1
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
2
|
Laiva AL, O'Brien FJ, Keogh MB. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med 2018; 12:e296-e312. [PMID: 28482114 PMCID: PMC5813216 DOI: 10.1002/term.2443] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Abstract
The rise in lower extremity amputations due to nonhealing of foot ulcers in diabetic patients calls for rapid improvement in effective treatment regimens. Administration of growth factors (GFs) are thought to offer an off-the-shelf treatment; however, the dose- and time-dependent efficacy of the GFs together with the hostile environment of diabetic wound beds impose a major hindrance in the selection of an ideal route for GF delivery. As an alternative, the delivery of therapeutic genes using viral and nonviral vectors, capable of transiently expressing the genes until the recovery of the wounded tissue offers promise. The development of implantable biomaterial dressings capable of modulating the release of either single or combinatorial GFs/genes may offer solutions to this overgrowing problem. This article reviews the state of the art on gene and protein delivery and the strategic optimization of clinically adopted delivery strategies for the healing of diabetic wounds.
Collapse
Affiliation(s)
- Ashang Luwang Laiva
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Advanced Materials and Bioengineering Research CentreRoyal College of Surgeons in Ireland and Trinity College DublinIreland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Trinity Centre for BioengineeringTrinity Biomedical Sciences Institute, Trinity College DublinIreland
- Advanced Materials and Bioengineering Research CentreRoyal College of Surgeons in Ireland and Trinity College DublinIreland
| | - Michael B. Keogh
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Medical University of BahrainAdliyaKingdom of Bahrain
| |
Collapse
|
3
|
Improvement of Flap Necrosis in a Rat Random Skin Flap Model by In Vivo Electroporation-Mediated HGF Gene Transfer. Plast Reconstr Surg 2017; 139:1116e-1127e. [PMID: 28445365 DOI: 10.1097/prs.0000000000003259] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite great understanding of underlying mechanisms for flap necrosis and advances in surgical techniques, flap necrosis remains a critical issue. In the present study, the authors investigated the efficacy of electroporation-mediated hepatocyte growth factor (HGF) gene delivery to random dorsal skin flaps (McFarlane) to accelerate wound healing and reduce flap necrosis. METHODS Fifteen male Wistar rats (290 to 320 g) were divided randomly into three groups. Group a, the control group (n = 5), underwent surgery and received no gene transfer. Group b received electroporation-mediated HGF gene delivery 24 hours after surgery as a treatment. Group c received electroporation-mediated HGF gene delivery 24 hours before surgery as prophylaxis (n = 5). Planimetry, laser Doppler imaging, and immunohistochemistry were used to assess the efficacy of HGF gene therapy among the groups. RESULTS Electroporation-mediated HGF gene delivery significantly decreased flap necrosis percentage compared with the control group in prophylactic and treatment groups (p = 0.0317 and p = 0.0079, respectively) and significantly increased cutaneous perfusion compared with the control group (p = 0.0317 and p = 0.0159, respectively). Moreover, Spearman rank correlation showed a significant negative correlation between flap necrosis percentage and laser index (p = 0.0213 and r = -0.5964, respectively). Furthermore, significantly higher mean CD31 vessel density was detected in treatment and prophylactic groups (p = 0.0079 and p = 0.0159, respectively). In addition, quantitative image analysis revealed significantly higher HGF protein expression in groups b and c (p = 0.0079 and p = 0.0079, respectively). CONCLUSION These findings suggested in vivo electroporation-mediated HGF gene delivery enhanced viability and vascularity of the ischemic skin flap.
