1
|
Zeng L, Fung WWS, Chan GCK, Ng JKC, Chow KM, Szeto CC. Urinary and Kidney Podocalyxin and Podocin Levels in Diabetic Kidney Disease: A Kidney Biopsy Study. Kidney Med 2022; 5:100569. [PMID: 36654969 PMCID: PMC9841354 DOI: 10.1016/j.xkme.2022.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale & Objective Diabetic kidney diseases (DKDs) are the most common cause of dialysis-dependent kidney disease around the world. Previous studies have suggested that urinary level of podocyte-associated molecules may predict the prognosis of DKD. Study Design Observational cohort. Setting & Participants 118 consecutive patients with biopsy-proven DKD; 13 nondiabetic patients with hypertensive nephrosclerosis as controls. Predictors Urinary podocalyxin and podocin levels were obtained by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) and the corresponding intrarenal levels by western blotting. Outcomes Dialysis-free survival; kidney event-free survival; rate of kidney function decline in 12 months. Analytical Approach Correlation and time to event analysis. Results Urinary podocalyxin level was closely correlated with its messenger RNA (mRNA) level (r = 0.562, P < 0.001), but this did not predict the progression of DKD. Intrarenal podocalyxin level had only modest correlation with its urinary mRNA and ELISA levels, was an independent predictor of dialysis-free survival (adjusted HR, 1.85; 95% CI, 1.21-2.82; P = 0.005), and showed an insignificant trend of predicting kidney event-free survival (adjusted HR, 1.36; 95% CI, 0.94-1.95; P = 0.10). Urinary podocin level by ELISA had a modest correlation with the rate of kidney function decline (r = 0.238, P = 0.01) but did not predict dialysis-free survival. Limitations Small sample size; lack of serial measurement. Conclusions Intrarenal podocalyxin level, but not its urinary level, was an independent predictor of dialysis-free survival, whereas urinary podocin level by ELISA correlated with the rate of kidney function decline. Although intrarenal podocalyxin level has prognostic value, it may not be suitable for routine clinical use.
Collapse
Affiliation(s)
- Lingfeng Zeng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Winston Wing-Shing Fung
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gordon Chun-Kau Chan
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jack Kit-Chung Ng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kai-Ming Chow
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Cheuk-Chun Szeto
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China,Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China,Address for Correspondence: Cheuk-Chun Szeto, MD, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|
2
|
Agarwal S, Sudhini YR, Reiser J, Altintas MM. From Infancy to Fancy: A Glimpse into the Evolutionary Journey of Podocytes in Culture. KIDNEY360 2020; 2:385-397. [PMID: 35373019 PMCID: PMC8740988 DOI: 10.34067/kid.0006492020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 02/04/2023]
Abstract
Podocytes are critical components of the filtration barrier and responsible for maintaining healthy kidney function. An assault on podocytes is generally associated with progression of chronic glomerular diseases. Therefore, podocyte pathophysiology is a favorite research subject for nephrologists. Despite this, podocyte research has lagged because of the unavailability of techniques for culturing such specialized cells ex vivo in quantities that are adequate for mechanistic studies. In recent years, this problem was circumvented by the efforts of researchers, who successfully developed several in vitro podocyte cell culture model systems that paved the way for incredible discoveries in the field of nephrology. This review sets us on a journey that provides a comprehensive insight into the groundbreaking breakthroughs and novel technologic advances made in the field of podocyte cell culture so far, beginning from its inception, evolution, and progression. In this study, we also describe in detail the pros and cons of different models that are being used to culture podocytes. Our extensive and exhaustive deliberation on the status of podocyte cell culture will facilitate researchers to choose wisely an appropriate model for their own research to avoid potential pitfalls in the future.
