1
|
Feys O, De Tiège X. From cryogenic to on-scalp magnetoencephalography for the evaluation of paediatric epilepsy. Dev Med Child Neurol 2024; 66:298-306. [PMID: 37421175 DOI: 10.1111/dmcn.15689] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Magnetoencephalography (MEG) is a neurophysiological technique based on the detection of brain magnetic fields. Whole-head MEG systems typically house a few hundred sensors requiring cryogenic cooling in a rigid one-size-fits-all (commonly adult-sized) helmet to keep a thermal insulation space. This leads to an increased brain-to-sensor distance in children, because of their smaller head circumference, and decreased signal-to-noise ratio. MEG allows detection and localization of interictal and ictal epileptiform discharges, and pathological high frequency oscillations, as a part of the presurgical assessment of children with refractory focal epilepsy, where electroencephalography is not contributive. MEG can also map the eloquent cortex before surgical resection. MEG also provides insights into the physiopathology of both generalized and focal epilepsy. On-scalp recordings based on cryogenic-free sensors have demonstrated their use in the field of childhood focal epilepsy and should become a reference technique for diagnosing epilepsy in the paediatric population. WHAT THIS PAPER ADDS: Magnetoencephalography (MEG) contributes to the diagnosis and understanding of paediatric epilepsy. On-scalp MEG recordings demonstrate some advantages over cryogenic MEG.
Collapse
Affiliation(s)
- Odile Feys
- Department of Neurology, Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Bruxelles, Belgium
- Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, Université libre de Bruxelles, ULB Neuroscience Institute, Bruxelles, Belgium
| | - Xavier De Tiège
- Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, Université libre de Bruxelles, ULB Neuroscience Institute, Bruxelles, Belgium
- Department of Translational Neuroimaging, Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Bruxelles, Belgium
| |
Collapse
|
2
|
Katagiri M, Wang ZI, Hirfanoglu T, Aldosari MM, Aung T, Wang S, Kobayashi K, Bulacio J, Bingaman W, Najm IM, Alexopoulos AV, Burgess RC. Clinical significance of ictal magnetoencephalography in patients undergoing epilepsy surgery. Clin Neurophysiol 2023; 145:108-118. [PMID: 36443170 DOI: 10.1016/j.clinph.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The significance of ictal magnetoencephalography (MEG) is not well appreciated. We evaluated the relationships between ictal MEG, MRI, intracranial electroencephalography (ICEEG), surgery and postoperative seizure outcome. METHODS A total of 45 patients (46 cases) with ictal MEG who underwent epilepsy surgery was included. We examined the localization of each modality, surgical resection area and seizure freedom after surgery. RESULTS Twenty-one (45.7%) out of 46 cases were seizure-free at more than 6 months follow-up. Median duration of postoperative follow-up was 16.5 months. The patients in whom ictal, interictal single equivalent current dipole (SECD) and MRI lesion localization were completely included in the resection had a higher chance of being seizure-free significantly (p < 0.05). Concordance between ictal and interictal SECD localizations was significantly associated with seizure-freedom. Concordance between MRI lesion and ictal SECD, concordance between ictal ICEEG and ictal and interictal SECD, as well as concordance between ictal ICEEG and MRI lesion were significantly associated with seizure freedom. CONCLUSIONS Ictal MEG can contribute useful information for delineating the resection area in epilepsy surgery. SIGNIFICANCE Resection should include ictal, interictal SECDs and MRI lesion localization, when feasible. Concordant ictal and interictal SECDs on MEG can be a favorable predictor of seizure freedom.
Collapse
Affiliation(s)
- Masaya Katagiri
- Epilepsy Center, Cleveland Clinic, OH, USA; Department of Neurosurgery, Graduate School of Medicine, Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Tugba Hirfanoglu
- Epilepsy Center, Cleveland Clinic, OH, USA; Department of Pediatric Neurology, Gazi University School of Medicine, Ankara, Turkey
| | - Mubarak M Aldosari
- Epilepsy Center, Cleveland Clinic, OH, USA; Epilepsy Program, National Neurosciences Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Thandar Aung
- Epilepsy Center, Cleveland Clinic, OH, USA; Comprehensive Epilepsy Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shan Wang
- Epilepsy Center, Cleveland Clinic, OH, USA; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Katsuya Kobayashi
- Epilepsy Center, Cleveland Clinic, OH, USA; Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
3
|
Miyazaki T, Takayama Y, Iwasaki M, Hatano M, Nakajima W, Ikegaya N, Yamamoto T, Tsuchimoto S, Kato H, Takahashi T. OUP accepted manuscript. Brain Commun 2022; 4:fcac023. [PMID: 35415605 PMCID: PMC8994107 DOI: 10.1093/braincomms/fcac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/11/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Presurgical identification of the epileptogenic zone is a critical determinant of seizure control following surgical resection in epilepsy. Excitatory glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor is a major component of neurotransmission. Although elevated α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor levels are observed in surgically resected brain areas of patients with epilepsy, it remains unclear whether increased α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-mediated currents initiate epileptic discharges. We have recently developed the first PET tracer for α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor, [11C]K-2, to visualize and quantify the density of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors in living human brains. Here, we detected elevated [11C]K-2 uptake in the epileptogenic temporal lobe of patients with mesial temporal lobe epilepsy. Brain areas with high [11C]K-2 uptake are closely colocalized with the location of equivalent current dipoles estimated by magnetoencephalography or with seizure onset zones detected by intracranial electroencephalogram. These results suggest that epileptic discharges initiate from brain areas with increased α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, providing a biological basis for epileptic discharges and an additional non-invasive option to identify the epileptogenic zone in patients with mesial temporal lobe epilepsy.