Collapse
|
4
|
Seyed Jafari SM, Shafighi M, Beltraminelli H, Weber B, Schmid RA, Geiser T, Gazdhar A, Hunger RE. Efficacy of In Vivo Electroporation-Mediated IL-10 Gene Delivery on Survival of Skin Flaps. J Membr Biol 2017; 251:211-219. [PMID: 28776087 DOI: 10.1007/s00232-017-9974-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/29/2017] [Indexed: 12/29/2022]
Abstract
Despite advances in understanding the underlying mechanisms of flap necrosis and improvement in surgical techniques, skin flap necrosis after reconstructive surgery remains a crucial issue. We investigated the efficacy of electroporation-mediated IL-10 gene transfer to random skin flap with an aim to accelerate wound healing and improve skin flap survival. Nine male Wistar rats (300-330 g) were divided in two groups (a) control group (n = 5), only surgery no gene transfer, and (b) experimental group, received electroporation-mediated IL-10 gene transfer 24 h before the surgery as prophylaxis (n = 4). Random skin flap (McFarlane) was performed in both groups. Planimetry, Laser Doppler imaging, and immunohistochemistry were used to evaluate the effect of IL-10 gene transfer between study groups at day 7. Electroporation-mediated IL-10 gene transfer decreased percentage of flap necrosis (p value = 0.0159) and increased cutaneous perfusion compared to the control group (p value = 0.0159). In addition, Spearman's rank correlation showed a significant negative correlation between percentage of flap necrosis and Laser Index (p value = 0.0083, r -0.83, respectively). Furthermore, significantly higher mean CD31+ vessel density was detected in the experimental group compared to the control group (p value = 0.0159). Additionally, semi-quantitative image analysis showed lower inflammatory cell count in experimental group compared to control group (p value = 0.0317). In vivo electroporation-mediated IL-10 gene transfer reduced necrosis, enhanced survival and vascularity in the ischemic skin flap.
Collapse
Affiliation(s)
- S Morteza Seyed Jafari
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maziar Shafighi
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Helmut Beltraminelli
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Benedikt Weber
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ralph A Schmid
- Department of General Thoracic Surgery, University Hospital, Bern, Switzerland
| | - Thomas Geiser
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, University Hospital, Inselspital Bern, Bern, Switzerland
| | - Amiq Gazdhar
- Department of Clinical Research, University of Bern, Bern, Switzerland.
- Department of Pulmonary Medicine, University Hospital, Inselspital Bern, Bern, Switzerland.
| | - Robert E Hunger
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Johnson T, Koria P. Expression and Purification of Neurotrophin-Elastin-Like Peptide Fusion Proteins for Neural Regeneration. BioDrugs 2016; 30:117-27. [PMID: 26820997 DOI: 10.1007/s40259-016-0159-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neural injuries such as spinal cord injuries, traumatic brain injuries, or nerve transection injuries pose a major health problem. Neurotrophins such as nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF) have been shown to improve the outcome of neural injuries in several pre-clinical models, but their use in clinics is limited by the lack of a robust delivery system that enhances their bioavailability and half-life. OBJECTIVES We describe two fusion proteins comprising NGF or BDNF fused with elastin-like peptides (ELPs). The aim of this study was to investigate the biological activity of neurotrophin-ELP (N-ELP) fusion proteins via in vitro culture models. METHODS NGF and BDNF were cloned in front of an elastin-like polypeptide sequence V40C2. These proteins were expressed in bacteria as inclusion bodies. These fusion proteins underwent solubilization via 8 M urea and purification via inverse transition cycling (ITC). We measured the particle size and the effect of temperature on precipitated particles using dynamic light scattering (DLS). We used western blot analysis to confirm the specificity of NGF-ELP to tropomyosin receptor kinase A (TrkA) antibody and to confirm the specificity of BDNF-ELP to TrkB antibody. PC12 cells were used to perform a neurite outgrowth assay to determine the biological activity of NGF-ELP. Bioactivity of BDNF-ELP was ascertained via transfecting human epithelial kidney (HEK 293-T) cells to express the TrkB receptor. RESULTS The proteins were successfully purified to high homogeneity by exploiting the phase transition property of ELPs and urea, which solubilize inclusion bodies. Using PC12 neurite outgrowth assay, we further demonstrated that the biological activity of NGF was retained in the fusion. Similarly, BDNF-ELP phosphorylated the TrkB receptor, suggesting the biological activity of BDNF was also retained in the fusion. We further show that owing to the phase transition property of ELPs in the fusion, these proteins self-assembled into nanoparticles at their respective transition temperatures. CONCLUSION These fusion proteins are useful for neural regeneration, as they not only retain the biological activity of the neurotrophin but also self-assemble into nanoparticles, thereby simultaneously serving as drug-delivery vehicles. These nanoparticles can serve as drug depots and will increase bioavailability by limiting neurotrophin loss due to diffusion, thereby allowing controlled spatio-temporal delivery of the neurotrophin.
