1
|
Oliveira RF, Marquiore LF, Gomes CBS, de Abreu PTR, Ferreira LAQ, Diniz LA, Gomes NA, Jácome‐Santos H, Moreno A, Macari S, Mesquita RA, Silva TA, Marques MM, Diniz IMA. Interplay between epithelial and mesenchymal cells unveils essential proinflammatory and pro‐resolutive mediators modulated by photobiomodulation therapy at 660 nm. Wound Repair Regen 2022; 30:345-356. [DOI: 10.1111/wrr.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 03/04/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Rafaela F. Oliveira
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Larissa F. Marquiore
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Cristopher B. S. Gomes
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Priscila T. R. de Abreu
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Luiza A. Q. Ferreira
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Luiza A. Diniz
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Natália A. Gomes
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Humberto Jácome‐Santos
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Amália Moreno
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Soraia Macari
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Ricardo A. Mesquita
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Tarcília A. Silva
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Márcia M. Marques
- Post‐Graduation Program in Dentistry, Ibirapuera University São Paulo São Paulo Brazil
| | - Ivana M. A. Diniz
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
2
|
Inhibition of apoptosis signal-regulating kinase 1 alters the wound epidermis and enhances auricular cartilage regeneration. PLoS One 2017; 12:e0185803. [PMID: 29045420 PMCID: PMC5646791 DOI: 10.1371/journal.pone.0185803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/19/2017] [Indexed: 11/19/2022] Open
Abstract
Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO) or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), after full thickness ear punch in mice prolongs keratinocyte activation within the wound epidermis and promotes regeneration of auricular cartilage. Histological analysis showed the ASK1 KO ears displayed enhanced protein markers associated with blastema formation, hole closure and regeneration of auricular cartilage. At seven days after punch, the wound epidermis morphology was markedly different in the KO, showing a thickened stratum corneum with rounded cell morphology and a reduction of both the granular cell layer and decreased expression of filament aggregating protein. In addition, cytokeratin 6 was expressed in the stratum spinosum and granulosum. Topical application of inhibitors of ASK1 (NQDI-1), the upstream ASK1 activator, calcium activated mitogen kinase 2 (KN93), or the downstream target, c-Jun N-terminal kinase (SP600125) also resulted in enhanced regeneration; whereas inhibition of the other downstream target, the p38 α/β isoforms, (SB203580) had no effect. The results of this investigation indicate ASK1 inhibition prolongs keratinocyte and blastemal cell activation leading to ear regeneration.
Collapse
|
3
|
Orazizadeh M, Hashemitabar M, Bahramzadeh S, Dehbashi FN, Saremy S. Comparison of the enzymatic and explant methods for the culture of keratinocytes isolated from human foreskin. Biomed Rep 2015; 3:304-308. [PMID: 26137227 DOI: 10.3892/br.2015.442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/30/2015] [Indexed: 01/01/2023] Open
Abstract
Currently, culture and growth keratinocytes are important stages in achieving a reliable and reproducible skin tissue. In the present study, two different methods, enzymatic and explant methods, for keratinocytes isolation from human foreskin were compared. Foreskins were cut into 2-3 mm pieces and placed in trypsin at 4°C overnight for separation of the epidermis from the dermis. Subsequently, these samples were divided into two groups: i) Keratinocytes separated from the epidermis by trypsin and ii) by the explant method. These keratinocytes were divided into two groups: i) With no feeder layer and ii) onto a type I collagen scaffold. The cells were evaluated using immunocytochemistry and 4',6-diamidine-2'-phenylindole dihydrochloride (DAPI) staining. In the enzymatic treatment, after 7-10 days no attached cells were found in the cell culture dishes. In the explant method, keratinocytes were separated after ~24 h, attached rapidly and formed big colonies into a collagen scaffold. In the absence of a feeder layer, small colonies were developed with rapid loss of proliferation within 2-3 days. Keratinocytes showed positive immunoreactivity for the pan-cytokeratin marker and keratinocytes' nuclei were clearly observed. This method could be applied and developed as a component of skin substitutes to treat burns and wounds and also in laboratory testing.
