1
|
Oda H, Nakamura T, Toki W, Niimi T. Morphological Study of Left-Right Head Asymmetry in Doubledaya bucculenta (Coleoptera: Erotylidae: Languriinae). Zoolog Sci 2024; 41:448-455. [PMID: 39436006 DOI: 10.2108/zs240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 10/23/2024]
Abstract
Left-right asymmetry in paired organs is well documented across various species, including the claws of fiddler crabs and snail-eating snakes' dentition. However, the mechanisms underlying these asymmetries remain largely elusive. This study investigates Doubledaya bucculenta (Coleoptera: Erotylidae), a lizard beetle species known for pronounced left-sided asymmetry in adult female mandible and gena. Given that insect mouthparts comprise multiple functionally significant appendages, we aimed to clarify the degree of asymmetry extending beyond the mandibles and genae. Phenotypic morphology was assessed through trait measurement and asymmetry index calculations. Our detailed morphometric analyses revealed left-longer asymmetry not only in mandibles and genae but also in maxillae and labium. Notably, the degree of asymmetry in other mouthparts was generally less pronounced compared to that in outer mandibles, suggesting a potential influence of left mandible development on other mouthparts. Additionally, male mandibles exhibited region-specific asymmetry, potentially indicative of constrained evolutionary adaptations. This study enhances a comprehensive understanding of adult phenotype morphology and offers insights into the developmental basis of asymmetrical mouthparts.
Collapse
Affiliation(s)
- Hiroki Oda
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan,
- Basic Biology Program, Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Wataru Toki
- Laboratory of Forest Protection, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan,
- Basic Biology Program, Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
2
|
Bast EM, Marshall NT, Myers KO, Marsh LW, Hurtado MW, Van Zandt PA, Lehnert MS. Diverse material properties and morphology of moth proboscises relates to the feeding habits of some macromoth and other lepidopteran lineages. Interface Focus 2024; 14:20230051. [PMID: 38618232 PMCID: PMC11008959 DOI: 10.1098/rsfs.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/03/2024] [Indexed: 04/16/2024] Open
Abstract
Insects have evolved unique structures that host a diversity of material and mechanical properties, and the mouthparts (proboscis) of butterflies and moths (Lepidoptera) are no exception. Here, we examined proboscis morphology and material properties from several previously unstudied moth lineages to determine if they relate to flower visiting and non-flower visiting feeding habits. Scanning electron microscopy and three-dimensional imaging were used to study proboscis morphology and assess surface roughness patterns on the galeal surface, respectively. Confocal laser scanning microscopy was used to study patterns of cuticular autofluorescence, which was quantified with colour analysis software. We found that moth proboscises display similar autofluorescent signals and morphological patterns in relation to feeding habits to those previously described for flower and non-flower visiting butterflies. The distal region of proboscises of non-flower visitors is brush-like for augmented capillarity and exhibited blue autofluorescence, indicating the possible presence of resilin and increased flexibility. Flower visitors have smoother proboscises and show red autofluorescence, an indicator of high sclerotization, which is adaptive for floral tube entry. We propose the lepidopteran proboscis as a model structure for understanding how insects have evolved a suite of morphological and material adaptations to overcome the challenges of acquiring fluids from diverse sources.
Collapse
Affiliation(s)
- Elaine M. Bast
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | - Natalie T. Marshall
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | - Kendall O. Myers
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | - Lucas W. Marsh
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | | | | | - Matthew S. Lehnert
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| |
Collapse
|
3
|
Lev O, Edgecombe GD, Chipman AD. Serial Homology and Segment Identity in the Arthropod Head. Integr Org Biol 2022; 4:obac015. [PMID: 35620450 PMCID: PMC9128542 DOI: 10.1093/iob/obac015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The anterior-most unit of the crown-group arthropod body plan includes three segments, the pre-gnathal segments, that contain three neuromeres that together comprise the brain. Recent work on the development of this anterior region has shown that its three units exhibit many developmental differences to the more posterior segments, to the extent that they should not be considered serial homologs. Building on this revised understanding of the development of the pre-gnathal segments, we suggest a novel scenario for arthropod head evolution. We posit an expansion of an ancestral single-segmented head at the transition from Radiodonta to Deuteropoda in the arthropod stem group. The expanded head subdivided into three segmental units, each maintaining some of the structures of the ancestral head. This scenario is consistent with what we know of head evolution from the fossil record and helps reconcile some of the debates about early arthropod evolution.
Collapse
Affiliation(s)
- Oren Lev
- The Dept. of Ecology, Evolution & Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Ariel D Chipman
- The Dept. of Ecology, Evolution & Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem
| |
Collapse
|
4
|
Porto DS, Almeida EAB, Pennell MW. Investigating Morphological Complexes Using Informational Dissonance and Bayes Factors: A Case Study in Corbiculate Bees. Syst Biol 2021; 70:295-306. [PMID: 32722788 PMCID: PMC7882150 DOI: 10.1093/sysbio/syaa059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022] Open
Abstract
It is widely recognized that different regions of a genome often have different evolutionary histories and that ignoring this variation when estimating phylogenies can be misleading. However, the extent to which this is also true for morphological data is still largely unknown. Discordance among morphological traits might plausibly arise due to either variable convergent selection pressures or else phenomena such as hemiplasy. Here, we investigate patterns of discordance among 282 morphological characters, which we scored for 50 bee species particularly targeting corbiculate bees, a group that includes the well-known eusocial honeybees and bumblebees. As a starting point for selecting the most meaningful partitions in the data, we grouped characters as morphological modules, highly integrated trait complexes that as a result of developmental constraints or coordinated selection we expect to share an evolutionary history and trajectory. In order to assess conflict and coherence across and within these morphological modules, we used recently developed approaches for computing Bayesian phylogenetic information allied with model comparisons using Bayes factors. We found that despite considerable conflict among morphological complexes, accounting for among-character and among-partition rate variation with individual gamma distributions, rate multipliers, and linked branch lengths can lead to coherent phylogenetic inference using morphological data. We suggest that evaluating information content and dissonance among partitions is a useful step in estimating phylogenies from morphological data, just as it is with molecular data. Furthermore, we argue that adopting emerging approaches for investigating dissonance in genomic datasets may provide new insights into the integration and evolution of anatomical complexes. [Apidae; entropy; morphological modules; phenotypic integration; phylogenetic information.].
Collapse
Affiliation(s)
- Diego S Porto
- Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver BC V6T 1Z4, Canada
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 926 West Campus Drive, Blacksburg, VA 24061 USA
| | - Eduardo A B Almeida
- Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Matthew W Pennell
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Game M, Smith FW. Loss of intermediate regions of perpendicular body axes contributed to miniaturization of tardigrades. Proc Biol Sci 2020; 287:20201135. [PMID: 33043863 DOI: 10.1098/rspb.2020.1135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tardigrades have a miniaturized body plan. Miniaturization in tardigrades is associated with the loss of several organ systems and an intermediate region of their anteroposterior (AP) axis. However, how miniaturization has affected tardigrade legs is unclear. In arthropods and in onychophorans, the leg gap genes are expressed in regionalized proximodistal (PD) patterns in the legs. Functional studies indicate that these genes regulate growth in their respective expression domains and establish PD identities, partly through mutually antagonistic regulatory interactions. Here, we investigated the expression patterns of tardigrade orthologs of the leg gap genes. Rather than being restricted to a proximal leg region, as in arthropods and onychophorans, we detected coexpression of orthologues of homothorax and extradenticle broadly across the legs of the first three trunk segments in the tardigrade Hypsibius exemplaris. We could not identify a dachshund orthologue in tardigrade genomes, a gene that is expressed in an intermediate region of developing legs in arthropods and onychophorans, suggesting that this gene was lost in the tardigrade lineage. We detected Distal-less expression broadly across all developing leg buds in H. exemplaris embryos, unlike in arthropods and onychophorans, in which it exhibits a distally restricted expression domain. The broad expression patterns of the remaining leg gap genes in H. exemplaris legs may reflect the loss of dachshund and the accompanying loss of an intermediate region of the legs in the tardigrade lineage. We propose that the loss of intermediate regions of both the AP and PD body axes contributed to miniaturization of Tardigrada.