Collapse
Affiliation(s)
- Tomoyuki Miyazaki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Mai Hatano
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Waki Nakajima
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Naoki Ikegaya
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Shohei Tsuchimoto
- Division of System Neuroscience, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Hiroki Kato
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Takuya Takahashi
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Correspondence to: Takuya Takahashi Department of Physiology, Yokohama City University Graduate School of Medicine Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan E-mail:
| |
Collapse
|
4
|
Laohathai C, Ebersole JS, Mosher JC, Bagić AI, Sumida A, Von Allmen G, Funke ME. Practical Fundamentals of Clinical MEG Interpretation in Epilepsy. Front Neurol 2021; 12:722986. [PMID: 34721261 PMCID: PMC8551575 DOI: 10.3389/fneur.2021.722986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
Magnetoencephalography (MEG) is a neurophysiologic test that offers a functional localization of epileptic sources in patients considered for epilepsy surgery. The understanding of clinical MEG concepts, and the interpretation of these clinical studies, are very involving processes that demand both clinical and procedural expertise. One of the major obstacles in acquiring necessary proficiency is the scarcity of fundamental clinical literature. To fill this knowledge gap, this review aims to explain the basic practical concepts of clinical MEG relevant to epilepsy with an emphasis on single equivalent dipole (sECD), which is one the most clinically validated and ubiquitously used source localization method, and illustrate and explain the regional topology and source dynamics relevant for clinical interpretation of MEG-EEG.
Collapse
Affiliation(s)
- Christopher Laohathai
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
- Department of Neurology, Saint Louis University, Saint Louis, MO, United States
| | - John S. Ebersole
- Northeast Regional Epilepsy Group, Atlantic Health Neuroscience Institute, Summit, NJ, United States
| | - John C. Mosher
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Anto I. Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| | - Ai Sumida
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Gretchen Von Allmen
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Michael E. Funke
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
| |
Collapse
|
5
|
Ricci L, Tamilia E, Alhilani M, Alter A, Scott Perry Μ, Madsen JR, Peters JM, Pearl PL, Papadelis C. Source imaging of seizure onset predicts surgical outcome in pediatric epilepsy. Clin Neurophysiol 2021; 132:1622-1635. [PMID: 34034087 PMCID: PMC8202024 DOI: 10.1016/j.clinph.2021.03.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/08/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Objective: To assess whether ictal electric source imaging (ESI) on low-density scalp EEG can approximate the seizure onset zone (SOZ) location and predict surgical outcome in children with refractory epilepsy undergoing surgery. Methods: We examined 35 children with refractory epilepsy. We dichotomized surgical outcome into seizure- and non-seizure-free. We identified ictal onsets recorded with scalp and intracranial EEG and localized them using equivalent current dipoles and standardized low-resolution magnetic tomography (sLORETA). We estimated the localization accuracy of scalp EEG as distance of scalp dipoles from intracranial dipoles. We also calculated the distances of scalp dipoles from resection, as well as their resection percentage and compared between seizure-free and non-seizure-free patients. We built receiver operating characteristic curves to test whether resection percentage predicted outcome. Results: Resection distance was lower in seizure-free patients for both dipoles (p = 0.006) and sLORETA (p = 0.04). Resection percentage predicted outcome with a sensitivity of 57.1% (95% CI, 34–78.2%), a specificity of 85.7% (95% CI, 57.2–98.2%) and an accuracy of 68.6% (95% CI, 50.7–83.5%) (p = 0.01). Conclusion: Ictal ESI performed on low-density scalp EEG can delineate the SOZ and predict outcome. Significance: Such an application may increase the number of children who are referred for epilepsy surgery and improve their outcome.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Eleonora Tamilia
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michel Alhilani
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; The Hillingdon Hospital NHS Foundation Trust, London, UK
| | - Aliza Alter
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Μ Scott Perry
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA; School of Medicine, Texas Christian University and University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
6
|
Tanoue Y, Uda T, Hoshi H, Shigihara Y, Kawashima T, Nakajo K, Tsuyuguchi N, Goto T. Specific Oscillatory Power Changes and Their Efficacy for Determining Laterality in Mesial Temporal Lobe Epilepsy: A Magnetoencephalographic Study. Front Neurol 2021; 12:617291. [PMID: 33633670 PMCID: PMC7900569 DOI: 10.3389/fneur.2021.617291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/21/2021] [Indexed: 01/22/2023] Open
Abstract