Collapse
Affiliation(s)
- Mahmoud Orazizadeh
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 61357-15794, Iran ; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 61357-15794, Iran
| | - Mahmoud Hashemitabar
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 61357-15794, Iran ; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 61357-15794, Iran
| | - Somayeh Bahramzadeh
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 61357-15794, Iran
| | - Freshteh Nejad Dehbashi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 61357-15794, Iran
| | - Sadegh Saremy
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 61357-15794, Iran
| |
Collapse
|
4
|
Jiang X, Guo X, Xu X, Teng M, Huang C, Zhang D, Zhang Q, Zhang J, Huang Y. Hypoxia regulates CD9-mediated keratinocyte migration via the P38/MAPK pathway. Sci Rep 2014; 4:6304. [PMID: 25200404 PMCID: PMC4158574 DOI: 10.1038/srep06304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/15/2014] [Indexed: 12/12/2022] Open
Abstract
Keratinocyte migration is an early event in the wound healing process. Although we previously found that CD9 downregulation is required for the keratinocyte migration during wound repair, the mechanism of how CD9 expression is regulated remains unclear. Here, we observed the effect of hypoxia (2% O2) on CD9 expression and keratinocyte migration. CD9 expression was downregulated and keratinocyte migration was increased under hypoxic conditions. In addition, CD9 overexpression reversed hypoxia-induced cell migration. We also found that hypoxia activated the p38/MAPK pathway. SB203580, a p38/MAPK inhibitor, increased CD9 expression and inhibited keratinocyte migration under hypoxia, while MKK6 (Glu) overexpression decreased CD9 expression and promoted hypoxic keratinocyte migration. Our results demonstrate that hypoxia regulates CD9 expression and CD9-mediated keratinocyte migration via the p38/MAPK pathway.
Collapse
Affiliation(s)
- Xupin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaowei Guo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Xue Xu
- The No. 324 Hospital of PLA, Chongqing, China
| | - Miao Teng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chong Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Jiaping Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
Mathes SH, Ruffner H, Graf-Hausner U. The use of skin models in drug development. Adv Drug Deliv Rev 2014; 69-70:81-102. [PMID: 24378581 DOI: 10.1016/j.addr.2013.12.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022]
Abstract
Three dimensional (3D) tissue models of the human skin are probably the most developed and understood in vitro engineered constructs. The motivation to accomplish organotypic structures was driven by the clinics to enable transplantation of in vitro grown tissue substitutes and by the cosmetics industry as alternative test substrates in order to replace animal models. Today a huge variety of 3D human skin models exist, covering a multitude of scientific and/or technical demands. This review summarizes and discusses different approaches of skin model development and sets them into the context of drug development. Although human skin models have become indispensable for the cosmetics industry, they have not yet started their triumphal procession in pharmaceutical research and development. For drug development these tissue models may be of particular interest for a) systemically acting drugs applied on the skin, and b) drugs acting at the site of application in the case of skin diseases or disorders. Although quite a broad spectrum of models covering different aspects of the skin as a biologically acting surface exists, these are most often single stand-alone approaches. In order to enable the comprehensive application into drug development processes, the approaches have to be synchronized to allow a cross-over comparison. Besides the development of biological relevant models, other issues are not less important in the context of drug development: standardized production procedures, process automation, establishment of significant analytical methods, and data correlation. For the successful routine use of engineered human skin models in drug development, major requirements were defined. If these requirements can be accomplished in the next few years, human organotypic skin models will become indispensable for drug development, too.