Collapse
Affiliation(s)
- Tamina Johnson
- Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E Fowler Avenue, ENB 118, Tampa, FL, 33620, USA
| | - Piyush Koria
- Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E Fowler Avenue, ENB 118, Tampa, FL, 33620, USA.
| |
Collapse
|
6
|
Choi JS, Kim HS, Yoo HS. Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res 2016; 5:137-45. [PMID: 25787739 DOI: 10.1007/s13346-013-0148-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Electrospun nanofibrous mats have recently been employed as drug reservoirs for their unique features, such as high surface-to-volume ratios and easy fabrication process. We describe herein various methods of fabricating drug- and gene-encapsulated nanofibrous meshes, which can be prepared by electrospinning. The electrospinning process of nanofibrous mats is affected by many parameters, including viscosity and ejection speeds of the polymeric solutions and the electrical potential applied to the system. Both single- and dual-nozzle systems are widely employed in the preparation of electrospun nanofibers encapsulating drugs and genes, which are usually incorporated into the electrospun mats either by physical mixing with polymeric solutions before electrospinning or by physical incorporation after electrospinning. Various strategies have been tailored to maintain the bioactivity of proteins for tissue regeneration before and after electrospinning. Nucleic acids, such as DNA and siRNA, are also incorporated into nanofibrous meshes to enhance tissue regeneration by expressing transgenes or silencing domestic genes in specific tissues. Drug- or gene-incorporated nanofibrous meshes can greatly increase tissue regeneration rates and reduce scar formation in normal and diabetic wounds. Hybrid nanofibers, with multiple cell layers or hydrogels, have also been used to improve wound healing efficiency by increasing cell infiltration.
Collapse
Affiliation(s)
- Ji Suk Choi
- Department of Biomedical Materials Engineering, School of Bioscience and Bioengineering, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | | | | |
Collapse
|
7
|
Basu G, Downey H, Guo S, Israel A, Asmar A, Hargrave B, Heller R. Prevention of distal flap necrosis in a rat random skin flap model by gene electrotransfer delivering VEGF165plasmid. J Gene Med 2014; 16:55-65. [DOI: 10.1002/jgm.2759] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Gaurav Basu
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk VA USA
| | - Harre Downey
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk VA USA
| | - Siqi Guo
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk VA USA
| | - Annelise Israel
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk VA USA
| | - Anthony Asmar
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk VA USA
| | - Barbara Hargrave
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk VA USA
- School of Medical Diagnostics and Translational Science; Old Dominion University; Norfolk VA USA
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk VA USA
- School of Medical Diagnostics and Translational Science; Old Dominion University; Norfolk VA USA
| |
Collapse
|
8
|
Marti GP, Mohebi P, Liu L, Wang J, Miyashita T, Harmon JW. KGF-1 for wound healing in animal models. Methods Mol Biol 2008; 423:383-91. [PMID: 18370216 DOI: 10.1007/978-1-59745-194-9_30] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Keratinocyte growth factor-1 (KGF-1) is a member of the fibroblast growth factor (FGF) family FGF7 and is expressed in normal and wounded skin. KGF-1 is massively produced in the early stages of the wound healing process as well as during the later remodeling process (1, 2). We have studied the effects of the electroporation of a KGF-1 plasmid into excisional wounds of different rodent models mimicking diseases known to impair the normal wound healing process. We have used a genetically diabetic mouse model and a septic rat model in our experiments, and we have shown improvement of the healing rate (92% of the wounds are healed at day 12 vs. 40% of the control), the quality of epithelialization (histological score of 3.3 vs. 1.5), and the density of new blood vessels (85% more new blood vessels in the superficial layers than that of the control) (3, 4). Considering these results, we believe we can further explore the treatment modalities for using the electroporation-assisted transfection of DNA plasmid expression vectors of growth factors to enhance cutaneous wound healing.
