 inactivation are defined by a developmental switch that signals the end of the terminal renal maturation process. Our studies show that Pkd1 regulates tubular morphology in both developing and adult kidney, but the pathologic consequences of inactivation are defined by the organ's developmental status. These results have important implications for clinical understanding of the disease and therapeutic approaches.
Collapse
|
39
|
Protein kinase X (PRKX) can rescue the effects of polycystic kidney disease-1 gene (PKD1) deficiency. Biochim Biophys Acta Mol Basis Dis 2007; 1782:1-9. [PMID: 17980165 DOI: 10.1016/j.bbadis.2007.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 09/10/2007] [Accepted: 09/11/2007] [Indexed: 11/22/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common, genetically determined developmental disorder of the kidney that is characterized by cystic expansion of renal tubules and is caused by truncating mutations and haplo-insufficiency of the PKD1 gene. Several defects in cAMP-mediated proliferation and ion secretion have been detected in ADPKD cyst-lining epithelia. Unlike the ubiquitous PKA, the cAMP-dependent CREB-kinase, Protein Kinase X (PRKX) is developmentally regulated, tissue restricted and induces renal epithelial cell migration, and tubulogenesis in vitro as well as branching morphogenesis of ureteric bud in developing kidneys. The possibility of functional interactions between PKD1-encoded polycystin-1 and PRKX was suggested by the renal co-distribution of PRKX and polycystin-1 and the binding and phosphorylation of the C-terminal of polycystin-1 by PRKX at S4166 in vitro. Early consequences of PKD1 mutation include increased tubule epithelial cell-matrix adhesion, decreased migration, reduced ureteric bud branching and aberrant renal tubule dilation. To determine whether PRKX might counteract the adverse effects of PKD1 mutation, human ADPKD epithelial cell lines were transfected with constitutively active PRKX and shown to rescue characteristic adhesion and migration defects. In addition, the co-injection of constitutively active PRKX with inhibitory pMyr-EGFP-PKD1 into the ureteric buds of mouse embryonic kidneys in organ culture resulted in restoration of normal branching morphogenesis without cystic tubular dilations. These results suggest that PRKX can restore normal function to PKD1-deficient kidneys and have implications for the development of preventative therapy for ADPKD.
Collapse
|
40
|
Yang J, Zhang S, Zhou Q, Guo H, Zhang K, Zheng R, Xiao C. PKHD1 gene silencing may cause cell abnormal proliferation through modulation of intracellular calcium in autosomal recessive polycystic kidney disease. BMB Rep 2007; 40:467-74. [PMID: 17669261 DOI: 10.5483/bmbrep.2007.40.4.467] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is one of the important genetic disorders in pediatric practice. Mutation of the polycystic kidney and hepatic disease gene 1 (PKHD1) was identified as the cause of ARPKD. The gene encodes a 67-exon transcript for a large protein of 4074 amino acids termed fibrocystin, but its function remains unknown. The neoplastic-like in cystic epithelial proliferation and the epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) axis overactivity are known as the most important characteristics of ARPKD. Since the misregulation of Ca(2+) signaling may lead to aberrant structure and function of the collecting ducts in kidney of rat with ARPKD, present study aimed to investigate the further mechanisms of abnormal proliferation of cystic cells by inhibition of PKHD1 expression. For this, a stable PKHD1-silenced HEK-293T cell line was established. Then cell proliferation rates, intracellular Ca(2+) concentration and extracellular signal-regulated kinase 1/2 (ERK1/2) activity were assessed after treatment with EGF, a calcium channel blocker and agonist, verapamil and Bay K8644. It was found that PKHD1-silenced HEK-293T cell lines were hyperproliferative to EGF stimulation. Also PKHD1-silencing lowered the intracellular Ca(2+) and caused EGF-induced ERK1/2 overactivation in the cells. An increase of intracellular Ca(2+) in PKHD1-silenced cells repressed the EGF-dependent ERK1/2 activation and the hyperproliferative response to EGF stimulation. Thus, inhibition of PKHD1 can cause EGF-induced excessive proliferation through decreasing intracellular Ca(2+) resulting in EGF-induced ERK1/2 activation. Our results suggest that the loss of fibrocystin may lead to abnormal proliferation in kidney epithelial cells and cyst formation in ARPKD by modulation of intracellular Ca(2+).