Collapse
Affiliation(s)
- Stephanie H Mathes
- Institute of Chemistry and Biological Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820 Waedenswil, Switzerland
| | - Heinz Ruffner
- Developmental and Molecular Pathways (DMP), Novartis Institutes for BioMedical Research (NIBR), Fabrikstrasse 22, 4056 Basel, Switzerland
| | - Ursula Graf-Hausner
- Institute of Chemistry and Biological Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820 Waedenswil, Switzerland.
| |
Collapse
|
6
|
Nemoto M, Kizaki K, Yamamoto Y, Oonuma T, Hashizume K. Tenascin-C Expression in Equine Tendon-derived Cells During Proliferation and Migration. J Equine Sci 2013; 24:17-24. [PMID: 24833997 PMCID: PMC4013982 DOI: 10.1294/jes.24.17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2013] [Indexed: 11/01/2022] Open
Abstract
In vitro cell studies might be a useful tool for studying tendon pathology, but no suitable in vitro models exist for tendon disorders. The purpose of this study was to confirm whether cell scratch culture using tendon-derived fibroblasts can provide a suitable in vitro tendon disorder model. Extracellular matrix components were examined immunohistochemically in tendon tissue, and then their related gene expression levels were analyzed by conventional reverse transcription polymerase chain reaction (RT-PCR) and/or quantitative real-time RT-PCR in tissues and cells. Collagen type I (Col I), collagen type III (Col III), tenascin-C (TN-C) and cartilage oligomeric matrix protein (COMP) were detected in tendon tissue sections, and RT-PCR confirmed their expression in tendon tissue and cells. Cells that had been cultured from explanted tendon tissue maintained the characteristics of in vivo tendon cells. The combination of TN-C and COMP might be a useful marker of tendon cells because they display more tendon-specific expression than Col I and III. In particular, the significant increase of TN-C mRNA expression in the scratch wound assay, at 12 hr after scratching, concomitant with the regeneration of the cell sheet, indicates its crucial role in tendon cell proliferation and migration. Thus, TN-C appears to be a key factor in tendon wound healing. In vitro cell scratch assays using tendon cells appear to mimic the repair of tendon tissue after injury.
Collapse
Affiliation(s)
- Manabu Nemoto
- Laboratory of Veterinary Physiology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan ; Present address: Epizootic Research Center, Equine Research Institute, Japan Racing Association, Shiba 1400-4, Shimotsuke, Tochigi 329-0412, Japan
| | - Keiichiro Kizaki
- Laboratory of Veterinary Physiology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Biochemistry and Cell Biology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Toshina Oonuma
- Laboratory of Veterinary Physiology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan ; Present address: Department of Biological Resources, Integrated Center for Sciences, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Kazuyoshi Hashizume
- Laboratory of Veterinary Physiology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
7
|
Abstract
In this chapter a review of animal model systems already being utilized to study normal and pathologic wound healing is provided. We also go into details on alternatives for animal wound model systems. The case is made for limitations in the various approaches. We also discuss the benefits/limitations of in vitro/ex vivo systems bringing everything up to date with our current work on developing a cell-based reporter system for diabetic wound healing.