Appropriate determination of the epileptic focus and its laterality are important for the diagnosis of mesial temporal lobe epilepsy (MTLE). The aims of this study are to establish a specific oscillatory distribution and laterality of the oscillatory power in unilateral MTLE with frequency analysis of magnetoencephalography (MEG), and to confirm their potential to carry significant information for determining lateralization of the epileptic focus. Thirty-five patients with MTLE [left (LtMTLE), 16; right (RtMTLE), 19] and 102 healthy control volunteers (CTR) were enrolled. Cortical oscillatory powers were compared among the groups by contrasting the source images using a one-way ANOVA model for each frequency band. Further, to compare the lateralization of regional oscillatory powers between LtMTLEs and RtMTLEs, the laterality index (LI) was calculated for four brain regions (frontal, temporal, parietal, and occipital) in each frequency band, which were compared between patient groups (LtMTLE, RtMTLE, and CTR), and used for machine learning prediction of the groups with support vector machine (SVM) with linear kernel function. Significant oscillatory power differences between MTLE and CTR were found in certain areas. In the theta to high-frequency oscillation bands, there were marked increases in the parietal lobe, especially on the left side, in LtMTLE. In the theta, alpha, and high-gamma bands, there were marked increases in the parietal lobe, especially on the right side in RtMTLE. Compared with CTR, LIs were significantly higher in 24/28 regions in LtMTLE, but lower in 4/28 regions and higher in 10/28 regions in RtMTLE. LI at the temporal lobe in the theta band was significantly higher in LtMTLE and significantly lower in RtMTLE. Comparing LtMTLE and RtMTLE, there were significant LI differences in most regions and frequencies (21/28 regions). In all frequency bands, there were significant differences between LtMTLE and RtMTLE in the temporal and parietal lobes. The leave-one-out cross-validation of the linear-SVM showed the classification accuracy to be over 91%, where the model had high specificity over 96% and mild sensitivity ~68–75%. Using MEG frequency analysis, the characteristics of the oscillatory power distribution in the MTLE were demonstrated. Compared with CTR, LIs shifted to the side of the epileptic focus in the temporal lobe in the theta band. The machine learning approach also confirmed that LIs have significant predictive ability in the lateralization of the epileptic focus. These results provide useful additional information for determining the laterality of the focus.
Collapse
Affiliation(s)
- Yuta Tanoue
- Department of Neurosurgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Takehiro Uda
- Department of Neurosurgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro City, Japan
| | - Yoshihito Shigihara
- Precision Medicine Centre, Hokuto Hospital, Obihiro City, Japan.,Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan
| | - Toshiyuki Kawashima
- Department of Neurosurgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kosuke Nakajo
- Department of Neurosurgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Naohiro Tsuyuguchi
- Department of Neurosurgery, Graduate School of Medicine, Osaka City University, Osaka, Japan.,Department of Neurosurgery, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Takeo Goto
- Department of Neurosurgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
7
|
Alhilani M, Tamilia E, Ricci L, Ricci L, Grant PE, Madsen JR, Pearl PL, Papadelis C. Ictal and interictal source imaging on intracranial EEG predicts epilepsy surgery outcome in children with focal cortical dysplasia. Clin Neurophysiol 2020; 131:734-743. [PMID: 32007920 DOI: 10.1016/j.clinph.2019.12.408] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/12/2019] [Accepted: 12/04/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To localize the seizure onset zone (SOZ) and irritative zone (IZ) using electric source imaging (ESI) on intracranial EEG (iEEG) and assess their clinical value in predicting epilepsy surgery outcome in children with focal cortical dysplasia (FCD). METHODS We analyzed iEEG data from 25 children with FCD-associated medically refractory epilepsy (MRE) who underwent surgery. We performed ESI on ictal onset to localize SOZ (ESI-SOZ) and on interictal discharges to localize IZ (ESI-IZ). We tested whether resection of ESI-SOZ and ESI-IZ predicted good surgical outcome (Engel 1). We further compared the prediction performance of ESI-SOZ and ESI-IZ to those of SOZ and IZ defined using conventional methods, i.e. by identifying iEEG-contacts showing ictal onsets (conventional-SOZ) or being the most interictally active (conventional-IZ). RESULTS The proximity of ESI-SOZ (p = 0.043, odds-ratio = 3.9) and ESI-IZ (p = 0.011, odds-ratio = 7.04) to resection has higher effect on patients' outcome than proximity of conventional-SOZ (p = 0.17, odds-ratio = 1.7) and conventional-IZ (p = 0.038, odds-ratio = 2.6). Resection of ESI-SOZ and ESI-IZ presented higher discriminative power in predicting outcome (68% and 60%) than conventional-SOZ and conventional-IZ (48% and 53%). CONCLUSIONS Localizing SOZ and IZ via ESI on iEEG offers higher predictive value compared to conventional-iEEG interpretation. SIGNIFICANCE iEEG-ESI may help surgical planning and facilitate prognostic assessment of children with FCD-associated MRE.