Collapse
Affiliation(s)
- Guy P Marti
- Department of Surgery, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
9
|
Lin MP, Marti GP, Dieb R, Wang J, Ferguson M, Qaiser R, Bonde P, Duncan MD, Harmon JW. Delivery of plasmid DNA expression vector for keratinocyte growth factor-1 using electroporation to improve cutaneous wound healing in a septic rat model. Wound Repair Regen 2007; 14:618-24. [PMID: 17014675 DOI: 10.1111/j.1743-6109.2006.00169.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have previously shown that wound healing was improved in a diabetic mouse model of impaired wound healing following transfection with keratinocyte growth factor-1 (KGF-1) cDNA. We now extend these findings to the characterization of the effects of DNA plasmid vectors delivered to rats using electroporation (EP) in vivo in a sepsis-based model of impaired wound healing. To assess plasmid transfection and wound healing, gWIZ luciferase and PCDNA3.1/KGF-1 expression vectors were used, respectively. Cutaneous wounds were produced using an 8 mm-punch biopsy in Sprague-Dawley rats in which healing was impaired by cecal ligation-induced sepsis. We used National Institutes of Health image analysis software and histologic assessment to analyze wound closure and found that EP increased expression of gWIZ luciferase vector up to 53-fold compared with transfection without EP (p < 0.001). EP-assisted plasmid transfection was found to be localized to skin. Septic rats had a 4.7 times larger average wound area on day 9 compared with control (p < 0.001). Rats that underwent PCDNA3.1/KGF-1 transfection with EP had 60% smaller wounds on day 12 compared with vector without EP (p < 0.009). Quality of healing with KGF-1 vector plus EP scored 3.0 +/- 0.3 and was significantly better than that of 1.8 +/- 0.3 for treatment with vector alone (p < 0.05). We conclude that both the rate and quality of healing were improved with DNA plasmid expression vector for growth factor delivered with EP to septic rats.
Collapse
Affiliation(s)
- Michael P Lin
- Section of Surgical Sciences, Johns Hopkins Bayview Medical Center, Johns Hopkins Medical Institutions, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Schreiber J, Efron PA, Park JE, Moldawer LL, Barbul A. Adenoviral gene transfer of an NF-κB super-repressor increases collagen deposition in rodent cutaneous wound healing. Surgery 2005; 138:940-6. [PMID: 16291396 DOI: 10.1016/j.surg.2005.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 05/09/2005] [Indexed: 11/29/2022]
Abstract
BACKGROUND The transcription factor nuclear factor-kappaB (NF-kappaB) plays an essential role in inflammation. To date, no studies have investigated the effect of inhibiting NF-kappaB-mediated inflammation on normal cutaneous wound healing. We tested this by locally administering an adenovirus recombinant that constitutively expresses a super-repressor isoform of inhibitory-kappaB (IkappaB) into rats undergoing a well-established model of dorsal wound healing. METHODS Seventy-two Sprague-Dawley rats underwent insertion of a sponge-pump construct into a dorsal subcutaneous pocket. One group of rats received pumps filled with the adenovirus expressing I-kappaB (rAd-Ikappab), a second group received pumps filled with adenovirus expressing green fluorescent protein (GFP) (rAd-gfp), and a third received pumps filled with normal saline (NS). Rats were killed in groups of 6 on days 1, 3, 5 and 7 postoperation. The wound fluid was analyzed for nitrite/nitrate (NOx) and tumor necrosis factor-alpha (TNF-alpha) concentrations. The wound fluid was assayed for hydroxyproline (OHP) content, an index of reparative collagen deposition. RESULTS Administration of rAd-Ikappab for 7 days resulted in higher collagen deposition (OHP) compared with the rAd-gfp and NS groups. NOx levels were significantly higher in the rAd-gfp group on day 1 and marginally so on day 5. TNF-alpha quantitation analysis found no significant difference among the 3 groups. CONCLUSION IkappaB expression through an adenoviral vector in the cutaneous wound may improve rodent healing, as shown by increased collagen deposition, through decreased inflammation. This mechanism appears to be TNF-alpha independent. Inhibition of NF-kappaB may reduce inflammation by reducing the local NOx concentrations.