Collapse
Affiliation(s)
- Mandy Game
- Biology Department, University of North Florida, USA
| | - Frank W Smith
- Biology Department, University of North Florida, USA
| |
Collapse
|
6
|
Labandeira CC. The Fossil Record of Insect Mouthparts: Innovation, Functional Convergence, and Associations with Other Organisms. INSECT MOUTHPARTS 2019. [DOI: 10.1007/978-3-030-29654-4_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Kramer VR, Reiter KE, Lehnert MS. Proboscis morphology suggests reduced feeding abilities of hybrid Limenitis butterflies (Lepidoptera: Nymphalidae). Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Valerie R Kramer
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | - Kristen E Reiter
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew S Lehnert
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| |
Collapse
|
8
|
Smith FW, Cumming M, Goldstein B. Analyses of nervous system patterning genes in the tardigrade Hypsibius exemplaris illuminate the evolution of panarthropod brains. EvoDevo 2018; 9:19. [PMID: 30069303 PMCID: PMC6065069 DOI: 10.1186/s13227-018-0106-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Both euarthropods and vertebrates have tripartite brains. Several orthologous genes are expressed in similar regionalized patterns during brain development in both vertebrates and euarthropods. These similarities have been used to support direct homology of the tripartite brains of vertebrates and euarthropods. If the tripartite brains of vertebrates and euarthropods are homologous, then one would expect other taxa to share this structure. More generally, examination of other taxa can help in tracing the evolutionary history of brain structures. Tardigrades are an interesting lineage on which to test this hypothesis because they are closely related to euarthropods, and whether they have a tripartite brain or unipartite brain has recently been a focus of debate. RESULTS We tested this hypothesis by analyzing the expression patterns of six3, orthodenticle, pax6, unplugged, and pax2/5/8 during brain development in the tardigrade Hypsibius exemplaris-formerly misidentified as Hypsibius dujardini. These genes were expressed in a staggered anteroposterior order in H. exemplaris, similar to what has been reported for mice and flies. However, only six3, orthodenticle, and pax6 were expressed in the developing brain. Unplugged was expressed broadly throughout the trunk and posterior head, before the appearance of the nervous system. Pax2/5/8 was expressed in the developing central and peripheral nervous system in the trunk. CONCLUSION Our results buttress the conclusion of our previous study of Hox genes-that the brain of tardigrades is only homologous to the protocerebrum of euarthropods. They support a model based on fossil evidence that the last common ancestor of tardigrades and euarthropods possessed a unipartite brain. Our results are inconsistent with the hypothesis that the tripartite brain of euarthropods is directly homologous to the tripartite brain of vertebrates.
Collapse
Affiliation(s)
- Frank W. Smith
- Biology Department, University of North Florida, Jacksonville, FL USA
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Mandy Cumming
- Biology Department, University of North Florida, Jacksonville, FL USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
9
|
RNA-seq of Rice Yellow Stem Borer Scirpophaga incertulas Reveals Molecular Insights During Four Larval Developmental Stages. G3-GENES GENOMES GENETICS 2017; 7:3031-3045. [PMID: 28717048 PMCID: PMC5592929 DOI: 10.1534/g3.117.043737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The yellow stem borer (YSB), Scirpophaga incertulas, is a prominent pest in rice cultivation causing serious yield losses. The larval stage is an important stage in YSB, responsible for maximum infestation. However, limited knowledge exists on the biology and mechanisms underlying the growth and differentiation of YSB. To understand and identify the genes involved in YSB development and infestation, so as to design pest control strategies, we performed de novo transcriptome analysis at the first, third, fifth, and seventh larval developmental stages employing Illumina Hi-seq. High-quality reads (HQR) of ∼229 Mb were assembled into 24,775 transcripts with an average size of 1485 bp. Genes associated with various metabolic processes, i.e., detoxification mechanism [CYP450, GSTs, and carboxylesterases (CarEs)], RNA interference (RNAi) machinery (Dcr-1, Dcr-2, Ago-1, Ago-2, Sid-1, Sid-2, Sid-3, and Sid-1-related gene), chemoreception (CSPs, GRs, OBPs, and ORs), and regulators [transcription factors (TFs) and hormones] were differentially regulated during the developmental stages. Identification of stage-specific transcripts made it possible to determine the essential processes of larval development. Comparative transcriptome analysis revealed that YSB has not evolved much with respect to the detoxification mechanism, but showed the presence of distinct RNAi machinery. The presence of strong specific visual recognition coupled with chemosensory mechanisms supports the monophagous nature of YSB. Designed expressed sequenced tags-simple-sequence repeats (EST-SSRs) will facilitate accurate estimation of the genetic diversity of YSB. This is the first report on characterization of the YSB transcriptome and the identification of genes involved in key processes, which will help researchers and industry to devise novel pest control strategies. This study also opens up a new avenue to develop next-generation resistant rice using RNAi or genome editing approaches.
Collapse
|
10
|
Chipman AD. Oncopeltus fasciatus
as an evo-devo research organism. Genesis 2017; 55. [DOI: 10.1002/dvg.23020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/29/2016] [Accepted: 01/15/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ariel D. Chipman
- The Department of Ecology; Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus; Givat Ram Jerusalem 91904 Israel
| |
Collapse
|
11
|
Shi G, Wu J, Yan S. Drag Reduction in a Natural High-Frequency Swinging Micro-Articulation: Mouthparts of the Honey Bee. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3059520. [PMID: 28355472 PMCID: PMC5469391 DOI: 10.1093/jisesa/iew122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Worker-bee mouthparts consist of the glossa, the galeae and the vestigial labial palp, and it is these structures that enable bees to feed themselves. The articulation joints, 60∼70 µm in diameter, are present on the tip of the labial palp and are covered with olfactory sensilla, allowing movements between the segments. Using a specially designed high-speed camera system, we discovered that the articulation joint could swing in the nectar at a frequency of ∼50 Hz, considerably higher than the usual motion frequency of mammalian joints. To understand the potential drag reduction in this tiny organ, we examined its microstructure and also its surface wettability. We found that chitinous semispherical protuberances (4∼6 µm in diameter) are uniformly scattered on the surface of the joint and, moreover, that the surface is hydrophobic. We proposed a hydrodynamic model and revealed that the specialized surface can effectively reduce the mean equivalent friction (Ff) by ∼10%, through the use of protuberances immersed in the liquid feed. Theoretical results indicated that the dimensions of such protuberances are the predominant factor in minimizing Ff, and that the natural dimensions of the protuberances are close to the theoretical optimum at which friction is at a minimum. These discoveries may inspire the design of high-frequency micro-joints for engineering applications, such as in micro-stirrers.
Collapse
Affiliation(s)
- Guanya Shi
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, People’s Republic of China
- Department of Automotive Engineering, Tsinghua University, Beijing, People’s Republic of China
| | - Jianing Wu
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, People’s Republic of China
| | - Shaoze Yan
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016; 73:3221-47. [PMID: 27100828 PMCID: PMC4967105 DOI: 10.1007/s00018-016-2223-0] [Citation(s) in RCA: 1695] [Impact Index Per Article: 211.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
The multifunctional regulator nuclear factor erythroid 2-related factor (Nrf2) is considered not only as a cytoprotective factor regulating the expression of genes coding for anti-oxidant, anti-inflammatory and detoxifying proteins, but it is also a powerful modulator of species longevity. The vertebrate Nrf2 belongs to Cap 'n' Collar (Cnc) bZIP family of transcription factors and shares a high homology with SKN-1 from Caenorhabditis elegans or CncC found in Drosophila melanogaster. The major characteristics of Nrf2 are to some extent mimicked by Nrf2-dependent genes and their proteins including heme oxygenase-1 (HO-1), which besides removing toxic heme, produces biliverdin, iron ions and carbon monoxide. HO-1 and their products exert beneficial effects through the protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. On the other hand, the disturbances in the proper HO-1 level are associated with the pathogenesis of some age-dependent disorders, including neurodegeneration, cancer or macular degeneration. This review summarizes our knowledge about Nrf2 and HO-1 across different phyla suggesting their conservative role as stress-protective and anti-aging factors.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
13
|
Chen B, Piel WH, Monteiro A. Distal-less homeobox genes of insects and spiders: genomic organization, function, regulation and evolution. INSECT SCIENCE 2016; 23:335-352. [PMID: 26898323 DOI: 10.1111/1744-7917.12327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The Distal-less (Dll) genes are homeodomain transcription factors that are present in most Metazoa and in representatives of all investigated arthropod groups. In Drosophila, the best studied insect, Dll plays an essential role in forming the proximodistal axis of the legs, antennae and analia, and in specifying antennal identity. The initiation of Dll expression in clusters of cells in mid-lateral regions of the Drosophila embryo represents the earliest genetic marker of limbs. Dll genes are involved in the development of the peripheral nervous system and sensitive organs, and they also function as master regulators of black pigmentation in some insect lineages. Here we analyze the complete genomes of six insects, the nematode Caenorhabditis elegans and Homo sapiens, as well as multiple Dll sequences available in databases in order to examine the structure and protein features of these genes. We also review the function, expression, regulation and evolution of arthropod Dll genes with emphasis on insects and spiders.