Collapse
|
3
|
Mukhi D, Nishad R, Menon RK, Pasupulati AK. Novel Actions of Growth Hormone in Podocytes: Implications for Diabetic Nephropathy. Front Med (Lausanne) 2017; 4:102. [PMID: 28748185 PMCID: PMC5506074 DOI: 10.3389/fmed.2017.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/26/2017] [Indexed: 02/05/2023] Open
Abstract
The kidney regulates water, electrolyte, and acid-base balance and thus maintains body homeostasis. The kidney’s potential to ensure ultrafiltered and almost protein-free urine is compromised in various metabolic and hormonal disorders such as diabetes mellitus (DM). Diabetic nephropathy (DN) accounts for ~20–40% of mortality in DM. Proteinuria, a hallmark of renal glomerular diseases, indicates injury to the glomerular filtration barrier (GFB). The GFB is composed of glomerular endothelium, basement membrane, and podocytes. Podocytes are terminally differentiated epithelial cells with limited ability to replicate. Podocyte shape and number are both critical for the integrity and function of the GFB. Podocytes are vulnerable to various noxious stimuli prevalent in a diabetic milieu that could provoke podocytes to undergo changes to their unique architecture and function. Effacement of podocyte foot process is a typical morphological alteration associated with proteinuria. The dedifferentiation of podocytes from epithelial-to-mesenchymal phenotype and consequential loss results in proteinuria. Poorly controlled type 1 DM is associated with elevated levels of circulating growth hormone (GH), which is implicated in the pathophysiology of various diabetic complications including DN. Recent studies demonstrate that functional GH receptors are expressed in podocytes and that GH may exert detrimental effects on the podocyte. In this review, we summarize recent advances that shed light on actions of GH on the podocyte that could play a role in the pathogenesis of DN.
Collapse
Affiliation(s)
- Dhanunjay Mukhi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rajkishor Nishad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ram K Menon
- Department of Pediatric Endocrinology and Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Anil Kumar Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
4
|
Abstract
The glomerulus has 3 resident cells namely mesangial cells that produce the mesangial matrix, endothelial cells that line the glomerular capillaries, and podocytes that cover the outer surface of the glomerular basement membrane. Parietal epithelial cells (PrECs), which line the Bowman's capsule are not part of the glomerular tuft but may have an important role in the normal function of the glomerulus. A significant progress has been made in recent years regarding our understanding of the role and function of these cells in normal kidney and in kidneys with various types of glomerulopathy. In crescentic glomerulonephritis necrotizing injury of the glomerular tuft results in activation and leakage of fibrinogen which provides the trigger for excessive proliferation of PrECs giving rise to glomerular crescents. In cases of collapsing glomerulopathy, podocyte injury causes collapse of the glomerular capillaries and activation and proliferation of PrECs, which accumulate within the urinary space in the form of pseudocrescents. Many of the noninflammatory glomerular lesions such as focal segmental glomerulosclerosis and global glomerulosclerosis also result from podocyte injury which causes variable loss of podocytes. In these cases podocyte injury leads to activation of PrECs that extend on to the glomerular tuft where they cause segmental and/or global sclerosis by producing excess matrix, resulting in obliteration of the capillary lumina. In diabetic nephropathy, in addition to increased matrix production in the mesangium and glomerular basement membranes, increased loss of podocytes is an important determinant of long-term prognosis. Contrary to prior belief there is no convincing evidence for an active podocyte proliferation in any of the above mentioned glomerulopathies.
Collapse
|
5
|
Xing L, Liu Q, Fu S, Li S, Yang L, Liu S, Hao J, Yu L, Duan H. PTEN Inhibits High Glucose-Induced Phenotypic Transition in Podocytes. J Cell Biochem 2016; 116:1776-84. [PMID: 25736988 DOI: 10.1002/jcb.25136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/06/2015] [Indexed: 12/17/2022]
Abstract
Accumulating evidence has suggested that podocytes undergo epithelial-mesenchymal transition (EMT) in diabetic nephropathy (DN). However, the underlying mechanisms of EMT in podocyte are not well understood. PI3K/Akt pathway is involved in the progression of DN. In the present study, we demonstrated that PI3K/Akt pathway was activated in podocytes exposed to high glucose conditions, accompanied by down-regulation of the podocalyxin (PCX) and nephrin expression and up-regulation of the desmin and α-smooth muscle actin (α-SMA) expression. Inhibition of PI3K/Akt pathway by chemical LY294002 or Phosphase and tensin homology deleted on chromosome ten (PTEN) prevented the phenotypic transition. These findings indicate that PTEN/PI3K/Akt pathway mediates high glucose-induced phenotypic transition in podocytes.