Collapse
Affiliation(s)
- Jeffrey Schreiber
- Department of Surgery, Sinai Hospital of Baltimore and the Johns Hopkins Medical Institutions, Baltimore, MD 21215, USA
| | | | | | | | | |
Collapse
|
11
|
Ferguson M, Byrnes C, Sun L, Marti G, Bonde P, Duncan M, Harmon JW. Wound Healing Enhancement: Electroporation to Address a Classic Problem of Military Medicine. World J Surg 2005; 29 Suppl 1:S55-9. [PMID: 15815830 DOI: 10.1007/s00268-004-2062-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The major goal of wound healing biology is to determine how a wound can be induced to repair damaged tissue faster and more efficiently. Enhancement of dermal and epidermal regeneration is an extremely important goal for the treatment of many different types of wounds. Exogenous application of growth factors to the wound site has been shown to have potential to improve wound healing. Frequent applications of large amounts of growth factor have been required. This is because proteases in the wound quickly destroy peptide growth factor. Gene therapy has the potential to produce growth factors deep within the wound, where they can be effective as well as able to constantly replenish growth factor that is destroyed by peptidases. We have shown that application of plasmid DNA expression vectors directly into the wound is an inefficient modality. Electroporation, the application of an electrical field across cells to permeabilize the cell membrane has led us to explore the possibility of utilizing the technique to enhance transfection efficiency. We have identified electroporation parameters that improve the efficiency of DNA transfection in cutaneous wounds, and we have shown that electroporation itself does not impair wound healing. We are now on the threshold of exploring whether electroporation-assisted transfection with DNA plasmid expression vectors for growth factors will be an effective modality for enhancing cutaneous wound healing.
Collapse
Affiliation(s)
- Mark Ferguson
- Section of Surgical Sciences, Johns Hopkins Bayview Medical Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Marti G, Ferguson M, Wang J, Byrnes C, Dieb R, Qaiser R, Bonde P, Duncan MD, Harmon JW. Electroporative transfection with KGF-1 DNA improves wound healing in a diabetic mouse model. Gene Ther 2005; 11:1780-5. [PMID: 15470477 DOI: 10.1038/sj.gt.3302383] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We recently demonstrated that electroporation enhances transfection in a mouse wound-healing model. Keratinocyte growth factor (KGF) is an inducer of epithelial cell proliferation and differentiation and has been shown to be under expressed in the wounds of diabetic individuals. We hypothesized that KGF delivered into an excisional wound via naked DNA injection with subsequent electroporation would be a novel and potentially effective method to enhance wound closure in a diabetic mouse model. ELISA assays confirmed production of KGF protein in cultured mouse cells and RT-PCR assays confirmed KGF mRNA in skin samples taken from mice. In all, 32 genetically diabetic mice were given two identical excisional wounds of their dorsum and split into two groups with one group receiving KGF DNA injection and electroporation with the other group receiving no treatment. Over 90% of wounds healed in the presence of KGF and electroporation versus 40% in the untreated group by day 12. Histological analysis of the wounds demonstrated that untreated wounds contained microulcers with thin or incomplete epithelium with unresolved inflammation as compared to treated wounds where intact and mature epithelium was observed. Taken together these findings suggest that a single injection of KGF DNA encoded on a plasmid coupled with electroporation improves and accelerates wound closure in a delayed wound-healing model.