Collapse
Affiliation(s)
- Michel Alhilani
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; The Hillingdon Hospital NHS Foundation Trust, London, UK
| | - Eleonora Tamilia
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lorenzo Ricci
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Laura Ricci
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
8
|
Scherg M, Berg P, Nakasato N, Beniczky S. Taking the EEG Back Into the Brain: The Power of Multiple Discrete Sources. Front Neurol 2019; 10:855. [PMID: 31481921 PMCID: PMC6710389 DOI: 10.3389/fneur.2019.00855] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
Background: In contrast to many neuroimaging modalities, clinical interpretation of EEG does not take advantage of post-processing and digital signal analysis. In most centers, EEG is still interpreted at sensor level, exactly as half a century ago. A major task in clinical EEG interpretation is the identification of interictal epileptiform discharges (IEDs). However, due to the overlap of background activity, IEDs can be hard to detect in the scalp EEG. Since traditional montages, like bipolar and average reference, are linear transformations of the recorded channels, the question is whether we can provide linear transformations of the digital EEG to take it back into the brain, at least on a macroscopic level. The goal is to improve visibility of epileptiform activities and to separate out most of the overlap. Methods: Multiple discrete sources provide a stable linear inverse to transform the EEG into source space with little cross-talk between source regions. The model can be based on a few dipoles or regional sources, adapted to the individual EEG and MRI data, or on selected standard sources evenly distributed throughout the brain, e.g. below the 25 EEG standard electrodes. Results: Auditory and somatosensory evoked potentials serve as teaching examples to show how various source spaces can reveal the underlying source components including their loss or alteration due to lesions. Source spaces were able to reveal the propagation of source activities in frontal IEDs and the sequential activation of the major nodes of the underlying epileptic network in myoclonic epilepsy. The power of multiple discrete sources in separating the activities of different brain regions was also evident in the ongoing EEG of cases with frontal cortical dysplasia and bitemporal lobe epilepsy. The new source space 25 made IEDs more clearly visible over the EEG background signals. The more focal nature of source vs. scalp space was quantitatively confirmed using a new measurement of focality. Conclusion: Multiple discrete sources have the power to transform the EEG back into the brain by defining new EEG traces in source space. Using standard source space 25, these can provide for improved clinical interpretation of EEG.
Collapse
Affiliation(s)
| | - Patrick Berg
- Research Department, BESA GmbH, Gräfelfing, Germany
| | | | - Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Mouthaan BE, Rados M, Boon P, Carrette E, Diehl B, Jung J, Kimiskidis V, Kobulashvili T, Kuchukhidze G, Larsson PG, Leitinger M, Ryvlin P, Rugg-Gunn F, Seeck M, Vulliémoz S, Huiskamp G, Leijten FSS, Van Eijsden P, Trinka E, Braun KPJ. Diagnostic accuracy of interictal source imaging in presurgical epilepsy evaluation: A systematic review from the E-PILEPSY consortium. Clin Neurophysiol 2019; 130:845-855. [PMID: 30824202 DOI: 10.1016/j.clinph.2018.12.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/16/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Interictal high resolution (HR-) electric source imaging (ESI) and magnetic source imaging (MSI) are non-invasive tools to aid epileptogenic zone localization in epilepsy surgery candidates. We carried out a systematic review on the diagnostic accuracy and quality of evidence of these modalities. METHODS Embase, Pubmed and the Cochrane database were searched on 13 February 2017. Diagnostic accuracy studies taking post-surgical seizure outcome as reference standard were selected. Quality appraisal was based on the QUADAS-2 framework. RESULTS Eleven studies were included: eight MSI (n = 267), three HR-ESI (n = 127) studies. None was free from bias. This mostly involved: selection of operated patients only, interference of source imaging with surgical decision, and exclusion of indeterminate results. Summary sensitivity and specificity estimates were 82% (95% CI: 75-88%) and 53% (95% CI: 37-68%) for overall source imaging, with no statistical difference between MSI and HR-ESI. Specificity is higher when partially concordant results were included as non-concordant (p < 0.05). Inclusion of indeterminate test results as non-concordant lowered sensitivity (p < 0.05). CONCLUSIONS Source imaging has a relatively high sensitivity but low specificity for identification of the epileptogenic zone. SIGNIFICANCE We need higher quality studies allowing unbiased test evaluation to determine the added value and diagnostic accuracy of source imaging in the presurgical workup of refractory focal epilepsy.