Collapse
Affiliation(s)
- Lingling Xing
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei, 050017, China.,Department of Nephrology, the Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Qingjuan Liu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei, 050017, China
| | - Shuxia Fu
- Department of Nephrology, the Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shaomei Li
- Department of Nephrology, the Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Lin Yang
- Department of Nephrology, the Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shuxia Liu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei, 050017, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei, 050017, China
| | - Lianying Yu
- Department of Nephrology, the Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei, 050017, China
| |
Collapse
|
6
|
Abstract
Endothelin-1 (ET-1) is a 21-amino acid peptide with mitogenic and powerful vasoconstricting properties. Under healthy conditions, ET-1 is expressed constitutively in all cells of the glomerulus and participates in homeostasis of glomerular structure and filtration function. Under disease conditions, increases in ET-1 are critically involved in initiating and maintaining glomerular inflammation, glomerular basement membrane hypertrophy, and injury of podocytes (visceral epithelial cells), thereby promoting proteinuria and glomerulosclerosis. Here, we review the role of ET-1 in the function of glomerular endothelial cells, visceral (podocytes) and parietal epithelial cells, mesangial cells, the glomerular basement membrane, stromal cells, inflammatory cells, and mesenchymal stem cells. We also discuss molecular mechanisms by which ET-1, predominantly through activation of the ETA receptor, contributes to injury to glomerular cells, and review preclinical and clinical evidence supporting its pathogenic role in glomerular injury in chronic renal disease. Finally, the therapeutic rationale for endothelin antagonists as a new class of antiproteinuric drugs is discussed.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, Zurich, Switzerland.
| | - Andrey Sorokin
- Department of Medicine, Kidney Disease Center, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
7
|
Deedwania PC. Statins in Chronic Kidney Disease: Cardiovascular Risk and Kidney Function. Postgrad Med 2015; 126:29-36. [DOI: 10.3810/pgm.2014.01.2722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Anil Kumar P, Welsh GI, Saleem MA, Menon RK. Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol (Lausanne) 2014; 5:151. [PMID: 25309512 PMCID: PMC4174857 DOI: 10.3389/fendo.2014.00151] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022] Open
Abstract
The essential function of the kidney is to ensure formation of a relatively protein-free ultra-filtrate, urine. The rate of filtration and composition of the primary renal filtrate is determined by the transport of fluid and solutes across the glomerular filtration barrier consisting of endothelial cells, the glomerular basement membrane, and podocyte foot processes. In diabetes mellitus (DM), components of the kidney that enable renal filtration get structurally altered and functionally compromised resulting in proteinuria that often progresses to end-stage renal disease. Histological alterations in DM include early hypertrophy of glomerular and tubular components, subsequent thickening of basement membrane in glomeruli and tubules, progressive accumulation of extracellular matrix proteins in the glomerular mesangium and loss of podocytes, together constituting a clinical condition referred to as diabetic nephropathy (DN). The glomerulus has become the focus of research investigating the mechanism of proteinuria. In particular, the progressive dysfunction and/or loss of podocytes that is contemporaneous with proteinuria in DN have attracted intense scientific attention. The absolute number of podocytes predicts glomerular function and podocyte injury is a hallmark of various glomerular diseases. This review discusses the importance of podocytes in normal renal filtration and details the molecular and cellular events that lead to podocyte dysfunction and decreased podocyte count in DN.