Collapse
Affiliation(s)
- Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, P.R. China
| | - William H Piel
- Yale-NUS College, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Yale-NUS College, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
14
|
Sharma PP, Gupta T, Schwager EE, Wheeler WC, Extavour CG. Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata. EvoDevo 2014; 5:3. [PMID: 24405788 PMCID: PMC3897911 DOI: 10.1186/2041-9139-5-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/14/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The monophyly of Mandibulata - the division of arthropods uniting pancrustaceans and myriapods - is consistent with several morphological characters, such as the presence of sensory appendages called antennae and the eponymous biting appendage, the mandible. Functional studies have demonstrated that the patterning of the mandible requires the activity of the Hox gene Deformed and the transcription factor cap-n-collar (cnc) in at least two holometabolous insects: the fruit fly Drosophila melanogaster and the beetle Tribolium castaneum. Expression patterns of cnc from two non-holometabolous insects and a millipede have suggested conservation of the labral and mandibular domains within Mandibulata. However, the activity of cnc is unknown in crustaceans and chelicerates, precluding understanding of a complete scenario for the evolution of patterning of this appendage within arthropods. To redress these lacunae, here we investigate the gene expression of the ortholog of cnc in Parhyale hawaiensis, a malacostracan crustacean, and two chelicerates: the harvestman Phalangium opilio, and the scorpion Centruroides sculpturatus. RESULTS In the crustacean P. hawaiensis, the segmental expression of Ph-cnc is the same as that reported previously in hexapods and myriapods, with two distinct head domains in the labrum and the mandibular segment. In contrast, Po-cnc and Cs-cnc expression is not enriched in the labrum of either chelicerate, but instead is expressed at comparable levels in all appendages. In further contrast to mandibulate orthologs, the expression domain of Po-cnc posterior to the labrum is not confined within the expression domain of Po-Dfd. CONCLUSIONS Expression data from two chelicerate outgroup taxa suggest that the signature two-domain head expression pattern of cnc evolved at the base of Mandibulata. The observation of the archetypal labral and mandibular segment domains in a crustacean exemplar supports the synapomorphic nature of mandibulate cnc expression. The broader expression of Po-cnc with respect to Po-Dfd in chelicerates further suggests that the regulation of cnc by Dfd was also acquired at the base of Mandibulata. To test this hypothesis, future studies examining panarthropod cnc evolution should investigate expression of the cnc ortholog in arthropod outgroups, such as Onychophora and Tardigrada.
Collapse
Affiliation(s)
- Prashant P Sharma
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.
| | | | | | | | | |
Collapse
|
15
|
Gupta T, Extavour CG. Identification of a putative germ plasm in the amphipod Parhyale hawaiensis. EvoDevo 2013; 4:34. [PMID: 24314239 PMCID: PMC3878990 DOI: 10.1186/2041-9139-4-34] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/01/2013] [Indexed: 01/16/2023] Open
Abstract
Background Specification of the germ line is an essential event during the embryonic development of sexually reproducing animals, as germ line cells are uniquely capable of giving rise to the next generation. Animal germ cells arise through either inheritance of a specialized, maternally supplied cytoplasm called 'germ plasm’ or though inductive signaling by somatic cells. Our understanding of germ cell determination is based largely on a small number of model organisms. To better understand the evolution of germ cell specification, we are investigating this process in the amphipod crustacean Parhyale hawaiensis. Experimental evidence from previous studies demonstrated that Parhyale germ cells are specified through inheritance of a maternally supplied cytoplasmic determinant; however, this determinant has not been identified. Results Here we show that the one-cell stage Parhyale embryo has a distinct cytoplasmic region that can be identified by morphology as well as the localization of germ line-associated RNAs. Removal of this cytoplasmic region results in a loss of embryonic germ cells, supporting the hypothesis that it is required for specification of the germ line. Surprisingly, we found that removal of this distinct cytoplasm also results in aberrant somatic cell behaviors, as embryos fail to gastrulate. Conclusions Parhyale hawaiensis embryos have a specialized cytoplasm that is required for specification of the germ line. Our data provide the first functional evidence of a putative germ plasm in a crustacean and provide the basis for comparative functional analysis of germ plasm formation within non-insect arthropods.
Collapse
Affiliation(s)
- Tripti Gupta
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
16
|
Appendage patterning in the primitively wingless hexapods Thermobia domestica (Zygentoma: Lepismatidae) and Folsomia candida (Collembola: Isotomidae). Dev Genes Evol 2013; 223:341-50. [DOI: 10.1007/s00427-013-0449-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
|
17
|
Sharma PP, Schwager EE, Giribet G, Jockusch EL, Extavour CG. Distal-lessanddachshundpattern both plesiomorphic and apomorphic structures in chelicerates: RNA interference in the harvestmanPhalangium opilio(Opiliones). Evol Dev 2013; 15:228-42. [DOI: 10.1111/ede.12029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Evelyn E. Schwager
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street, Cambridge, MA 02138; USA
| | | | - Elizabeth L. Jockusch
- Department of Ecology and Evolutionary Biology; University of Connecticut; 75 N. Eagleville Road, Storrs, CT 06269; USA
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street, Cambridge, MA 02138; USA
| |
Collapse
|
18
|
Coulcher JF, Telford MJ. Comparative gene expression supports the origin of the incisor and molar process from a single endite in the mandible of the red flour beetle Tribolium castaneum. EvoDevo 2013; 4:1. [PMID: 23280103 PMCID: PMC3564707 DOI: 10.1186/2041-9139-4-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/26/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND The biting edge of the primitive arthropod mandible consists of a biting incisor process and a crushing molar process. These structures are thought to be derived from a structure known as an endite but the precise details of this are not understood. Various hypotheses concerning the number of endites present in the arthropod mandible have been proposed.In the developing embryo, the mandible has an inner and outer lobe that are likely to develop into the incisor and molar processes of the larval mandible; these two lobes are commonly held to be derived from separate endites and to be serially homologous to the galea and lacinia endites of the maxillary appendage respectively (Machida). RESULTS We undertook a study of the development of the embryonic mandible of the beetle Tribolium castaneum using the expression of developmental genes as markers of the developing endites in the mandible and maxilla.The Tribolium ortholog of paired (Tc-prd) has expression domains in the developing maxillary and labial endites as well as the inner and outer lobes of the mandible. Following the expression of Tc-prd in the developing mandible through to late stage embryos shows that the molar and incisor process develop from the inner and outer lobes respectively.In addition to Tc-prd, we compared the expression of genes in the endites of the maxilla to the mandible to draw conclusions about the number of endites in the mandible. Homologs of dachshund are typically expressed in the endites of mandibulate gnathal appendages. Comparison of the expression of Tc-prd, Tribolium dachshund (Tc-dac) and Tribolium wingless (Tc-wg) between the endites of the maxilla and the mandible suggest that, while there are two endites in the maxilla only a single endite is present in the mandible. CONCLUSIONS Comparative gene expression suggests that the Tribolium mandible has a single endite from which both mandible lobes are derived. Our results do not support Machida's hypothesis homologising the incisor and molar processes of the mandible to the galea and lacinia endites of the maxilla. We propose, instead, that both incisor and molar processes are derived from a single endite serially homologous to the lacinia of the maxilla.