Collapse
Affiliation(s)
- Brian E Mouthaan
- Department of (Child) Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, PO Box 85090, 3508 AB Utrecht, The Netherlands
| | - Matea Rados
- Department of (Child) Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, PO Box 85090, 3508 AB Utrecht, The Netherlands
| | - Paul Boon
- Reference Center for Refractory Epilepsy, Department of Neurology, Ghent University Hospital, Belgium
| | - Evelien Carrette
- Reference Center for Refractory Epilepsy, Department of Neurology, Ghent University Hospital, Belgium
| | - Beate Diehl
- National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, United Kingdom; Department of Clinical and Experimental Epilepsy, University College, London, UK
| | - Julien Jung
- Department of Functional Neurology and Epileptology, Institute of Epilepsies (IDEE), Hospices Civils de Lyon, Lyon, France
| | - Vasilios Kimiskidis
- Laboratory of Clinical Neurophysiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Teia Kobulashvili
- Department of Neurology, Christian-Doppler University Hospital, Paracelsus Medical University, and Centre for Cognitive Neuroscience, Salzburg, Austria
| | - Giorgi Kuchukhidze
- Department of Neurology, Christian-Doppler University Hospital, Paracelsus Medical University, and Centre for Cognitive Neuroscience, Salzburg, Austria
| | - Pål G Larsson
- Department of Neurosurgery, Clinic of Surgery and Neuroscience, Oslo University Hospital, Norway
| | - Markus Leitinger
- Department of Neurology, Christian-Doppler University Hospital, Paracelsus Medical University, and Centre for Cognitive Neuroscience, Salzburg, Austria
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Fergus Rugg-Gunn
- National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, United Kingdom; Department of Clinical and Experimental Epilepsy, University College, London, UK
| | - Margitta Seeck
- EEG and Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Switzerland
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Switzerland
| | - Geertjan Huiskamp
- Department of (Child) Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, PO Box 85090, 3508 AB Utrecht, The Netherlands
| | - Frans S S Leijten
- Department of (Child) Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, PO Box 85090, 3508 AB Utrecht, The Netherlands
| | - Pieter Van Eijsden
- Department of (Child) Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, PO Box 85090, 3508 AB Utrecht, The Netherlands
| | - Eugen Trinka
- Department of Neurology, Christian-Doppler University Hospital, Paracelsus Medical University, and Centre for Cognitive Neuroscience, Salzburg, Austria; Institute of Public Health, Medical Decision Making and HTA, UMIT, Private University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria
| | - Kees P J Braun
- Department of (Child) Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, PO Box 85090, 3508 AB Utrecht, The Netherlands.
| | | |
Collapse
|
10
|
Tamilia E, AlHilani M, Tanaka N, Tsuboyama M, Peters JM, Grant PE, Madsen JR, Stufflebeam SM, Pearl PL, Papadelis C. Assessing the localization accuracy and clinical utility of electric and magnetic source imaging in children with epilepsy. Clin Neurophysiol 2019; 130:491-504. [PMID: 30771726 DOI: 10.1016/j.clinph.2019.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the accuracy and clinical utility of conventional 21-channel EEG (conv-EEG), 72-channel high-density EEG (HD-EEG) and 306-channel MEG in localizing interictal epileptiform discharges (IEDs). METHODS Twenty-four children who underwent epilepsy surgery were studied. IEDs on conv-EEG, HD-EEG, MEG and intracranial EEG (iEEG) were localized using equivalent current dipoles and dynamical statistical parametric mapping (dSPM). We compared the localization error (ELoc) with respect to the ground-truth Irritative Zone (IZ), defined by iEEG sources, between non-invasive modalities and the distance from resection (Dres) between good- (Engel 1) and poor-outcomes. For each patient, we estimated the resection percentage of IED sources and tested whether it predicted outcome. RESULTS MEG presented lower ELoc than HD-EEG and conv-EEG. For all modalities, Dres was shorter in good-outcome than poor-outcome patients, but only the resection percentage of the ground-truth IZ and MEG-IZ predicted surgical outcome. CONCLUSIONS MEG localizes the IZ more accurately than conv-EEG and HD-EEG. MSI may help the presurgical evaluation in terms of patient's outcome prediction. The promising clinical value of ESI for both conv-EEG and HD-EEG prompts the use of higher-density EEG-systems to possibly achieve MEG performance. SIGNIFICANCE Localizing the IZ non-invasively with MSI/ESI facilitates presurgical evaluation and surgical prognosis assessment.