Collapse
Affiliation(s)
- Phil Stephens
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair Tissue Engineering and Reparative Dentistry, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | | | | |
Collapse
|
8
|
Morris DL, O’Neil SP, Devraj RV, Portanova JP, Gilles RW, Gross CJ, Curtiss SW, Komocsar WJ, Garner DS, Happa FA, Kraus LJ, Nikula KJ, Monahan JB, Selness SR, Galluppi GR, Shevlin KM, Kramer JA, Walker JK, Messing DM, Anderson DR, Mourey RJ, Whiteley LO, Daniels JS, Yang JZ, Rowlands PC, Alden CL, Davis JW, Sagartz JE. Acute Lymphoid and Gastrointestinal Toxicity Induced by Selective p38α Map Kinase and Map Kinase–Activated Protein Kinase-2 (MK2) Inhibitors in the Dog. Toxicol Pathol 2010; 38:606-18. [DOI: 10.1177/0192623310367807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure to moderately selective p38α mitogen-activated protein kinase (MAPK) inhibitors in the Beagle dog results in an acute toxicity consisting of mild clinical signs (decreased activity, diarrhea, and fever), lymphoid necrosis and depletion in the gut-associated lymphoid tissue (GALT), mesenteric lymph nodes and spleen, and linear colonic and cecal mucosal hemorrhages. Lymphocyte apoptosis and necrosis in the GALT is the earliest and most prominent histopathologic change observed, followed temporally by neutrophilic infiltration and acute inflammation of the lymph nodes and spleen and multifocal mucosal epithelial necrosis and linear hemorrhages in the colon and cecum. These effects are not observed in the mouse, rat, or cynomolgus monkey. To further characterize the acute toxicity in the dog, a series of in vivo, in vitro, and immunohistochemical studies were conducted to determine the relationship between the lymphoid and gastrointestinal (GI) toxicity and p38 MAPK inhibition. Results of these studies demonstrate a direct correlation between p38α MAPK inhibition and the acute lymphoid and gastrointestinal toxicity in the dog. Similar effects were observed following exposure to inhibitors of MAPK-activated protein kinase-2 (MK2), further implicating the role of p38α MAPK signaling pathway inhibition in these effects. Based on these findings, the authors conclude that p38α MAPK inhibition results in acute lymphoid and GI toxicity in the dog and is unique among the species evaluated in these studies.
Collapse
Affiliation(s)
- Dale L. Morris
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Shawn P. O’Neil
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Rajesh V. Devraj
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Joseph P. Portanova
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Richard W. Gilles
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Cindy J. Gross
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Sandra W. Curtiss
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | | | - Debra S. Garner
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Fernando A. Happa
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Lori J. Kraus
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | | | - Joseph B. Monahan
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Shaun R. Selness
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | | | - Kimberly M. Shevlin
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | | | - John K. Walker
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Dean M. Messing
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - David R. Anderson
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Robert J. Mourey
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Laurence O. Whiteley
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - John S. Daniels
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Jerry Z. Yang
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Philip C. Rowlands
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | - Carl L. Alden
- Millennium Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - John W. Davis
- Pfizer Inc., Drug Safety R&D, Research, Pharmacokinetics, Dynamics & Metabolism, and Pharmaceutical Sciences, St. Louis, Missouri, USA
| | | |
Collapse
|
9
|
Stoll SW, Johnson JL, Bhasin A, Johnston A, Gudjonsson JE, Rittié L, Elder JT. Metalloproteinase-mediated, context-dependent function of amphiregulin and HB-EGF in human keratinocytes and skin. J Invest Dermatol 2010; 130:295-304. [PMID: 19609315 DOI: 10.1038/jid.2009.211] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human keratinocytes (KCs) express multiple EGF receptor (EGFR) ligands; however, their functions in specific cellular contexts remain largely undefined. To address this issue, first we measured mRNA and protein levels for multiple EGFR ligands in KCs and skin. Amphiregulin (AREG) was by far the most abundant EGFR ligand in cultured KCs, with >19 times more mRNA and >7.5 times more shed protein than any other family member. EGFR ligand expression in normal skin was low (<8 per thousand of RPLP0/36B4); however, HB-EGF and AREG mRNAs were strongly induced in human skin organ culture. KC migration in scratch wound assays was highly metalloproteinase (MP)- and EGFR dependent, and was markedly inhibited by EGFR ligand antibodies. However, lentivirus-mediated expression of soluble HB-EGF, but not soluble AREG, strongly enhanced KC migration, even in the presence of MP inhibitors. Lysophosphatidic acid (LPA)-induced ERK phosphorylation was also strongly EGFR and MP dependent and markedly inhibited by neutralization of HB-EGF. In contrast, autocrine KC proliferation and ERK phosphorylation were selectively blocked by neutralization of AREG. These data show that distinct EGFR ligands stimulate KC behavior in different cellular contexts, and in an MP-dependent fashion.