Collapse
Affiliation(s)
- Joshua F Coulcher
- Department of Genetics, Environment and Evolution, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
19
|
Coulcher JF, Telford MJ. Cap'n'collar differentiates the mandible from the maxilla in the beetle Tribolium castaneum. EvoDevo 2012; 3:25. [PMID: 23114106 PMCID: PMC3534572 DOI: 10.1186/2041-9139-3-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/23/2012] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED BACKGROUND The biting mandible of the arthropods is thought to have evolved in the ancestor of the insects, crustaceans and myriapods: the Mandibulata. A unique origin suggests a common set of developmental genes will be required to pattern the mandible in different arthropods. To date we have functional studies on patterning of the mandibular segment of Drosophila melanogaster showing in particular the effects of the gene cap'n'collar (cnc), however, the dipteran head is far from representative of insects or of more distantly related mandibulates; Drosophila does not even possess a mandibular appendage. To study the development of a more representative insect mandible, we chose the red flour beetle Tribolium castaneum and investigated the function of the Tribolium orthologs of cap'n'collar (Tc-cnc) and the Hox gene Deformed (Tc-Dfd). In order to determine the function of Tc-cnc and Tc-Dfd, transcripts were knocked down by maternal RNA interference (RNAi). The effects of gene knockdown were examined in the developing embryos and larvae. The effect of Tc-cnc and Tc-Dfd knockdown on the expression of other genes was determined by using in situ hybridization on Tribolium embryos. RESULTS Our analyses show that Tc-cnc is required for specification of the identity of the mandibular segment of Tribolium and differentiates the mandible from maxillary identity. Loss of Tc-cnc function results in a transformation of the mandible to maxillary identity as well as deletion of the labrum. Tc-Dfd and the Tribolium homolog of proboscipedia (Tc-mxp = maxillopedia), Hox genes that are required to pattern the maxillary appendage, are expressed in a maxilla-like manner in the transformed mandible. Tribolium homologs of paired (Tc-prd) and Distal-less (Tc-Dll) that are expressed in the endites and telopodites of embryonic appendages are also expressed in a maxilla-like manner in the transformed mandible.We also show that Tc-Dfd is required to activate the collar of Tc-cnc expression in the mandibular segment but not the cap expression in the labrum. Tc-Dfd is also required for the activation of Tc-prd in the endites of the mandible and maxillary appendages. CONCLUSIONS Tc-cnc is necessary for patterning the mandibular segment of Tribolium. Together, Tc-cnc and Tc-Dfd cooperate to specify mandibular identity, as in Drosophila. Expression patterns of the homologs of cnc and Dfd are conserved in mandibulate arthropods suggesting that the mandible specifying function of cnc is likely to be conserved across the mandibulate arthropods.
Collapse
Affiliation(s)
- Joshua F Coulcher
- Department of Genetics, Environment and Evolution, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
20
|
Extent With Modification: Leg Patterning in the Beetle Tribolium castaneum and the Evolution of Serial Homologs. G3-GENES GENOMES GENETICS 2012; 2:235-48. [PMID: 22384402 PMCID: PMC3284331 DOI: 10.1534/g3.111.001537] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/01/2011] [Indexed: 01/17/2023]
Abstract
Serial homologs are similar structures that develop at different positions within a body plan. These structures share some, but not all, aspects of developmental patterning, and their evolution is thought to be constrained by shared, pleiotropic gene functions. Here we describe the functions of 17 developmental genes during metamorphic development of the legs in the red flour beetle, Tribolium castaneum. This study provides informative comparisons between appendage development in Drosophila melanogaster and T. castaneum, between embryonic and adult development in T. castaneum, and between the development of serially homologous appendages. The leg gap genes Distal-less and dachshund are conserved in function. Notch signaling, the zinc-finger transcription factors related to odd-skipped, and bric-à-brac have conserved functions in promoting joint development. homothorax knockdown alters the identity of proximal leg segments but does not reduce growth. Lim1 is required for intermediate leg development but not distal tarsus and pretarsus development as in D. melanogaster. Development of the tarsus requires decapentaplegic, rotund, spineless, abrupt, and bric-à-brac and the EGF ligand encoded by Keren. Metathoracic legs of T. castaneum have four tarsomeres, whereas other legs have five. Patterns of gene activity in the tarsus suggest that patterning in the middle of the tarsal region, not the proximal- or distal-most areas, is responsible for this difference in segment number. Through comparisons with other recent studies of T. castaneum appendage development, we test hypotheses for the modularity or interdependence of development during evolution of serial homologs.
Collapse
|
21
|
Patterning of the adult mandibulate mouthparts in the red flour beetle, Tribolium castaneum. Genetics 2011; 190:639-54. [PMID: 22135350 DOI: 10.1534/genetics.111.134296] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Specialized insect mouthparts, such as those of Drosophila, are derived from an ancestral mandibulate state, but little is known about the developmental genetics of mandibulate mouthparts. Here, we study the metamorphic patterning of mandibulate mouthparts of the beetle Tribolium castaneum, using RNA interference to deplete the expression of 13 genes involved in mouthpart patterning. These data were used to test three hypotheses related to mouthpart development and evolution. First, we tested the prediction that maxillary and labial palps are patterned using conserved components of the leg-patterning network. This hypothesis was strongly supported: depletion of Distal-less and dachshund led to distal and intermediate deletions of these structures while depletion of homothorax led to homeotic transformation of the proximal maxilla and labium, joint formation required the action of Notch signaling components and odd-skipped paralogs, and distal growth and patterning required epidermal growth factor (EGF) signaling. Additionally, depletion of abrupt or pdm/nubbin caused fusions of palp segments. Second, we tested hypotheses for how adult endites, the inner branches of the maxillary and labial appendages, are formed at metamorphosis. Our data reveal that Distal-less, Notch signaling components, and odd-skipped paralogs, but not dachshund, are required for metamorphosis of the maxillary endites. Endite development thus requires components of the limb proximal-distal axis patterning and joint segmentation networks. Finally, adult mandible development is considered in light of the gnathobasic hypothesis. Interestingly, while EGF activity is required for distal, but not proximal, patterning of other appendages, it is required for normal metamorphic growth of the mandibles.
Collapse
|
22
|
Birkan M, Schaeper ND, Chipman AD. Early patterning and blastodermal fate map of the head in the milkweed bug Oncopeltus fasciatus. Evol Dev 2011; 13:436-47. [DOI: 10.1111/j.1525-142x.2011.00497.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Michael Birkan
- Department of Ecology, Evolution and Behavior; The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram; Jerusalem; 91904; Israel
| | - Nina D. Schaeper
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology; Georg-August-Universität Göttingen; GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11; Göttingen; 37077; Germany
| | - Ariel D. Chipman
- Department of Ecology, Evolution and Behavior; The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram; Jerusalem; 91904; Israel
| |
Collapse
|
23
|
Janssen R, Budd GE, Damen WG. Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods. Dev Biol 2011; 357:64-72. [DOI: 10.1016/j.ydbio.2011.05.670] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/20/2011] [Accepted: 05/25/2011] [Indexed: 01/31/2023]
|
24
|
Turchyn N, Chesebro J, Hrycaj S, Couso JP, Popadić A. Evolution of nubbin function in hemimetabolous and holometabolous insect appendages. Dev Biol 2011; 357:83-95. [PMID: 21708143 DOI: 10.1016/j.ydbio.2011.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 10/18/2022]
Abstract
Insects display a whole spectrum of morphological diversity, which is especially noticeable in the organization of their appendages. A recent study in a hemipteran, Oncopeltus fasciatus (milkweed bug), showed that nubbin (nub) affects antenna morphogenesis, labial patterning, the length of the femoral segment in legs, and the formation of a limbless abdomen. To further determine the role of this gene in the evolution of insect morphology, we analyzed its functions in two additional hemimetabolous species, Acheta domesticus (house cricket) and Periplaneta americana (cockroach), and re-examined its role in Drosophila melanogaster (fruit fly). While both Acheta and Periplaneta nub-RNAi first nymphs develop crooked antennae, no visible changes are observed in the morphologies of their mouthparts and abdomen. Instead, the main effect is seen in legs. The joint between the tibia and first tarsomere (Ta-1) is lost in Acheta, which in turn, causes a fusion of these two segments and creates a chimeric nub-RNAi tibia-tarsus that retains a tibial identity in its proximal half and acquires a Ta-1 identity in its distal half. Similarly, our re-analysis of nub function in Drosophila reveals that legs lack all true joints and the fly tibia also exhibits a fused tibia and tarsus. Finally, we observe a similar phenotype in Periplaneta except that it encompasses different joints (coxa-trochanter and femur-tibia), and in this species we also show that nub expression in the legs is regulated by Notch signaling, as had previously been reported in flies and spiders. Overall, we propose that nub acts downstream of Notch on the distal part of insect leg segments to promote their development and growth, which in turn is required for joint formation. Our data represent the first functional evidence defining a role for nub in leg segmentation and highlight the varying degrees of its involvement in this process across insects.