Collapse
Affiliation(s)
- P. Anil Kumar
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | - Gavin I. Welsh
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Moin A. Saleem
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Ram K. Menon
- Pediatric Endocrinology and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- *Correspondence: Ram K. Menon, University of Michigan Medical School, D1205 MPB/SPC 5718, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-5718, USA e-mail:
| |
Collapse
|
9
|
Yuen DA, Stead BE, Zhang Y, White KE, Kabir MG, Thai K, Advani SL, Connelly KA, Takano T, Zhu L, Cox AJ, Kelly DJ, Gibson IW, Takahashi T, Harris RC, Advani A. eNOS deficiency predisposes podocytes to injury in diabetes. J Am Soc Nephrol 2012; 23:1810-23. [PMID: 22997257 DOI: 10.1681/asn.2011121170] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Endothelial nitric oxide synthase (eNOS) deficiency may contribute to the pathogenesis of diabetic nephropathy in both experimental models and humans, but the underlying mechanism is not fully understood. Here, we studied two common sequelae of endothelial dysfunction in diabetes: glomerular capillary growth and effects on neighboring podocytes. Streptozotocin-induced diabetes increased glomerular capillary volume in both C57BL/6 and eNOS(-/-) mice. Inhibiting the vascular endothelial growth factor receptor attenuated albuminuria in diabetic C57BL/6 mice but not in diabetic eNOS(-/-) mice, even though it inhibited glomerular capillary enlargement in both. In eNOS(-/-) mice, an acute podocytopathy and heavy albuminuria occurred as early as 2 weeks after inducing diabetes, but treatment with either captopril or losartan prevented these effects. In vitro, serum derived from diabetic eNOS(-/-) mice augmented actin filament rearrangement in cultured podocytes. Furthermore, conditioned medium derived from eNOS(-/-) glomerular endothelial cells exposed to both high glucose and angiotensin II activated podocyte RhoA. Taken together, these results suggest that the combined effects of eNOS deficiency and hyperglycemia contribute to podocyte injury, highlighting the importance of communication between endothelial cells and podocytes in diabetes. Identifying mediators of this communication may lead to the future development of therapies targeting endothelial dysfunction in albuminuric individuals with diabetes.
Collapse
Affiliation(s)
- Darren A Yuen
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
In the past decade, research has advanced our understanding how endothelin contributes to proteinuria and glomerulosclerosis. Data from pre-clinical and clinical studies now provide evidence that proteinuric diseases such as focal segmental glomerulosclerosis and diabetic nephropathy as well as hypertension nephropathy are sensitive to treatment with endothelin receptor antagonists (ERAs). Like blockade of the renin-angiotensin system, ERA treatment-under certain conditions-may even cause disease regression, effects that could be achieved on top of renin-angiotensin-aldosterone system blockade, suggesting independent therapeutic mechanisms by which ERAs convey nephroprotection. Beneficial effects of ERAs on podocyte function, which is essential to maintain the glomerular filtration barrier, have been identified as one of the key mechanisms by which inhibition of the endothelin ETA receptor ameliorates renal structure and function. In this article, we will review pre-clinical studies demonstrating a causal role for endothelin in proteinuric chronic kidney disease (with a particular focus on functional and structural integrity of podocytes in vitro and in vivo). We will also review the evidence suggesting a therapeutic benefit of ERA treatment on the functional integrity of podocytes in humans.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland
| | - Pierre-Louis Tharaux
- INSERM and Université Paris Descartes, Sorbonne Paris Cité, Paris Cardiovascular Centre, Paris, France
| |
Collapse
|
11
|
Epithelial-to-mesenchymal transition in podocytes mediated by activation of NADPH oxidase in hyperhomocysteinemia. Pflugers Arch 2011; 462:455-67. [PMID: 21647593 DOI: 10.1007/s00424-011-0981-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/20/2011] [Accepted: 05/23/2011] [Indexed: 02/07/2023]
Abstract
The present study tested the hypothesis that hyperhomocysteinemia (hHcys) induces podocytes to undergo epithelial-to-mesenchymal transition (EMT) through the activation of NADPH oxidase (Nox). It was found that increased homocysteine (Hcys) level suppressed the expression of slit diaphragm-associated proteins, P-cadherin and zonula occludens-1 (ZO-1), in conditionally immortalized mouse podocytes, indicating the loss of their epithelial features. Meanwhile, Hcys remarkably increased the abundance of mesenchymal markers, such as fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA). These phenotype changes in podocytes induced by Hcys were accompanied by enhanced superoxide (O⁻₂) production, which was substantially suppressed by inhibition of Nox activity. Functionally, Hcys significantly enhanced the permeability of the podocyte monolayer coupled with increased EMT, and this EMT-related increase in cell permeability could be restored by Nox inhibitors. In mice lacking gp91( phox ) (gp91(-/-)), an essential Nox subunit gene, hHcys-enhanced podocyte EMT and consequent glomerular injury were examined. In wild-type (gp91(+/+)) mice, hHcys induced by a folate-free diet markedly enhanced expression of mesenchymal markers (FSP-1 and α-SMA) but decreased expression of epithelial markers of podocytes in glomeruli, which were not observed in gp91(-/-) mouse glomeruli. Podocyte injury, glomerular sclerotic pathology, and marked albuminuria observed in gp91(+/+) mice with hHcys were all significantly attenuated in gp91(-/-) mice. These results suggest that hHcys induces EMT of podocytes through activation of Nox, which represents a novel mechanism of hHcys-associated podocyte injury.