Collapse
Affiliation(s)
- Eleonora Tamilia
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michel AlHilani
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Naoaki Tanaka
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Sapporo Neuroimaging Research Group, Sapporo, Japan
| | - Melissa Tsuboyama
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Murakami H, Wang ZI, Marashly A, Krishnan B, Prayson RA, Kakisaka Y, Mosher JC, Bulacio J, Gonzalez-Martinez JA, Bingaman WE, Najm IM, Burgess RC, Alexopoulos AV. Correlating magnetoencephalography to stereo-electroencephalography in patients undergoing epilepsy surgery. Brain 2018; 139:2935-2947. [PMID: 27567464 DOI: 10.1093/brain/aww215] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/06/2016] [Indexed: 11/15/2022] Open
Affiliation(s)
- Hiroatsu Murakami
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan.,Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Zhong I Wang
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmad Marashly
- Department of Child Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Balu Krishnan
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Richard A Prayson
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Yosuke Kakisaka
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Japan
| | - John C Mosher
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Juan Bulacio
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Imad M Najm
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
12
|
|
13
|
Fuchs M, Kastner J, Tech R, Wagner M, Gasca F. MEG and EEG dipole clusters from extended cortical sources. Biomed Eng Lett 2017; 7:185-191. [PMID: 30603165 DOI: 10.1007/s13534-017-0019-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/06/2017] [Accepted: 02/11/2017] [Indexed: 11/26/2022] Open
Abstract
Data from magnetoencephalography (MEG) and electroencephalography (EEG) suffer from a rather limited signal-to-noise-ratio (SNR) due to cortical background activities and other artifacts. In order to study the effect of the SNR on the size and distribution of dipole clusters reconstructed from interictal epileptic spikes, we performed simulations using realistically shaped volume conductor models and extended cortical sources with different sensor configurations. Head models and cortical surfaces were derived from an averaged magnetic resonance image dataset (Montreal Neurological Institute). Extended sources were simulated by spherical patches with Gaussian current distributions on the folded cortical surface. Different patch sizes were used to investigate cancellation effects from opposing walls of sulcal foldings and to estimate corresponding changes in MEG and EEG sensitivity distributions. Finally, white noise was added to the simulated fields and equivalent current dipole reconstructions were performed to determine size and shape of the resulting dipole clusters. Neuronal currents are oriented perpendicular to the local cortical surface and show cancellation effects of source components on opposing sulcal walls. Since these mostly tangential aspects from large cortical patches cancel out, large extended sources exhibit more radial components in the head geometry. This effect has a larger impact on MEG data as compared to EEG, because in a spherical head model radial currents do not yield any magnetic field. Confidence volumes of single reconstructed dipoles from simulated data at different SNRs show a good correlation with the extension of clusters from repeated dipole reconstructions. Size and shape of dipole clusters reconstructed from extended cortical sources do not only depend on spike and timepoint selection, but also strongly on the SNR of the measured interictal MEG or EEG data. In a linear approximation the size of the clusters is proportional to the inverse SNR.
Collapse
Affiliation(s)
- Manfred Fuchs
- Compumedics Neuroscan GmbH, Heussweg 25, 20255 Hamburg, Germany
| | - Jörn Kastner
- Compumedics Neuroscan GmbH, Heussweg 25, 20255 Hamburg, Germany
| | - Reyko Tech
- Compumedics Neuroscan GmbH, Heussweg 25, 20255 Hamburg, Germany
| | - Michael Wagner
- Compumedics Neuroscan GmbH, Heussweg 25, 20255 Hamburg, Germany
| | - Fernando Gasca
- Compumedics Neuroscan GmbH, Heussweg 25, 20255 Hamburg, Germany
| |
Collapse
|
14
|
IWASAKI M, JIN K, NAKASATO N, TOMINAGA T. Non-invasive Evaluation for Epilepsy Surgery. Neurol Med Chir (Tokyo) 2016; 56:632-640. [PMID: 27627857 PMCID: PMC5066084 DOI: 10.2176/nmc.ra.2016-0186] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/29/2016] [Indexed: 12/02/2022] Open
Abstract
Epilepsy surgery is aimed to remove the brain tissues that are indispensable for generating patient's epileptic seizures. There are two purposes in the pre-operative evaluation: localization of the epileptogenic zone and localization of function. Surgery is planned to remove possible epileptogenic zone while preserving functional area. Since no single diagnostic modality is superior to others in identifying and localizing the epileptogenic zone, multiple non-invasive evaluations are performed to estimate the location of the epileptogenic zone after concordance between evaluations. Essential components of non-invasive pre-surgical evaluation of epilepsy include detailed clinical history, long-term video-electroencephalography monitoring, epilepsy-protocol magnetic resonance imaging (MRI), and neuropsychological testing. However, a significant portion of drug-resistant epilepsy is associated with no or subtle MRI lesions or with ambiguous electro-clinical signs. Additional evaluations including fluoro-deoxy glucose positron emission tomography (FDG-PET), magnetoencephalography and ictal single photon emission computed tomography can play critical roles in planning surgery. FDG-PET should be registered on three-dimensional MRI for better detection of focal cortical dysplasia. All diagnostic tools are complementary to each other in defining the epileptogenic zone, so that it is always important to reassess the data based on other results to pick up or confirm subtle abnormalities.