Collapse
Affiliation(s)
- Nataliya Turchyn
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
25
|
Posnien N, Schinko JB, Kittelmann S, Bucher G. Genetics, development and composition of the insect head--a beetle's view. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:399-410. [PMID: 20800703 DOI: 10.1016/j.asd.2010.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/08/2010] [Accepted: 08/15/2010] [Indexed: 05/29/2023]
Abstract
Many questions regarding evolution and ontogeny of the insect head remain open. Likewise, the genetic basis of insect head development is poorly understood. Recently, the investigation of gene expression data and the analysis of patterning gene function have revived interest in insect head development. Here, we argue that the red flour beetle Tribolium castaneum is a well suited model organism to spearhead research with respect to the genetic control of insect head development. We review recent molecular data and discuss its bearing on early development and morphogenesis of the head. We present a novel hypothesis on the ontogenetic origin of insect head sutures and review recent insights into the question on the origin of the labrum. Further, we argue that the study of developmental genes may identify the elusive anterior non-segmental region and present some evidence in favor of its existence. With respect to the question of evolution of patterning we show that the head Anlagen of the fruit fly Drosophila melanogaster and Tribolium differ considerably and we review profound differences of their genetic regulation. Finally, we discuss which insect model species might help us to answer the open questions concerning the genetic regulation of head development and its evolution.
Collapse
Affiliation(s)
- Nico Posnien
- Institute for Population Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, Austria
| | | | | | | |
Collapse
|
26
|
Hrycaj S, Chesebro J, Popadić A. Functional analysis of Scr during embryonic and post-embryonic development in the cockroach, Periplaneta americana. Dev Biol 2010; 341:324-34. [PMID: 20171962 DOI: 10.1016/j.ydbio.2010.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
The cockroach, Periplaneta americana represents a basal insect lineage that undergoes the ancestral hemimetabolous mode of development. Here, we examine the embryonic and post-embryonic functions of the hox gene Scr in Periplaneta as a way of better understanding the roles of this gene in the evolution of insect body plans. During embryogenesis, Scr function is strictly limited to the head with no role in the prothorax. This indicates that the ancestral embryonic function of Scr was likely restricted to the head, and that the posterior expansion of expression in the T1 legs may have preceded any apparent gain of function during evolution. In addition, Scr plays a pivotal role in the formation of the dorsal ridge, a structure that separates the head and thorax in all insects. This is evidenced by the presence of a supernumerary segment that occurs between the labial and T1 segments of RNAiScr first nymphs and is attributed to an alteration in engrailed (en) expression. The fact that similar Scr phenotypes are observed in Tribolium but not in Drosophila or Oncopeltus reveals the presence of lineage-specific variation in the genetic architecture that controls the formation of the dorsal ridge. In direct contrast to the embryonic roles, Scr has no function in the head region during post-embryogenesis in Periplaneta, and instead, strictly acts to provide identity to the T1 segment. Furthermore, the strongest Periplaneta RNAiScr phenotypes develop ectopic wing-like tissue that originates from the posterior region of the prothoracic segment. This finding provides a novel insight into the current debate on the morphological origin of insect wings.
Collapse
Affiliation(s)
- Steven Hrycaj
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
27
|
Posnien N, Bashasab F, Bucher G. The insect upper lip (labrum) is a nonsegmental appendage-like structure. Evol Dev 2009; 11:480-8. [DOI: 10.1111/j.1525-142x.2009.00356.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Du X, Yue C, Hua B. Embryonic development of the scorpionflyPanorpa emarginataCheng with special reference to external morphology (Mecoptera: Panorpidae). J Morphol 2009; 270:984-95. [DOI: 10.1002/jmor.10736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Economou AD, Telford MJ. Comparative gene expression in the heads of Drosophila melanogaster and Tribolium castaneum and the segmental affinity of the Drosophila hypopharyngeal lobes. Evol Dev 2009; 11:88-96. [PMID: 19196336 DOI: 10.1111/j.1525-142x.2008.00305.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila melanogaster has long played an important role in debates surrounding insect and arthropod head segmentation. It is surprising, therefore, that one important feature of Drosophila head segmentation has remained controversial: namely the position of the boundary between the intercalary and mandibular segments. The Drosophila embryonic head has a pair of structures lying behind the stomodeum known as the hypopharyngeal lobes. Traditionally they have been seen as part of the intercalary segment. More recent work looking at the position of the lobes relative to various marker genes has been somewhat equivocal: segment polarity gene expression has been used to argue for a mandibular affinity of these lobes, while the expression of the anterior-most hox gene labial (lab) has supported an intercalary affinity. We have addressed the question of the segmental affinity of the hypopharyngeal lobes by conducting a detailed comparison of gene expression patterns between Drosophila and the red flour beetle Tribolium castaneum, in which the intercalary segment is unambiguously marked out by lab. We demonstrate that there is a large degree of conservation in gene expression patterns between Drosophila and Tribolium, and this argues against an intercalary segment affinity for the hypopharyngeal lobes. The lobes appear to be largely mandibular in origin, although some gene expression attributed to them appears to be associated with the stomodeum. We propose that the difficulties in interpreting the Drosophila head result from a topological shift in the Drosophila embryonic head, associated with the derived process of head involution.
Collapse
Affiliation(s)
- Andrew D Economou
- Research Department of Genetics, Evolution and Environment, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
30
|
Bitsch J, Bitsch C. The tritocerebrum and the clypeolabrum in mandibulate arthropods: segmental interpretations. ACTA ZOOL-STOCKHOLM 2009. [DOI: 10.1111/j.1463-6395.2009.00402.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Hrycaj S, Mihajlovic M, Mahfooz N, Couso JP, Popadić A. RNAi analysis of nubbin embryonic functions in a hemimetabolous insect, Oncopeltus fasciatus. Evol Dev 2008; 10:705-16. [DOI: 10.1111/j.1525-142x.2008.00284.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Barmina O, Kopp A. Sex-specific expression of a HOX gene associated with rapid morphological evolution. Dev Biol 2007; 311:277-86. [PMID: 17868668 DOI: 10.1016/j.ydbio.2007.07.030] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 07/21/2007] [Indexed: 11/16/2022]
Abstract
Animal diversity is shaped by the origin and diversification of new morphological structures. Many examples of evolutionary innovations are provided by male-specific traits involved in mating and sexual selection. The origin of new sex-specific characters requires the evolution of new regulatory interactions between sex-determining genes and genes that control spatial patterning and cell differentiation. Here, we show that sex-specific regulation of the HOX gene Sex combs reduced (Scr) is associated with the origin and evolution of the Drosophila sex comb - a novel and rapidly diversifying male-specific organ. In species that primitively lack sex combs, Scr expression shows little spatial modulation, whereas in species that have sex combs, Scr is upregulated in the presumptive sex comb region and is frequently sexually dimorphic. Phylogenetic analysis shows that sex-specific regulation of Scr has been gained and lost multiple times in Drosophila evolution and correlates with convergent origin of similar sex comb morphologies in several independent lineages. Some of these transitions occurred on microevolutionary timescales, indicating that HOX gene expression can evolve with surprising ease. This is the first example of a sex-specific regulation of a HOX gene contributing to the development and evolution of a secondary sexual trait.