Collapse
|
12
|
Navarro-Muñoz M, Ibernon M, Pérez V, Ara J, Espinal A, López D, Bonet J, Romero R. Messenger RNA expression of B7-1 and NPHS1 in urinary sediment could be useful to differentiate between minimal-change disease and focal segmental glomerulosclerosis in adult patients. Nephrol Dial Transplant 2011; 26:3914-23. [DOI: 10.1093/ndt/gfr128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
13
|
Barton M. Therapeutic potential of endothelin receptor antagonists for chronic proteinuric renal disease in humans. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1203-13. [PMID: 20359530 DOI: 10.1016/j.bbadis.2010.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 11/26/2022]
Abstract
Diabetes and arterial hypertension continue to be the main causes of chronic renal failure in 2010, with a rising prevalence in part due to the worldwide obesity epidemic. Proteinuria is a main feature of chronic renal disease and mediated by defects in the glomerular filtration barrier and is as a good predictor of cardiovascular events. Indeed, chronic renal disease due to glomerulosclerosis is one of the important risk factors for the development of coronary artery disease and stroke. Glomerulosclerosis develops in response to inflammatory activation and increased growth factor production. Preclinical and first preliminary clinical studies provide strong evidence that endogenous endothelin-1 (ET-1), a 21-amino-acid peptide with strong growth-promoting and vasoconstricting properties, plays a central role in the pathogenesis of proteinuria and glomerulosclerosis via activation of its ET(A) subtype receptor involving podocyte injury. These studies have not only shown that endothelin participates in the disease processes of hypertension and glomerulosclerosis but also that features of chronic renal disease such as proteinuria and glomerulosclerosis are reversible processes. Remarkably, the protective effects of endothelin receptors antagonists (ERAs) are present even on top of concomitant treatments with inhibitors of the renin-angiotensin system. This review discusses current evidence for a role of endothelin for proteinuric renal disease and podocyte injury in diabetes and arterial hypertension and reviews the current status of endothelin receptor antagonists as a potential new treatment option in renal medicine.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, LTK Y 44 G 22, Winterthurer Strasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
14
|
Barton M. Reversal of proteinuric renal disease and the emerging role of endothelin. ACTA ACUST UNITED AC 2008; 4:490-501. [PMID: 18648345 DOI: 10.1038/ncpneph0891] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 06/05/2008] [Indexed: 01/18/2023]
Abstract
Proteinuria is a major long-term clinical consequence of diabetes and hypertension, conditions that lead to progressive loss of functional renal tissue and, ultimately, end-stage renal disease. Proteinuria is also a strong predictor of cardiovascular events. Convincing preclinical and clinical evidence exists that proteinuria and the underlying glomerulosclerosis are reversible processes. This Review outlines the mechanisms involved in the development of glomerulosclerosis--particularly those responsible for podocyte injury--with an emphasis on the potential capacity of endothelin receptor blockade to reverse this process. There is strong evidence that endothelin-1, a peptide with growth-promoting and vasoconstricting properties, has a central role in the pathogenesis of proteinuria and glomerulosclerosis, which is mediated via activation of the ET(A) receptor. Several antiproteinuric drugs, including angiotensin-converting-enzyme inhibitors, angiotensin receptor antagonists, statins and certain calcium channel blockers, inhibit the formation of endothelin-1. Preclinical studies have demonstrated that endothelin receptor antagonists can reverse proteinuric renal disease and glomerulosclerosis, and preliminary studies in humans with renal disease have shown that these drugs have remarkable antiproteinuric effects that are additive to those of standard antiproteinuric therapy. Additional clinical studies are needed.