Collapse
Affiliation(s)
- Jiyun Yang
- Department of Medical Genetics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu 610041, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Menezes LF, Onuchic LF. Molecular and cellular pathogenesis of autosomal recessive polycystic kidney disease. Braz J Med Biol Res 2007; 39:1537-48. [PMID: 17160262 DOI: 10.1590/s0100-879x2006001200004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 08/29/2006] [Indexed: 11/22/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is an inherited disease characterized by a malformation complex which includes cystically dilated tubules in the kidneys and ductal plate malformation in the liver. The disorder is observed primarily in infancy and childhood, being responsible for significant pediatric morbidity and mortality. All typical forms of ARPKD are caused by mutations in a single gene, PKHD1 (polycystic kidney and hepatic disease 1). This gene has a minimum of 86 exons, assembled into multiple differentially spliced transcripts and has its highest level of expression in kidney, pancreas and liver. Mutational analyses revealed that all patients with both mutations associated with truncation of the longest open reading frame-encoded protein displayed the severe phenotype. This product, polyductin, is a 4,074-amino acid protein expressed in the cytoplasm, plasma membrane and primary apical cilia, a structure that has been implicated in the pathogenesis of different polycystic kidney diseases. In fact, cholangiocytes isolated from an ARPKD rat model develop shorter and dysmorphic cilia, suggesting polyductin to be important for normal ciliary morphology. Polyductin seems also to participate in tubule morphogenesis and cell mitotic orientation along the tubular axis. The recent advances in the understanding of in vitro and animal models of polycystic kidney diseases have shed light on the molecular and cellular mechanisms of cyst formation and progression, allowing the initiation of therapeutic strategy designing and promising perspectives for ARPKD patients. It is notable that vasopressin V2 receptor antagonists can inhibit/halt the renal cystic disease progression in an orthologous rat model of human ARPKD.
Collapse
Affiliation(s)
- L F Menezes
- Disciplina de Nefrologia, Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, Sala 3310, 01246-903 São Paulo, SP, Brazil.
| | | |
Collapse
|
42
|
Ma HP, Chou CF, Wei SP, Eaton DC. Regulation of the epithelial sodium channel by phosphatidylinositides: experiments, implications, and speculations. Pflugers Arch 2007; 455:169-80. [PMID: 17605040 DOI: 10.1007/s00424-007-0294-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Recent studies suggest that the activity of epithelial sodium channels (ENaC) is increased by phosphatidylinositides, especially phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)). Stimulation of phospholipase C by either adenosine triphosphate (ATP)-activation of purinergic P2Y receptors or epidermal growth factor (EGF)-activation of EGF receptors reduces membrane PI(4,5)P(2), and consequently decreases ENaC activity. Since ATP and EGF may be trapped in cysts formed by the distal tubule, it is possible that ENaC inhibition induced by ATP and EGF facilitates cyst formation in polycystic kidney diseases (PKD). However, some results suggest that ENaC activity is increased in PKD. In contrast to P2Y and EGF receptors, stimulation of insulin-like growth factor-1 (IGF-1) receptor by aldosterone or insulin produces PI(3,4,5)P(3), and consequently increases ENaC activity. The acute effect of aldosterone on ENaC activity through PI(3,4,5)P(3) possibly accounts for the initial feedback for blood volume recovery after hypovolemic hypotension. PI(4,5)P(2) and PI(3,4,5)P(3), respectively, interacts with the N terminus of beta-ENaC and the C terminus of gamma-ENaC. However, whether ENaC selectively binds to PI(4,5)P(2) and PI(3,4,5)P(3) over other anionic phospholipids remains unclear.