Collapse
Affiliation(s)
- Olga Barmina
- Section of Evolution and Ecology, University of California-Davis, One Shields Ave., Davis, CA 95616, USA
| | | |
Collapse
|
33
|
Wolff C, Scholtz G. Cell lineage analysis of the mandibular segment of the amphipod Orchestia cavimana reveals that the crustacean paragnaths are sternal outgrowths and not limbs. Front Zool 2006; 3:19. [PMID: 17144925 PMCID: PMC1702535 DOI: 10.1186/1742-9994-3-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 12/04/2006] [Indexed: 11/23/2022] Open
Abstract
The question of arthropod head segmentation has become one of the central issues in Evolutionary Developmental Biology. The number of theories pertaining to head segments progressively enlarges, old concepts have been revitalized, and nearly every conceivable composition of the arthropod head has at some point received discussion. One contentious issue involves a characteristic mouthpart in crustaceans – the lower lips or the so-called paragnaths. The paragnaths build the posterior border of the mouth region antagonistic to the upper lip – the labrum. We show here the development of the appendage-like structures in the mandibular region of the amphipod crustacean Orchestia cavimana at a high level of cellular resolution. The embryos are examined during development of the mouthparts using in vivo labeling. An invariant cell division pattern of the mandibular segment was detected by 4D-microscopy and a preliminary model for pattern of the first cleavages in the mandibular region created. With this indispensable precondition single ectodermal cells of the grid-like pattern were labeled with DiI – a lipophilic fluorescent dye – to trace cell lineages and determine the clonal composition of the developing mouthparts, especially the mandibular segment. From our data it is evident that the paragnaths are sternal outgrowths of the mandible segment. The assumption of the limb nature of paragnaths and the presence of an additional head segment between the mandibular and the second antennal segments are clearly refuted by our data. Our results show the power of cell lineage and clonal analyses for inferences on the nature, origin and thus homology of morphological structures. With this kind of investigation morphological and gene expression data can be complemented. We discuss notable similarities of paragnath anlagen to those of the hypopharynx complex in myriapods and hexapods. The fact that both structures grow out as two lateral buds in the same region of the mandibular sternite during development, and their important role in the formation of the feeding apparatus as a highly specialized chewing chamber in adults of crustaceans, myriapods, and hexapods argue for the paragnaths/hypopharynx anlagen being an additional potential apomorphy of Mandibulata.
Collapse
Affiliation(s)
- Carsten Wolff
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstr. 13, 10115 Berlin, Germany
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
34
|
Scholtz G, Edgecombe GD. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 2006; 216:395-415. [PMID: 16816969 DOI: 10.1007/s00427-006-0085-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 05/01/2006] [Indexed: 11/27/2022]
Abstract
Understanding the head is one of the great challenges in the fields of comparative anatomy, developmental biology, and palaeontology of arthropods. Numerous conflicting views and interpretations are based on an enormous variety of descriptive and experimental approaches. The interpretation of the head influences views on phylogenetic relationships within the Arthropoda as well as outgroup relationships. Here, we review current hypotheses about head segmentation and the nature of head structures from various perspectives, which we try to combine to gain a deeper understanding of the arthropod head. Though discussion about arthropod heads shows some progress, unquestioned concepts (e.g., a presegmental acron) are still a source of bias. Several interpretations are no longer tenable based on recent results from comparative molecular developmental studies, improved morphological investigations, and new fossils. Current data indicate that the anterior arthropod head comprises three elements: the protocerebral/ocular region, the deutocerebral/antennal/cheliceral segment, and the tritocerebral/pedipalpal/second antennal/intercalary segment. The labrum and the mouth are part of the protocerebral/ocular region. Whether the labrum derives from a former pair of limbs remains an open question, but a majority of data support its broad homology across the Euarthropoda. From the alignment of head segments between onychophorans and euarthropods, we develop the concept of "primary" and "secondary antennae" in Recent and fossil arthropods, posit that "primary antennae" are retained in some fossil euarthropods below the crown group level, and propose that Trilobita are stem lineage representatives of the Mandibulata.
Collapse
Affiliation(s)
- Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstrasse 13, 10115 Berlin, Germany.
| | | |
Collapse
|
35
|
Angelini DR, Kaufman TC. Insect appendages and comparative ontogenetics. Dev Biol 2005; 286:57-77. [PMID: 16112665 DOI: 10.1016/j.ydbio.2005.07.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 06/23/2005] [Accepted: 07/12/2005] [Indexed: 11/30/2022]
Abstract
It is arguable that the evolutionary and ecological success of insects is due in large part to the versatility of their articulated appendages. Recent advances in our understanding of appendage development in Drosophila melanogaster, as well as functional and expression studies in other insect species have begun to frame the general themes of appendage development in the insects. Here, we review current studies that provide for a comparison of limb developmental mechanisms acting at five levels: (1) the specification of ventral appendage primordia; (2) specification of the limb axes; (3) regulation and interactions of genes expressed in specific domains of the proximal-distal axis, such as Distal-less; (4) the specification of appendage identity; and (5) genetic regulation of appendage allometry.
Collapse
Affiliation(s)
- David R Angelini
- Department of Biology, Indiana University, 1001 E. Third St., Bloomington, IN 47405-7005, USA
| | | |
Collapse
|
36
|
Parthasarathy R, Gopinathan KP. Comparative analysis of the development of the mandibular salivary glands and the labial silk glands in the mulberry silkworm, Bombyx mori. Gene Expr Patterns 2005; 5:323-39. [PMID: 15661638 DOI: 10.1016/j.modgep.2004.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2004] [Revised: 10/13/2004] [Accepted: 10/18/2004] [Indexed: 11/20/2022]
Abstract
The mulberry silkworm, Bombyx mori has a pair of salivary glands arising from the mandibular segment, in addition to the labial silk glands which are generally considered as modified salivary glands. Here we report the characterization of salivary glands and the comparative gene expression profiling of the silk and salivary glands. The two independent salivary glands made up by 330 cells, grow about 1000 fold during larval development. These individual glands extend up to the T(1) thoracic segment unlike silk glands with fused anterior ends and extending up to the caudal region. The salivary glands also undergo endomitosis resembling the silk glands. The B. mori homologue of the homeotic gene Deformed (BmDfd) was expressed in the mandibular and maxillary segments in stage 17 embryo and got localized to the centre of the mandibular segment at stage 18 to form the salivary gland placodes. The expression was also seen in the distal ends of the leg appendages after blastokinesis (stage 22). Only low variations in BmDfd expression ranging from 1.6 to 2.1 fold were apparent during embryonic development. BmDfd expression was observed in the salivary glands all through the larval instars but not in the silk glands. The transcription factor, Forkhead and the segment polarity gene, Wingless were expressed throughout the salivary glands, the latter confirming the absence of physiological compartmentation within these glands unlike the silk glands. The expression of Amylase and Fibrohexamerin was restricted to the salivary and silk glands, respectively and therefore, served as molecular markers for these tissues.
Collapse
Affiliation(s)
- R Parthasarathy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
37
|
Abstract
Previous studies have shown that the gene nubbin (nub) exhibits large differences in expression patterns between major groups of arthropods. This led us to hypothesize that nub may have evolved roles that are unique to particular arthropod lineages. However, in insects, nub has been studied only in Drosophila. To further explore its role in insects in general, we analyzed nub expression patterns in three hemimetabolous insect groups: zygentomans (Thermobia domestica, firebrat), dyctiopterans (Periplaneta americana, cockroach), and hemipterans (Oncopeltus fasciatus, milkweed bug). We discovered three major findings. First, observed nub patterns in the ventral central nervous system ectoderm represent a synapomorphy (shared derived feature) that is not present in other arthropods. Furthermore, each of the analyzed insects exhibits a species-specific nub expression in the central nervous system. Second, recruitment of nub for a role in leg segmentation occurred early during insect evolution. Subsequently, in some insect lineages (cockroaches and flies), this original role was expanded to include joints between all the leg segments. Third, the nub expression in the head region shows a coordinated change in association with particular mouthpart morphology. This suggests that nub has also gained an important role in the morphological diversification of insect mouthparts. Overall, the obtained data reveal an extraordinary dynamic and diverse pattern of nub evolution that has not been observed previously for other developmental genes.