Collapse
Affiliation(s)
- Matthias Barton
- Department of Internal Medicine, Klinik und Poliklinik für Innere Medizin, Universitätsspital Zürich, Zürich, Switzerland.
| |
Collapse
|
15
|
Krtil J, Pláteník J, Kazderová M, Tesar V, Zima T. Culture methods of glomerular podocytes. Kidney Blood Press Res 2007; 30:162-74. [PMID: 17502717 DOI: 10.1159/000102520] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Indexed: 12/29/2022] Open
Abstract
Podocytes (glomerular visceral epithelial cells) cover the exterior surface of the glomerular capillaries and contribute to the glomerular filtration membrane. Failure of podocyte function is involved in the progression of chronic glomerular disease; accordingly, research interest into podocyte biology is driven by the need for better protection and perhaps recovery of these cells in renal diseases. This review aims at summarizing available techniques for podocyte cell cultures from both the past and present, with special attention to the currently used methods. The establishment of classical primary cultures is based on isolation of glomeruli by differential sieving. Plating of glomeruli onto a collagen surface is followed by an outgrowth of cobblestone-like cells that, after replating, differentiate into arborized, mature podocytes. Currently, the majority of research studies use immortalized podocytic cell lines most often derived from transgenic mice bearing a conditional immortalizing gene. The podocytes can also be collected and cultured from healthy or diseased animal or patient urine. The urinary podocytes obtained from subjects with active glomerulopathies display higher proliferation potential and viability in vitro, perhaps due to disease-induced transdifferentiation. Finally, a list of phenotypic markers useful for identification and characterization of the cultured podocytic elements is provided.
Collapse
Affiliation(s)
- J Krtil
- Institute of Medical Biochemistry, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
16
|
Epstein M, Campese VM. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors on renal function. Am J Kidney Dis 2005; 45:2-14. [PMID: 15696439 DOI: 10.1053/j.ajkd.2004.08.040] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pleiotropic, or non-lipid-dependent, effects mediated by 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have important clinical implications for the cardiovascular (CV) system. Atherosclerosis is an inflammatory process accompanied by increases in levels of plasma inflammatory markers and accumulation of immune cells within atherosclerotic plaques. Statins not only decrease serum lipid levels, but also inhibit signaling molecules at several points in inflammatory pathways. The anti-inflammatory effects and improved endothelial function associated with statin therapy are thought to be partly responsible for the reduction in CV morbidity and mortality. In analogy, patients with chronic kidney disease administered statins for CV risk reduction show evidence of improved renal function. However, whether statins confer similar protective benefits on the kidney has not been established. Several lines of evidence suggest that similar etiologic and pathological processes may be involved in CV and chronic kidney diseases. If inflammation and functional changes in the renovascular endothelium contribute to the progression of kidney disease, statins are likely to be effective in the treatment of renal disease. In this review, we critically consider emerging data indicating that statins may modulate renal function by altering the inflammatory response of the kidney and renal vasculature to dyslipidemia. Whether the amelioration of renal function by statins is separable from the lipid-lowering effects of these drugs still remains to be delineated. Other questions that remain to be addressed and issues that should be investigated also are presented.
Collapse
Affiliation(s)
- Murray Epstein
- Department of Medicine, Division of Nephrology and Hypertension, University of Miami, Miami, FL, USA.
| | | |
Collapse
|
17
|
Abstract
The appearance of albumin in the urine has long been recognized as a cardinal feature of kidney disease and more recently has been shown to also be an independent cardiovascular risk factor associated with insulin resistance. Recent studies on rare human genetic variants, targeted gene disruption in mouse models and cultured glomerular cells in vitro have dramatically improved our understanding of the cellular and molecular basis of albuminuria. This review aims to summarize the current state of knowledge, to illustrate known mechanisms of proteinuria in disease states and to suggest a possible explanation for the link between albuminuria and insulin resistance.
Collapse
|