Collapse
Affiliation(s)
- Masaki IWASAKI
- Department of Neurosurgery, National Center Hospital of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazutaka JIN
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Nobukazu NAKASATO
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Teiji TOMINAGA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
15
|
Hamdy N, Khafagi A, Hassan E, Yehia M, Ismail M, Watanabe E. Long-term scalp video-electroencephalography monitoring in the presurgical evaluation of epilepsy surgery. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2016. [DOI: 10.4103/1110-1083.176370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Stylianou P, Hoffmann C, Blat I, Harnof S. Neuroimaging for patient selection for medial temporal lobe epilepsy surgery: Part 1 Structural neuroimaging. J Clin Neurosci 2015; 23:14-22. [PMID: 26362835 DOI: 10.1016/j.jocn.2015.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/27/2015] [Accepted: 04/05/2015] [Indexed: 11/19/2022]
Abstract
The objective of part one of this review is to present the structural neuroimaging techniques that are currently used to evaluate patients with temporal lobe epilepsy (TLE), and to discuss their potential to define patient eligibility for medial temporal lobe surgery. A PubMed query, using Medline and Embase, and subsequent review, was performed for all English language studies published after 1990, reporting neuroimaging methods for the evaluation of patients with TLE. The extracted data included demographic variables, population and study design, imaging methods, gold standard methods, imaging findings, surgical outcomes and conclusions. Overall, 56 papers were reviewed, including a total of 1517 patients. This review highlights the following structural neuroimaging techniques: MRI, diffusion-weighted imaging, tractography, electroencephalography and magnetoencephalography. The developments in neuroimaging during the last decades have led to remarkable improvements in surgical precision, postsurgical outcome, prognosis, and the rate of seizure control in patients with TLE. The use of multiple imaging methods provides improved outcomes, and further improvements will be possible with future studies of larger patient cohorts.
Collapse
Affiliation(s)
- Petros Stylianou
- Department of Neurosurgery, The Chaim Sheba Medical Center, Nissim Aloni 16, Tel Aviv-Yafo 62919, Israel.
| | - Chen Hoffmann
- Department of Radiology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Ilan Blat
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Sagi Harnof
- Department of Neurosurgery, The Chaim Sheba Medical Center, Nissim Aloni 16, Tel Aviv-Yafo 62919, Israel
| |
Collapse
|
17
|
Almubarak S, Alexopoulos A, Von-Podewils F, Wang ZI, Kakisaka Y, Mosher JC, Bulacio J, González-Martínez J, Bingaman W, Burgess RC. The correlation of magnetoencephalography to intracranial EEG in localizing the epileptogenic zone: A study of the surgical resection outcome. Epilepsy Res 2014; 108:1581-90. [DOI: 10.1016/j.eplepsyres.2014.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/20/2014] [Accepted: 08/21/2014] [Indexed: 11/27/2022]
|
18
|
Tanaka N, Peters JM, Prohl AK, Takaya S, Madsen JR, Bourgeois BF, Dworetzky BA, Hämäläinen MS, Stufflebeam SM. Clinical value of magnetoencephalographic spike propagation represented by spatiotemporal source analysis: correlation with surgical outcome. Epilepsy Res 2013; 108:280-8. [PMID: 24315019 DOI: 10.1016/j.eplepsyres.2013.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/05/2013] [Accepted: 11/03/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the correlation between spike propagation represented by spatiotemporal source analysis of magnetoencephalographic (MEG) spikes and surgical outcome in patients with temporal lobe epilepsy. METHODS Thirty-seven patients were divided into mesial (n=27) and non-mesial (n=10) groups based on the presurgical evaluation. In each patient, ten ipsilateral spikes were averaged, and spatiotemporal source maps of the averaged spike were obtained by using minimum norm estimate. Regions of interest (ROIs) were created including temporoparietal, inferior frontal, mesial temporal, anterior and posterior part of the lateral temporal cortex. We extracted activation values from the source maps and the threshold was set at half of the maximum activation at the peak latency. The leading and propagated areas of the spike were defined as those ROIs with activation reaching the threshold at the earliest and at the peak latencies, respectively. Surgical outcome was assessed based on Engel's classification. Binary variables were created from leading areas (restricted to the anterior and mesial temporal ROIs or not) and from propagation areas (involving the temporoparietal ROI or not), and for surgical outcome (Class I or not). Fisher's exact test was used for significance testing. RESULTS In total and mesial group, restricted anterior/mesial temporal leading areas were correlated with Class I (p<0.05). Temporoparietal propagation was correlated with Class II-IV (p<0.05). For the non-mesial group, no significant relation was found. CONCLUSIONS Spike propagation patterns represented by spatiotemporal source analysis of MEG spikes may provide useful information for prognostic implication in presurgical evaluation of epilepsy.