Collapse
Affiliation(s)
- Hua Li
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
38
|
Herke SW, Serio NV, Rogers BT. Functional analyses of tiptop and antennapedia in the embryonic development of Oncopeltus fasciatus suggests an evolutionary pathway from ground state to insect legs. Development 2004; 132:27-34. [PMID: 15563520 DOI: 10.1242/dev.01561] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In insects, selector genes are thought to modify the development of a default, or 'ground state', appendage into a tagma-specific appendage such as a mouthpart, antenna or leg. In the best described example, Drosophila melanogaster, the primary determination of leg identity is thought to result from regulatory interactions between the Hox genes and the antennal-specifying gene homothorax. Based on RNA-interference, a functional analysis of the selector gene tiptop and the Hox gene Antennapedia in Oncopeltus fasciatus embryogenesis is presented. It is shown that, in O. fasciatus, tiptop is required for the segmentation of distal leg segments and is required to specify the identity of the leg. The distal portions of legs with reduced tiptop develop like antennae. Thus, tiptop can act as a regulatory switch that chooses between antennal and leg identity. By contrast, Antennapedia does not act as a switch between leg and antennal identity. This observation suggests a significant difference in the mechanism of leg specification between O. fasciatus and D. melanogaster. These observations also suggest a significant plasticity in the mechanism of leg specification during insect evolution that is greater than would have been expected based on strictly morphological or molecular comparisons. Finally, it is proposed that a tiptop-like activity is a likely component of an ancestral leg specification mechanism. Incorporating a tiptop-like activity into a model of the leg-specification mechanism explains several mutant phenotypes, previously described in D. melanogaster, and suggests a mechanism for the evolution of legs from a ground state.
Collapse
Affiliation(s)
- Scott W Herke
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
39
|
Abstract
I review how both the parasegmental and segmental frames are used in constructing the body plan of the arthropods. The parasegment is the primary genetic unit, as shown by Hox gene expression, and the parasegmental design is maintained in the nerve cord. It is, however, not maintained in the epidermis, where the cuticle grooves are segmental, and in the musculature, which is segmental in organisation. This frame shift is reflected in the sensory and motor nerve connections between the ganglia and the periphery. I suggest that the need for movement in an organism equipped with a hard exoskeleton was the functional constraint that shaped this apparently complex mode of development.
Collapse
Affiliation(s)
- Jean S Deutsch
- Equipe Evolution et Développement, CNRS et Universite P et M Curie, 9 quai St-Bernard, case 24, 75252 Paris cedex 05.
| |
Collapse
|
40
|
Liu PZ, Kaufman TC. Kruppel is a gap gene in the intermediate germband insect Oncopeltus fasciatus and is required for development of both blastoderm and germband-derived segments. Development 2004; 131:4567-79. [PMID: 15342481 DOI: 10.1242/dev.01311] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Segmentation in long germband insects such as Drosophila occurs essentially simultaneously across the entire body. A cascade of segmentation genes patterns the embryo along its anterior-posterior axis via subdivision of the blastoderm. This is in contrast to short and intermediate germband modes of segmentation where the anterior segments are formed during the blastoderm stage and the remaining posterior segments arise at later stages from a posterior growth zone. The biphasic character of segment generation in short and intermediate germ insects implies that different formative mechanisms may be operating in blastoderm-derived and germband-derived segments. In Drosophila, the gap gene Krüppel is required for proper formation of the central portion of the embryo. This domain of Krüppel activity in Drosophila corresponds to a region that in short and intermediate germband insects spans both blastoderm and germband-derived segments. We have cloned the Krüppel homolog from the milkweed bug, Oncopeltus fasciatus (Hemiptera, Lygaeidae), an intermediate germband insect. We find that Oncopeltus Krüppel is expressed in a gap-like domain in the thorax during the blastoderm and germband stages of embryogenesis. In order to investigate the function of Krüppel in Oncopeltus segmentation, we generated knockdown phenotypes using RNAi. Loss of Krüppel activity in Oncopeltus results in a large gap phenotype, with loss of the mesothoracic through fourth abdominal segments. Additionally, we find that Krüppel is required to suppress both anterior and posterior Hox gene expression in the central portion of the germband. Our results show that Krüppel is required for both blastoderm-derived and germband-derived segments and indicate that Krüppel function is largely conserved in Oncopeltus and Drosophila despite their divergent embryogenesis.
Collapse
Affiliation(s)
- Paul Z Liu
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington IN, 47405, USA
| | | |
Collapse
|
41
|
Hughes CL, Liu PZ, Kaufman TC. Expression patterns of the rogue Hox genes Hox3/zen and fushi tarazu in the apterygote insect Thermobia domestica. Evol Dev 2004; 6:393-401. [PMID: 15509221 DOI: 10.1111/j.1525-142x.2004.04048.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many embryonic patterning genes are remarkably conserved between vertebrates and invertebrates, and the Hox genes are paradigmatic examples of this conservation. Yet even Hox genes can change dramatically in evolution. Two genes in particular--Hox3 and fushi tarazu--lost their ancestral roles as homeotic genes and play very different developmental roles in the fruit fly Drosophila melanogaster. The Drosophila Hox3 homologs zerknullt and bicoid act in extraembryonic tissues and in establishment of the anteroposterior axis, respectively, whereas fushi tarazu acts in segmentation and neurogenesis. It would be valuable to know what mechanisms allowed Hox3 and ftz to abandon their ancestral roles as homeotic genes and take on new roles. To explore the evolutionary transition of these genes, we analyzed their expression in a primitive insect, the firebrat Thermobia domestica. The expression patterns seem to represent a stage of evolution intermediate between the ancestral state seen in basal arthropods and the derived expression patterns in Drosophila. These expression data help us to narrow the period in which the gene transitions took place. Hox3 appears to have evolved directly into zen within the insects, whereas ftz seems to have adopted the expression patterns of a segmentation and neurogenesis gene earlier in the mandibulate arthropods.
Collapse
Affiliation(s)
- Cynthia L Hughes
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
42
|
Giorgianni MW, Patel NH. Patterning of the branched head appendages in Schistocerca americana and Tribolium castaneum. Evol Dev 2004; 6:402-10. [PMID: 15509222 DOI: 10.1111/j.1525-142x.2004.04049.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Much of our understanding of arthropod limb development comes from studies on the leg imaginal disc of Drosophila melanogaster. The fly limb is a relatively simple unbranched (uniramous) structure extending out from the body wall. The molecular basis for this outgrowth involves the overlap of two signaling molecules, Decapentaplegic (Dpp) and Wingless (Wg), to create a single domain of distal outgrowth, clearly depicted by the expression of the Distal-less gene (Dll). The expression of wg and dpp during the development of other arthropod thoracic limbs indicates that these pathways might be conserved across arthropods for uniramous limb development. The appendages of crustaceans and the gnathal appendages of insects, however, exhibit a diverse array of morphologies, ranging from those with no distal elements, such as the mandible, to appendages with multiple distal elements. Examples of the latter group include branched appendages or those that possess multiple lobes; such complex morphologies are seen for many crustacean limbs as well as the maxillary and labial appendages of many insects. It is unclear how, if at all, the known patterning genes for making a uniramous limb might be deployed to generate these diverse appendage forms. Experiments in Drosophila have shown that by forcing ectopic overlaps of Wg and Dpp signaling it is possible to generate artificially branched legs. To test whether naturally branched appendages form in a similar manner, we detailed the expression patterns of wg, dpp, and Dll in the development of the branched gnathal appendages of the grasshopper, Schistocerca americana, and the flour beetle, Tribolium castaneum. We find that the branches of the gnathal appendages are not specified through the redeployment of the Wg-Dpp system for distal outgrowth, but our comparative studies do suggest a role for Dpp in forming furrows between tissues.