Collapse
Affiliation(s)
- He-Ping Ma
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 1530 Third Avenue South, ZRB 510, Birmingham, AL, 35294, USA.
| | | | | | | |
Collapse
|
43
|
Sato Y, Harada K, Furubo S, Kizawa K, Sanzen T, Yasoshima M, Ozaki S, Isse K, Sasaki M, Nakanuma Y. Inhibition of intrahepatic bile duct dilation of the polycystic kidney rat with a novel tyrosine kinase inhibitor gefitinib. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1238-50. [PMID: 17003482 PMCID: PMC1698840 DOI: 10.2353/ajpath.2006.051136] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The polycystic kidney (PCK) rat represents a liver and kidney cyst pathology corresponding to Caroli's disease with congenital hepatic fibrosis and autosomal recessive polycystic kidney disease. We previously reported that an epidermal growth factor receptor tyrosine kinase inhibitor, gefitinib (Iressa), significantly inhibited the abnormal growth of biliary epithelial cells of PCK rats in vitro. This study investigated the effects of gefitinib on cyst pathogenesis of the PCK rat both in vitro and in vivo. A three-dimensional culture model of biliary epithelial cells in the collagen gel matrix was used for in vitro analysis. For in vivo experiments, PCK and control rats were treated with gefitinib between 3 and 10 weeks of age. In vitro, gefitinib had strong inhibitory effects on biliary cyst formation of PCK rats. In vivo, treatment with gefitinib significantly inhibited the cystic dilatation of the intrahepatic bile ducts of PCK rats, which was accompanied by improvement of liver fibrosis. By contrast, no beneficial effects were observed on renal cyst development because of the treatment. These results suggest that signaling pathways mediated by epidermal growth factor receptor are involved in biliary dysgenesis of the PCK rat, with the mechanisms of cyst progression being different between the liver and kidney.
Collapse
Affiliation(s)
- Yasunori Sato
- Department of Human Pathology, Kanazawa University, Graduate School of Medicine, Kanazawa 920-8640, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bukanov NO, Smith LA, Klinger KW, Ledbetter SR, Ibraghimov-Beskrovnaya O. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 2006; 444:949-52. [PMID: 17122773 DOI: 10.1038/nature05348] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 10/13/2006] [Indexed: 12/20/2022]
Abstract
Polycystic kidney diseases (PKDs) are primarily characterized by the growth of fluid-filled cysts in renal tubules leading to end-stage renal disease. Mutations in the PKD1 or PKD2 genes lead to autosomal dominant PKD (ADPKD), a slowly developing adult form. Autosomal recessive polycystic kidney disease results from mutations in the PKHD1 gene, affects newborn infants and progresses very rapidly. No effective treatment is currently available for PKD. A previously unrecognized site of subcellular localization was recently discovered for all proteins known to be disrupted in PKD: primary cilia. Because ciliary functions seem to be involved in cell cycle regulation, disruption of proteins associated with cilia or centrioles may directly affect the cell cycle and proliferation, resulting in cystic disease. We therefore reasoned that the dysregulated cell cycle may be the most proximal cause of cystogenesis, and that intervention targeted at this point could provide significant therapeutic benefit for PKD. Here we show that treatment with the cyclin-dependent kinase (CDK) inhibitor (R)-roscovitine does indeed yield effective arrest of cystic disease in jck and cpk mouse models of PKD. Continuous daily administration of the drug is not required to achieve efficacy; pulse treatment provides a robust, long-lasting effect, indicating potential clinical benefits for a lifelong therapy. Molecular studies of the mechanism of action reveal effective cell-cycle arrest, transcriptional inhibition and attenuation of apoptosis. We found that roscovitine is active against cysts originating from different parts of the nephron, a desirable feature for the treatment of ADPKD, in which cysts form in multiple nephron segments. Our results indicate that inhibition of CDK is a new and effective approach to the treatment of PKD.