Collapse
Affiliation(s)
- Stefan W Stoll
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Lambert S, Frankart A, Poumay Y. p38 MAPK-regulated EGFR internalization takes place in keratinocyte monolayer during stress conditions. Arch Dermatol Res 2009; 302:229-33. [DOI: 10.1007/s00403-009-1020-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 12/07/2009] [Accepted: 12/17/2009] [Indexed: 11/24/2022]
|
11
|
Qiao H, Shibaki A, Long HA, Wang G, Li Q, Nishie W, Abe R, Akiyama M, Shimizu H, McMillan JR. Collagen XVII participates in keratinocyte adhesion to collagen IV, and in p38MAPK-dependent migration and cell signaling. J Invest Dermatol 2009; 129:2288-95. [PMID: 19242520 DOI: 10.1038/jid.2009.20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Collagen XVII (COL17) participates in keratinocyte adhesion and possibly migration, as COL17 defects disrupt keratinocyte-basal lamina adhesion and underlie the disease non-Herlitz junctional epidermolysis bullosa. Using small interference RNA (siRNA) to knock down COL17 expression in HaCaT cells, we assessed cell characteristics, including adhesion, migration, and signaling. Control and siRNA-transfected keratinocytes showed no difference in adhesion on plastic dishes after incubation for 8 hours in serum-free keratinocyte-growth medium; however, when grown on collagen IV alone or BD matrigel (containing collagen IV and laminin isoforms), COL17-deficient cells showed significantly reduced adhesion compared with controls (P<0.01), and mitogen-activated protein kinase (MAPK)/ERK kinase (MEK)1/2 and MAPK showed reduced phosphorylation. Furthermore, COL17-deficient HaCaT cells plated on plastic exhibited reduced motility that was p38MAPK-dependent (after addition of the p38MAPK inhibitor SB203580). Together, these results suggest that COL17 has significantly wider signaling roles than were previously thought, including the involvement of COL17 in keratinocyte adhesion to collagen IV, in p38MAPK-dependent cell migration, and multiple cell signaling events pertaining to MEK1/2 phosphorylation.
Collapse
Affiliation(s)
- Hongjiang Qiao
- Creative Research Initiative, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Guo A, Jahoda CAB. An improved method of human keratinocyte culture from skin explants: cell expansion is linked to markers of activated progenitor cells. Exp Dermatol 2009; 18:720-6. [DOI: 10.1111/j.1600-0625.2009.00900.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Wöll S, Windoffer R, Leube RE. p38 MAPK-dependent shaping of the keratin cytoskeleton in cultured cells. ACTA ACUST UNITED AC 2007; 177:795-807. [PMID: 17535969 PMCID: PMC2064280 DOI: 10.1083/jcb.200703174] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Plasticity of the resilient keratin intermediate filament cytoskeleton is an important prerequisite for epithelial tissue homeostasis. Here, the contribution of stress-activated p38 MAPK to keratin network organization was examined in cultured cells. It was observed that phosphorylated p38 colocalized with keratin granules that were rapidly formed in response to orthovanadate. The same p38p recruitment was noted during mitosis, in various stress situations and in cells producing mutant keratins. In all these situations keratin 8 became phosphorylated on S73, a well-known p38 target site. To demonstrate that p38-dependent keratin phosphorylation determines keratin organization, p38 activity was pharmacologically and genetically modulated: up-regulation induced keratin granule formation, whereas down-regulation prevented keratin filament network disassembly. Furthermore, transient p38 inhibition also inhibited keratin filament precursor formation and mutant keratin granule dissolution. Collectively, the rapid and reversible effects of p38 activity on keratin phosphorylation and organization in diverse physiological, stress, and pathological situations identify p38-dependent signalling as a major intermediate filament–regulating pathway.