Collapse
Affiliation(s)
- Matt W Giorgianni
- Committee on Developmental Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
43
|
Jockusch EL, Ober KA. Hypothesis Testing in Evolutionary Developmental Biology: A Case Study from Insect Wings. J Hered 2004; 95:382-96. [PMID: 15388766 DOI: 10.1093/jhered/esh064] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Developmental data have the potential to give novel insights into morphological evolution. Because developmental data are time-consuming to obtain, support for hypotheses often rests on data from only a few distantly related species. Similarities between these distantly related species are parsimoniously inferred to represent ancestral aspects of development. However, with limited taxon sampling, ancestral similarities in developmental patterning can be difficult to distinguish from similarities that result from convergent co-option of developmental networks, which appears to be common in developmental evolution. Using a case study from insect wings, we discuss how these competing explanations for similarity can be evaluated. Two kinds of developmental data have recently been used to support the hypothesis that insect wings evolved by modification of limb branches that were present in ancestral arthropods. This support rests on the assumption that aspects of wing development in Drosophila, including similarities to crustacean epipod patterning, are ancestral for winged insects. Testing this assumption requires comparisons of wing development in Drosophila and other winged insects. Here we review data that bear on this assumption, including new data on the functions of wingless and decapentaplegic during appendage allocation in the red flour beetle Tribolium castaneum.
Collapse
Affiliation(s)
- E L Jockusch
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., U-3043, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
44
|
Angelini DR, Kaufman TC. Functional analyses in the hemipteran Oncopeltus fasciatus reveal conserved and derived aspects of appendage patterning in insects. Dev Biol 2004; 271:306-21. [PMID: 15223336 DOI: 10.1016/j.ydbio.2004.04.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 04/01/2004] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
The conservation of expression of appendage patterning genes, particularly Distal-less, has been shown in a wide taxonomic sampling of animals. However, the functional significance of this expression has been tested in only a few organisms. Here we report functional analyses of orthologues of the genes Distal-less, dachshund, and homothorax in the appendages of the milkweed bug Oncopeltus fasciatus (Hemiptera). This hemimetabolous insect has typical legs but highly derived mouthparts. Distal-less, dachshund, and homothorax are conserved in their individual expression patterns and functions in the legs of Oncopeltus, but their functions in other appendages are in some cases divergent. We find that specification of antennal identity does not require wild-type Distal-less activity in Oncopeltus as it does in Drosophila. Additionally, the mouthparts of Oncopeltus show novel patterns of gene expression and function, relative to other insects. Expression of Distal-less in the maxillary stylets of Oncopeltus does not seem necessary for proper development of this appendage, while dachshund and homothorax are crucial for formation of the mandibular and maxillary stylets. These data are used to evaluate hypotheses for the evolution of hemipteran mouthparts and the evolution of developmental mechanisms in insect appendages in general.
Collapse
Affiliation(s)
- David R Angelini
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA
| | | |
Collapse
|
45
|
Williams DL. Oral biology and disease in invertebrates. Vet Clin North Am Exot Anim Pract 2003; 6:459-65. [PMID: 14534968 DOI: 10.1016/s1094-9194(03)00015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It is hoped that this article has shown some of the amazing breadth of research into invertebrate mouthpart anatomy, development and pathology, and its relation to important disease processes that impinge on fields as diverse as environmental toxicology and antimalarial therapeutics, while also highlighting the need for further study in this field.
Collapse
Affiliation(s)
- David L Williams
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK.
| |
Collapse
|
46
|
DeCamillis M, ffrench-Constant R. Proboscipedia represses distal signaling in the embryonic gnathal limb fields of Tribolium castaneum. Dev Genes Evol 2003; 213:55-64. [PMID: 12632174 DOI: 10.1007/s00427-002-0291-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Accepted: 10/30/2002] [Indexed: 11/26/2022]
Abstract
Orthologs of the Hox genes Sex combs reduced ( Scr) and proboscipedia ( pd) are active in the developing labial appendages of all insect species tested. The remarkable variation among insect gnathal structures, particularly in the distal podomeres, suggests two Hox genes may enhance the adaptive potential of gnathal appendage morphology. Functional studies in the fruitfly Drosophila melanogaster, the flour beetle Tribolium castaneum and the milkweed bug Oncopeltus fasciatus show that cooperation between Scr and pb has been generally conserved, but specific mechanisms have been altered during evolution. Cross-regulation of pb by Scr is evident in Drosophila and Tribolium, the more closely related of the three species, but not in Oncopeltus. In all three species, pb function is restricted to the distal podomeres, but details are only known for Drosophila and Oncopeltus, two species exhibiting specialized stylate-haustellate mouthparts. Drosophila pb is required for distal Scr expression, and to repress the appendage patterning genes dachshund and Distal-less ( Dll). Oncopeltus pb has the novel capacity to specify leg fates. Little is known about distal functions of Tribolium pb. Hypomorphic mutations of the Tribolium pb ortholog maxillopedia can be arranged in a graded phenotypic series of palp to leg transformations along both the proximodistal and dorsoventral axes. Mid-embryonic expression profiles of Tribolium pb, Scr, wingless ( wg) and Dll genes were examined in maxillopedia hypomorphic and null mutant backgrounds. Levels of pb and Scr are significantly reduced in the distal appendage field. Tribolium pb therefore positively regulates distal Scr expression, a role that it has in common with Drosophila pb. Tribolium wg is normally down-regulated in the distal domain of the embryonic gnathal appendage buds. It becomes activated distally in maxillopedia hypomorphs. Repression of wg by pb has not been reported in the labial imaginal discs of Drosophila. Alterations of Tribolium Scr and wg expression occur in Dll-expressing cells, however, unlike in Drosophila labial imaginal discs, Dll expression appears unaffected in pb hypomorphic backgrounds. We conclude that the Hox genes Sex combs reduced and proboscipedia control an appendage organizer and cell autonomous fate determination during embryonic labial palp development in Tribolium.
Collapse
Affiliation(s)
- Mark DeCamillis
- Biology Department, Beloit College, 700 College Street, Beloit, WI 53511, USA.
| | | |
Collapse
|
47
|
Abstract
In recent years researchers have analyzed the expression patterns of the Hox genes in a multitude of arthropod species, with the hope of understanding the mechanisms at work in the evolution of the arthropod body plan. Now, with Hox expression data representing all four major groups of arthropods (chelicerates, myriapods, crustaceans, and insects), it seems appropriate to summarize the results and take stock of what has been learned. In this review we summarize the expression and functional data regarding the 10 arthropod Hox genes: labial proboscipedia, Hox3/zen, Deformed, Sex combs reduced, fushi tarazu, Antennapedia, Ultrabithorax, abdominal-A, and Abdominal-B. In addition, we discuss mechanisms of developmental evolutionary change thought to be important for the emergence of novel morphological features within the arthropods.
Collapse
Affiliation(s)
- Cynthia L Hughes
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
48
|
Abstract
The Anopheles gambiae genome sequence, coupled with the Drosophila melanogaster genome sequence, provides a better understanding of the insects, a group that contains our friends, foes, and competitors.
Collapse
Affiliation(s)
- Thomas C Kaufman
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
49
|
Hughes CL, Kaufman TC. Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development 2002; 129:1225-38. [PMID: 11874918 DOI: 10.1242/dev.129.5.1225] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The diversity of the arthropod body plan has long been a fascinating subject of study. A flurry of recent research has analyzed Hox gene expression in various arthropod groups, with hopes of gaining insight into the mechanisms that underlie their evolution. The Hox genes have been analyzed in insects, crustaceans and chelicerates. However, the expression patterns of the Hox genes have not yet been comprehensively analyzed in a myriapod. We present the expression patterns of the ten Hox genes in a centipede, Lithobius atkinsoni, and compare our results to those from studies in other arthropods. We have three major findings. First, we find that Hox gene expression is remarkably dynamic across the arthropods. The expression patterns of the Hox genes in the centipede are in many cases intermediate between those of the chelicerates and those of the insects and crustaceans, consistent with the proposed intermediate phylogenetic position of the Myriapoda. Second, we found two ‘extra’ Hox genes in the centipede compared with those in Drosophila. Based on its pattern of expression, Hox3 appears to have a typical Hox-like role in the centipede, suggesting that the novel functions of the Hox3 homologs zen and bicoid were adopted somewhere in the crustacean-insect clade. In the centipede, the expression of the gene fushi tarazu suggests that it has both a Hox-like role (as in the mite), as well as a role in segmentation (as in insects). This suggests that this dramatic change in function was achieved via a multifunctional intermediate, a condition maintained in the centipede. Last, we found that Hox expression correlates with tagmatic boundaries, consistent with the theory that changes in Hox genes had a major role in evolution of the arthropod body plan.
Collapse
Affiliation(s)
- Cynthia L Hughes
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|