Collapse
Affiliation(s)
- Nikolay O Bukanov
- Cell Biology, Genzyme Corporation, 5 Mountain Road, Framingham, Massachusetts 01701-9322, USA
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
This article cannot comprehensively cover the enormous strides made in defining the molecular and cellular basis of renal cystic diseases over the last decade. Therefore, it provides a brief overview and categorization of inherited, developmental, and acquired renal cystic diseases, providing a relevant, up-to-date bibliography as well as a useful list of informative Internet Web sites. Its major focus is the translational biology of polycystic kidney disease. It demonstrates how emerging molecular and cellular knowledge of the pathophysiology of particular diseases such as autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ADPKD) can translate into innovative therapeutic insights.
Collapse
Affiliation(s)
- Ellis D Avner
- Children's Research Institute, Children's Hospital & Health System of Wisconsin, and Medical College of Wisconsin, Department of Pediatrics, Division of Pediatrics, 8701 Watertown Plank Road, Milwaukee 53225, USA.
| | | |
Collapse
|
47
|
Smith LA, Bukanov NO, Husson H, Russo RJ, Barry TC, Taylor AL, Beier DR, Ibraghimov-Beskrovnaya O. Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. J Am Soc Nephrol 2006; 17:2821-31. [PMID: 16928806 DOI: 10.1681/asn.2006020136] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Significant progress in understanding the molecular mechanisms of polycystic kidney disease (PKD) has been made in recent years. Translating this understanding into effective therapeutics will require testing in animal models that closely resemble human PKD by multiple parameters. Similar to autosomal dominant PKD, juvenile cystic kidney (jck) mice develop cysts in multiple nephron segments, including cortical collecting ducts, distal tubules, and loop of Henle. The jck mice display gender dimorphism in kidney disease progression with more aggressive disease in male mice. Gonadectomy experiments show that testosterone aggravates the severity of the disease in jck male mice, while female gonadal hormones have protective effects. EGF receptor is overexpressed and mislocalized in jck cystic epithelia, a hallmark of human disease. Increased cAMP levels in jck kidneys and activation of the B-Raf/extracellular signal-regulated kinase pathway are demonstrated. The effect of jck mutation on the expression of Nek8, a NIMA-related (never in mitosis A) kinase, and polycystins in jck cilia is shown for the first time. Nek8 overexpression and loss of ciliary localization in jck epithelia are accompanied by enhanced expression of polycystins along the cilia. The primary cilia in jck kidneys are significantly more lengthened than the cilia in wild-type mice, suggesting a role for Nek8 in controlling ciliary length. Collectively, these data demonstrate that the jck mice should be useful for testing potential therapies and for studying the molecular mechanisms that link ciliary structure/function and cystogenesis.
Collapse
Affiliation(s)
- Laurie A Smith
- Genzyme Corporation, 5 Mountain Road, Framingham, MA 01701-9322, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sweeney WE, Avner ED. Molecular and cellular pathophysiology of autosomal recessive polycystic kidney disease (ARPKD). Cell Tissue Res 2006; 326:671-85. [PMID: 16767405 DOI: 10.1007/s00441-006-0226-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 04/20/2006] [Indexed: 12/19/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) belongs to a group of congenital hepatorenal fibrocystic syndromes characterized by dual renal and hepatic involvement of variable severity. Despite the wide clinical spectrum of ARPKD (MIM 263200), genetic linkage studies indicate that mutations at a single locus, PKHD1 (polycystic kidney and hepatic disease 1), located on human chromosome region 6p21.1-p12, are responsible for all phenotypes of ARPKD. Identification of cystic disease genes and their encoded proteins has provided investigators with critical tools to begin to unravel the molecular and cellular mechanisms of PKD. PKD cystic epithelia share common phenotypic abnormalities despite the different genetic mutations that underlie the disease. Recent studies have shown that many cyst-causing proteins are expressed in multimeric complexes at distinct subcellular locations within epithelia. This co-expression of cystoproteins suggests that cyst formation, regardless of the underlying disease gene, results from perturbations in convergent and/or integrated signal transduction pathways. To date, no specific therapies are in clinical use for ameliorating cyst growth in ARPKD. However, studies noted in this review suggest that therapeutic targeting of the cAMP and epidermal growth factor receptor (EGFR)-axis abnormalities in cystic epithelia may translate into effective therapies for ARPKD and, by analogy, autosomal dominant polycystic kidney disease (ADPKD). A particularly promising approach appears to be the targeting of downstream intermediates of both the cAMP and EGFR axis. This review focuses on ARPKD and presents a concise summary of the current understanding of the molecular genetics and cellular pathophysiology of this disease. It also highlights phenotypic and mechanistic similarities between ARPKD and ADPKD.