Collapse
Affiliation(s)
- G Marti
- Section of Surgical Sciences, Johns Hopkins Bayview Medical Center, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dietz GPH, Bähr M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 2005; 27:85-131. [PMID: 15485768 DOI: 10.1016/j.mcn.2004.03.005] [Citation(s) in RCA: 358] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 02/17/2004] [Accepted: 03/16/2004] [Indexed: 01/12/2023] Open
Abstract
In recent years, vast amounts of data on the mechanisms of neural de- and regeneration have accumulated. However, only in disproportionally few cases has this led to efficient therapies for human patients. Part of the problem is to deliver cell death-averting genes or gene products across the blood-brain barrier (BBB) and cellular membranes. The discovery of Antennapedia (Antp)-mediated transduction of heterologous proteins into cells in 1992 and other "Trojan horse peptides" raised hopes that often-frustrating attempts to deliver proteins would now be history. The demonstration that proteins fused to the Tat protein transduction domain (PTD) are capable of crossing the BBB may revolutionize molecular research and neurobiological therapy. However, it was only recently that PTD-mediated delivery of proteins with therapeutic potential has been achieved in models of neural degeneration in nerve trauma and ischemia. Several groups have published the first positive results using protein transduction domains for the delivery of therapeutic proteins in relevant animal models of human neurological disorders. Here, we give an extensive review of peptide-mediated protein transduction from its early beginnings to new advances, discuss their application, with particular focus on a critical evaluation of the limitations of the method, as well as alternative approaches. Besides applications in neurobiology, a large number of reports using PTD in other systems are included as well. Because each protein requires an individual purification scheme that yields sufficient quantities of soluble, transducible material, the neurobiologist will benefit from the experiences of other researchers in the growing field of protein transduction.
Collapse
|
14
|
Byrnes CK, Malone RW, Akhter N, Nass PH, Wetterwald A, Cecchini MG, Duncan MD, Harmon JW. Electroporation enhances transfection efficiency in murine cutaneous wounds. Wound Repair Regen 2004; 12:397-403. [PMID: 15260804 DOI: 10.1111/j.1067-1927.2004.012409.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transfection of wounds with DNA-encoding growth factors has the potential to improve healing, but current means of nonviral gene delivery are inefficient. Repeated high doses of DNA, necessary to achieve reliable gene expression, are detrimental to healing. We assessed the ability of in vivo electroporation to enhance gene expression. Full-thickness cutaneous excisional wounds were created on the dorsum of female mice. A luciferase- encoding plasmid driven by a CMV promoter was injected at the wound border. Following plasmid administration, electroporative pulses were applied to injection sites. Pulse parameters were varied over a range of voltage, duration, and number. Animals were euthanized at intervals after transfection and the luciferase activity measured. Application of electric pulses consistently increased luciferase expression. The electroporative effect was most marked at a plasmid dose of 50 micro g, where an approximate tenfold increase was seen. Six 100- micro s-duration pulses of 1750 V/cm were found to be the most effective in increasing luciferase activity. High numbers of pulses tended to be less effective than smaller numbers. This optimal electroporation regimen had no detrimental effect on wound healing. We conclude that electroporation increases the efficiency of transgene expression and may have a role in gene therapy to enhance wound healing.