Collapse
Affiliation(s)
- Stefan Wöll
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | |
Collapse
|
14
|
Matsumoto R, Sugimoto M. Dermal matrix proteins initiate re-epithelialization but are not sufficient for coordinated epidermal outgrowth in a new fish skin culture model. Cell Tissue Res 2006; 327:249-65. [PMID: 17043792 DOI: 10.1007/s00441-006-0310-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 07/17/2006] [Indexed: 12/18/2022]
Abstract
We have established a new culture system to study re-epithelialization during fish epidermal wound healing. In this culture system, fetal bovine serum (FBS) stimulates the epidermal outgrowth of multi-cellular layers from scale skin mounted on a coverslip, even when cell proliferation is blocked. The rate of outgrowth is about 0.4 mm/h, and at 3 h after incubation, the area occupied by the epidermal sheet is nine times larger than the area of the original scale skin. Cells at the bottom of the outgrowth show a migratory phenotype with lamellipodia, and "purse string"-like actin bundles have been found over the leading-edge cells with polarized lamellipodia. In the superficial cells, re-development of adherens junctions and microridges has been detected, together with the appearance and translocation of phosphorylated p38 MAPK into nuclear areas. Thus, this culture system provides an excellent model to study the mechanisms of epidermal outgrowth accompanied by migration and re-differentiation. We have also examined the role of extracellular matrix proteins in the outgrowth. Type I collagen or fibronectin stimulates moderate outgrowth in the absence of FBS, but development of microridges and the distribution of phosphorylated p38 MAPK are attenuated in the superficial cells. In addition, the leading-edge cells do not have apparent "purse string"-like actin bundles. The outgrowth stimulated by FBS is inhibited by laminin. These results suggest that dermal substrates such as type I collagen and fibronectin are able to initiate epidermal outgrowth but require other factors to enhance such outgrowth, together with coordinated alterations in cellular phenotype.
Collapse
Affiliation(s)
- Reiko Matsumoto
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba, Japan
| | | |
Collapse
|
15
|
Kansra S, Stoll SW, Johnson JL, Elder JT. Src family kinase inhibitors block amphiregulin-mediated autocrine ErbB signaling in normal human keratinocytes. Mol Pharmacol 2004; 67:1145-57. [PMID: 15615697 DOI: 10.1124/mol.104.004689] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
c-Src potentiates proliferation, survival, and invasiveness in response to epidermal growth factor (EGF) in human mammary carcinoma cells. Tyrosine (Tyr) 845 of ErbB1 is phosphorylated by Src and has been implicated in control of malignant behavior. Although several lines of evidence also suggest important interactions of ErbB and Src family kinase signaling in normal epithelial cells, little is known about the mechanism of this interaction. Studying normal human keratinocytes (NHKs), here we demonstrate strong expression of the Src family kinases Src, Yes, and Fyn; Src family kinase-dependent stimulation of Tyr 845 by EGF; and potent inhibition of NHK proliferation and migration by two Src family kinase inhibitors PP1 and PD173952. EGF-stimulated extracellular signal-regulated kinase (ERK) phosphorylation occurred at much lower concentrations of EGF than required to phosphorylate Tyr 845. Moreover, the effect of Src family kinase inhibitors on EGF-stimulated ERK phosphorylation was transient, prompting a search for other targets of Src family kinase action. By enzyme-linked immunosorbent assay analysis, we found that three different Src family kinase inhibitors [6-(2,6-dichlorophenyl)-8-methyl-2-(4-morpholin-4-ylphenylamino)-8H-pyrido[2,3-d]pyrimidin-7-one (PD173952), 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1), and 2-oxo-3-(4,5,6,7-tetrahydro-1H-indol-2-ylmethylene)-2,3-dihydro-1H-indole-5-sulfonic acid dimethylamide (SU6656)] markedly inhibited elaboration of soluble amphiregulin by NHKs. The ErbB inhibitor PD158780 and the mitogen-activated protein kinase kinase inhibitor U0126 also markedly inhibited NHK proliferation, migration, and amphiregulin production. Together, these observations demonstrate that one or more Src family kinases act upstream as well as downstream of ErbB1 to promote amphiregulin-dependent autocrine stimulation of NHKs and suggest that autocrine NHK proliferation is more dependent upon ERK activation than upon Tyr 845 phosphorylation.