Collapse
Affiliation(s)
- William E Sweeney
- Children's Research Institute, Children's Hospital Health System of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
49
|
Wilson SJ, Amsler K, Hyink DP, Li X, Lu W, Zhou J, Burrow CR, Wilson PD. Inhibition of HER-2(neu/ErbB2) restores normal function and structure to polycystic kidney disease (PKD) epithelia. Biochim Biophys Acta Mol Basis Dis 2006; 1762:647-55. [PMID: 16797938 DOI: 10.1016/j.bbadis.2006.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 04/04/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a very common lethal monogenetic disease with significant morbidities and a high likelihood of progression to renal failure for which there is no proven disease-specific therapy currently available for clinical use. Human ADPKD cystic epithelia have proliferative abnormalities mediated by EGFR over-expression and mispolarization leading autocrine response to EGF family ligands. We now show that apical localization of EGFR complexes in normal fetal and ADPKD epithelia is associated with heterodimerization of EGFR(HER-1) with HER-2(neu/ErbB2), while basal membrane localization in normal adult renal epithelia is associated with EGFR(HER-1) homodimers. Since ADPKD epithelial cells have reduced migratory function, this was used as a bioassay to evaluate the ability of compounds to rescue the aberrant human ADPKD phenotype. General tyrosine kinase inhibition by herbimycin and specific inhibition of HER-2(neu/ErbB2) by AG825 or pretreatment with ErbB2 siRNA reversed the migration defect of ADPKD epithelia. Selective inhibition of EGFR(HER-1) showed partial rescue. Increased ADPKD cell migration after inhibition of p38MAP kinase but not of PI3-kinase implicated p38MAPK downstream of HER-2(neu/ErbB2) stimulation. Daily administration of AG825 to PKD1 null heterozygous mice significantly inhibited the development of renal cysts. These studies implicate HER2(neu/ErbB2) as an effector of apical EGFR complex mispolarization and that its inhibition should be considered a candidate for clinical therapy of ADPKD.
Collapse
Affiliation(s)
- Samantha J Wilson
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Nelson PJ, Shankland SJ. Therapeutics in renal disease: the road ahead for antiproliferative targets. Nephron Clin Pract 2005; 103:e6-15. [PMID: 16340240 PMCID: PMC1440889 DOI: 10.1159/000090138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Discovery into the molecular basis of renal disease is occurring at an unprecedented rate. With the advent of the NIH Roadmap, there is a greater expectation of translating this knowledge into new treatments. Here, we review the therapeutic strategy to preserve renal function in proliferative renal diseases by directly inhibiting the mitogenic pathways within renal parenchymal cells that promote G0 to G1/S cell-cycle phase progression. Reductionist methodologies have identified several antiproliferative molecular targets, and promising preclinical testing of leading small-molecule drugs to modulate these targets has now led to landmark clinical trials. Yet, this advancement into targeted therapy highlights important differences between the therapeutic goals of molecular nephrology versus molecular oncology and, by extension, the poorly understood role of alternative target activity in drug efficacy. Systems research to clarify these issues should accelerate the development of this promising therapeutic strategy.
Collapse
Affiliation(s)
- Peter J Nelson
- Division of Nephrology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|