Collapse
Affiliation(s)
- Colman K Byrnes
- Section of Surgical Sciences, Johns Hopkins Medical Institutions, Johns Hopkins Bayview Medical Center, 4940 Eastern Avenue, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hansen SL, Myers CA, Charboneau A, Young DM, Boudreau N. HoxD3 accelerates wound healing in diabetic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 163:2421-31. [PMID: 14633614 PMCID: PMC1892363 DOI: 10.1016/s0002-9440(10)63597-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poorly healing diabetic wounds are characterized by diminished collagen production and impaired angiogenesis. HoxD3, a homeobox transcription factor that promotes angiogenesis and collagen synthesis, is up-regulated during normal wound repair whereas its expression is diminished in poorly healing wounds of the genetically diabetic (db/db) mouse. To determine whether restoring expression of HoxD3 would accelerate diabetic wound healing, we devised a novel method of gene transfer, which incorporates HoxD3 plasmid DNA into a methylcellulose film that is placed on wounds created on db/db mice. The HoxD3 transgene was expressed in endothelial cells, fibroblasts, and keratinocytes of the wounds for up to 10 days. More importantly, a single application of HoxD3 to db/db mice resulted in a statistically significant acceleration of wound closure compared to control-treated wounds. Furthermore, we also observed that the HoxD3-mediated improvement in diabetic wound repair was accompanied by increases in mRNA expression of the HoxD3 target genes, Col1A1 and beta 3-integrin leading to enhanced angiogenesis and collagen deposition in the wounds. Although HoxD3-treated wounds also show improved re-epithelialization as compared to control db/db wounds, this effect was not due to direct stimulation of keratinocyte migration by HoxD3. Finally, we show that despite the dramatic increase in collagen synthesis and deposition in HoxD3-treated wounds, these wounds showed normal remodeling and we found no evidence of abnormal wound healing. These results indicate that HoxD3 may provide a means to directly improve collagen deposition, angiogenesis and closure in poorly healing diabetic wounds.
Collapse
Affiliation(s)
- Scott L Hansen
- Department of Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
PURPOSE Tissue engineering seeks to replace and regrow damaged or diseased tissues and organs from either cells resident in the surrounding tissue or cells transplanted to the tissue site. The purpose of this review is to present the application of polymeric delivery systems for growth factor delivery in tissue engineering. METHODS Growth factors direct the phenotype of both differentiated and stem cells, and methods used to deliver these molecules include the development of systems to deliver the protein itself, genes encoding the factor, or cells secreting the factor. RESULTS Results in animal models and clinical trials indicate that these approaches may be successfully used to promote the regeneration of numerous tissue types. CONCLUSIONS Controlling the dose, location, and duration of these factors through polymeric delivery strategies will dictate their utility in tissue regeneration.
Collapse
Affiliation(s)
- Ruth R Chen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
17
|
Byrnes CK, Khan FH, Nass PH, Hatoum C, Duncan MD, Harmon JW. Success and limitations of a naked plasmid transfection protocol for keratinocyte growth factor-1 to enhance cutaneous wound healing. Wound Repair Regen 2001; 9:341-6. [PMID: 11896976 DOI: 10.1046/j.1524-475x.2001.00341.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Our group and others have previously reported enhancement of cutaneous wound healing following the transfection of tissue with plasmid vectors expressing the DNA for growth factors. In these experiments, growth factor treated animals were usually compared to animals treated with control plasmid vector. To achieve consistent transfection, high DNA plasmid load and repeated penetrations of the wound by needle or gene gun were required. In the current experiments, we assessed the effect of the plasmid load and repeated tissue penetrations on wound healing of excisional wounds in diabetic C57 mice. Animals received 5 mm excisional wounds, and were assigned to the following groups, no treatment, phosphate buffered saline solution injections, and plasmid vector injection with and without the keratinocyte growth factor-1 gene. Intradermal injections of 100 microg plasmid were given adjacent to the wounds at days 1-5, 7 and 11. At day 9, wound closure was more advanced in keratinocyte growth factor-1 treated animals compared to those treated with control plasmid. But a detrimental effect of the DNA plasmid injection was evident from a comparison of the DNA control group versus the non-injected group. Therefore, the challenge for developing an effective system for the enhancement of wound healing lies in improving transfection efficiency.
Collapse
Affiliation(s)
- C K Byrnes
- Section of Surgical Sciences, Johns Hopkins Bayview Medical Center, Johns Hopkins Medical Institutions, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|