Collapse
Affiliation(s)
- Sanjay Kansra
- Department of Dermatology, University of Michigan Medical Center, 3312 CCGC, Box 0932, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0932, USA
| | | | | | | |
Collapse
|
16
|
Smith SL, Gugger M, Hoban P, Ratschiller D, Watson SG, Field JK, Betticher DC, Heighway J. S100A2 is strongly expressed in airway basal cells, preneoplastic bronchial lesions and primary non-small cell lung carcinomas. Br J Cancer 2004; 91:1515-24. [PMID: 15467767 PMCID: PMC2409919 DOI: 10.1038/sj.bjc.6602188] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
S100A2 gene products were shown to be frequently and dramatically over-represented in non-small cell lung cancer (NSCLC) lesions over normal tissue by microarray analysis. We have now analysed an independent series of NSCLC tumours and multiple matched normal bronchial epithelial sites by RT–PCR and immunohistochemistry to investigate: whether this expression pattern can be confirmed and whether elevated expression is associated with tumour histology, clinical outcome or preneoplasia. In this second series, S100A2 was strongly expressed in 76% (35 out of 46) of tumours, more frequently in squamous cell than adenocarcinomas (P<0.002). This strong expression was not related to high-level gene amplification, but was associated in one of five informative cases with an allele-specific imbalance in transcript levels. Most tumours strongly expressed the ΔNp63 transcript, the product of which is a putative regulator of S100A2 transcription and while all but one of the tumours positive for ΔNp63 expressed S100A2, others negative for this regulator also expressed the gene. Contrary to the hypothesis that S100A2 is a tumour suppressor, no somatic mutations were identified in the coding sequence in 44 tumours. Furthermore, an examination of multiple tumour-free epithelial sites from 20 patients showed that strong expression was often associated with increasing levels of disorder in preinvasive bronchial lesions (P<0.0001).
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adult
- Aged
- Aged, 80 and over
- Allelic Imbalance
- Biomarkers, Tumor/metabolism
- Bronchi/metabolism
- Bronchi/pathology
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Chemotactic Factors/genetics
- Chemotactic Factors/metabolism
- DNA-Binding Proteins
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasms, Basal Cell/genetics
- Neoplasms, Basal Cell/metabolism
- Neoplasms, Basal Cell/pathology
- Phosphoproteins/metabolism
- Precancerous Conditions/metabolism
- Precancerous Conditions/pathology
- S100 Proteins/genetics
- S100 Proteins/metabolism
- Trans-Activators/metabolism
- Transcription Factors
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- S L Smith
- Gene Function Group, Roy Castle Lung Cancer Programme (Clinical Dental Sciences), University of Liverpool Cancer Research Centre, 200 London Road, Liverpool L3 9TA, UK
| | - M Gugger
- Institute of Pathology, University of Bern, 3010 Bern, Switzerland
| | - P Hoban
- Institute of Science and Technology in Medicine, Keele University School of Medicine, University Hospital of North Staffordshire, Stoke-on-Trent ST4 7QB, UK
| | - D Ratschiller
- Institute of Medical Oncology, University of Bern, 3010 Bern, Switzerland
| | - S G Watson
- Gene Function Group, Roy Castle Lung Cancer Programme (Clinical Dental Sciences), University of Liverpool Cancer Research Centre, 200 London Road, Liverpool L3 9TA, UK
| | - J K Field
- Gene Function Group, Roy Castle Lung Cancer Programme (Clinical Dental Sciences), University of Liverpool Cancer Research Centre, 200 London Road, Liverpool L3 9TA, UK
| | - D C Betticher
- Institute of Medical Oncology, University of Bern, 3010 Bern, Switzerland
| | - J Heighway
- Gene Function Group, Roy Castle Lung Cancer Programme (Clinical Dental Sciences), University of Liverpool Cancer Research Centre, 200 London Road, Liverpool L3 9TA, UK
- Roy Castle International Centre for Lung Cancer Research, University of Liverpool Cancer Research Centre, 200 London Road, Liverpool L3 9TA, UK. E-mail:
| |
Collapse
|
17
|
Lu H, Rollman O. Fluorescence imaging of reepithelialization from skin explant cultures on acellular dermis. Wound Repair Regen 2004; 12:575-86. [PMID: 15453840 DOI: 10.1111/j.1067-1927.2004.012510.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reconstituted skin models are valuable tools in studies of cutaneous biology although they are not generally devised to visualize and quantify the time course of reepithelialization. We describe a skin explant culture technique coupled with vital microscopy allowing sequential imaging of epithelial outgrowth while maintaining the tissue in culture. Radial expansion of neo-epidermis was initiated from a 2-mm skin punch biopsy explanted onto acellular human dermis and maintained at the air-liquid interface in serum-containing keratinocyte medium. Microscopic viewings and surface area measurements of newly formed epidermis were performed repeatedly using fluorescein-based cell staining and subsequent image analysis. The labeling and visualization procedures did not interfere with neo-epidermal growth or tissue architecture. In order to appraise the versatility of the model, we studied the effect of epidermal growth factor supplementation on the course of skin resurfacing as related to tissue morphology and proliferative activity over a 10-day cultivation period. Exogenous epidermal growth factor at 10 ng/ml increased the radial outgrowth rate (mean, + 13.3 percent), papillomatosis index (+ 19.2 percent), epithelial thickness (+ 49.8 percent), and fraction of Ki-67 positive basal cells (+ 18.4 percent) in neo-epidermis produced from a biopsy of normal human skin. The contribution of this miniaturized and convenient format for concurrent studies of dynamic and qualitative features of neo-epidermis should be a useful complement to existing assays of epidermalization.
Collapse
Affiliation(s)
- Hongguang Lu
- Department of Medical Sciences, Section of Dermatology and Venereology, University Hospital, S-751 85 Uppsala, Sweden
| | | |
Collapse
|
18
|
Kansra S, Stoll SW, Johnson JL, Elder JT. Autocrine extracellular signal-regulated kinase (ERK) activation in normal human keratinocytes: metalloproteinase-mediated release of amphiregulin triggers signaling from ErbB1 to ERK. Mol Biol Cell 2004; 15:4299-309. [PMID: 15254267 PMCID: PMC515360 DOI: 10.1091/mbc.e04-03-0233] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
ErbB signaling through extracellular signal-regulated kinase (ERK) has been implicated in regulating the expression of ErbB ligands in hyperproliferative skin disorders and wound healing. Here, we characterize the process of autocrine ERK activation in cultured normal human keratinocytes (NHKs) subjected to growth factor (GF) deprivation. Basal ERK phosphorylation was lower after 48 h than after 24 h of GF deprivation, and lowest at 30-60 min after an additional medium change. ERK phosphorylation was markedly increased by low concentrations of epidermal growth factor (EGF) (0.2-1 ng/ml) that provoked only a limited increase in ErbB1 tyrosine phosphorylation and internalization. Basal ErbB tyrosine phosphorylation and ERK phosphorylation were inhibited by two different ErbB receptor tyrosine kinase inhibitors, by the ErbB1-specific neutralizing monoclonal antibody 225 IgG, by two different metalloproteinase inhibitors, and by neutralizing antibodies against amphiregulin (AR). In contrast, these responses were unaffected by neutralizing antibodies against other ErbB1 ligands or the ErbB2 inhibitors geldanamycin and AG825. The time course of autocrine ERK phosphorylation correlated with the appearance of soluble AR, and two different metalloproteinase inhibitors blocked AR release. These results define an amphiregulin- and ErbB1-dependent mechanism by which autocrine ERK activation is maintained in NHKs, even when ErbB1 autophosphorylation and internalization are limited.
Collapse
Affiliation(s)
- Sanjay Kansra
- Departments of Dermatology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|