Collapse
Affiliation(s)
- Naoaki Tanaka
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA.
| | - Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Anna K Prohl
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shigetoshi Takaya
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Blaise F Bourgeois
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Barbara A Dworetzky
- Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA
| |
Collapse
|
19
|
Wennberg R, Cheyne D. Reliability of MEG source imaging of anterior temporal spikes: analysis of an intracranially characterized spike focus. Clin Neurophysiol 2013; 125:903-18. [PMID: 24210513 DOI: 10.1016/j.clinph.2013.08.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 07/28/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To assess the reliability of MEG source imaging (MSI) of anterior temporal spikes through detailed analysis of the localization and orientation of source solutions obtained for a large number of spikes that were separately confirmed by intracranial EEG to be focally generated within a single, well-characterized spike focus. METHODS MSI was performed on 64 identical right anterior temporal spikes from an anterolateral temporal neocortical spike focus. The effects of different volume conductors (sphere and realistic head model), removal of noise with low frequency filters (LFFs) and averaging multiple spikes were assessed in terms of the reliability of the source solutions. RESULTS MSI of single spikes resulted in scattered dipole source solutions that showed reasonable reliability for localization at the lobar level, but only for solutions with a goodness-of-fit exceeding 80% using a LFF of 3 Hz. Reliability at a finer level of intralobar localization was limited. Spike averaging significantly improved the reliability of source solutions and averaging 8 or more spikes reduced dependency on goodness-of-fit and data filtering. CONCLUSIONS MSI performed on topographically identical individual spikes from an intracranially defined classical anterior temporal lobe spike focus was limited by low reliability (i.e., scattered source solutions) in terms of fine, sublobar localization within the ipsilateral temporal lobe. Spike averaging significantly improved reliability. SIGNIFICANCE MSI performed on individual anterior temporal spikes is limited by low reliability. Reduction of background noise through spike averaging significantly improves the reliability of MSI solutions.
Collapse
Affiliation(s)
- Richard Wennberg
- Krembil Neuroscience Centre, Division of Neurology, Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada.
| | - Douglas Cheyne
- Program in Neurosciences and Mental Health, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
20
|
Kim H, Kankirawatana P, Killen J, Harrison A, Oh A, Rozzelle C, Blount J, Knowlton R. Magnetic source imaging (MSI) in children with neocortical epilepsy: Surgical outcome association with 3D post-resection analysis. Epilepsy Res 2013; 106:164-72. [DOI: 10.1016/j.eplepsyres.2013.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/27/2013] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
|
21
|
|
22
|
Uda T, Tsuyuguchi N, Okumura E, Sakamoto S, Morino M, Nagata T, Ikeda H, Kunihiro N, Takami T, Ohata K. sLORETA-qm for interictal MEG epileptic spike analysis: Comparison of location and quantity with equivalent dipole estimation. Clin Neurophysiol 2012; 123:1496-501. [PMID: 22296839 DOI: 10.1016/j.clinph.2011.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/05/2011] [Accepted: 12/14/2011] [Indexed: 11/30/2022]
Affiliation(s)
- T Uda
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bercovici E, Kumar BS, Mirsattari SM. Neocortical temporal lobe epilepsy. EPILEPSY RESEARCH AND TREATMENT 2012; 2012:103160. [PMID: 22953057 PMCID: PMC3420667 DOI: 10.1155/2012/103160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 01/04/2012] [Accepted: 05/22/2012] [Indexed: 01/15/2023]
Abstract
Complex partial seizures (CPSs) can present with various semiologies, while mesial temporal lobe epilepsy (mTLE) is a well-recognized cause of CPS, neocortical temporal lobe epilepsy (nTLE) albeit being less common is increasingly recognized as separate disease entity. Differentiating the two remains a challenge for epileptologists as many symptoms overlap due to reciprocal connections between the neocortical and the mesial temporal regions. Various studies have attempted to correctly localize the seizure focus in nTLE as patients with this disorder may benefit from surgery. While earlier work predicted poor outcomes in this population, recent work challenges those ideas yielding good outcomes in part due to better localization using improved anatomical and functional techniques. This paper provides a comprehensive review of the diagnostic workup, particularly the application of recent advances in electroencephalography and functional brain imaging, in neocortical temporal lobe epilepsy.
Collapse
Affiliation(s)
- Eduard Bercovici
- Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Balagobal Santosh Kumar
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Seyed M. Mirsattari
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
- Department of Medical Imaging, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Department of Psychology, University of Western Ontario, London, ON, Canada
- London Health Sciences Centre, B10-110, London, ON, Canada N6A 5A5
| |
Collapse
|
24
|
American Clinical Magnetoencephalography Society Clinical Practice Guideline 1: recording and analysis of spontaneous cerebral activity. J Clin Neurophysiol 2012; 28:348-54. [PMID: 21811121 DOI: 10.1097/wnp.0b013e3182272fed] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Ibrahim GM, Fallah A, Albert GW, Withers T, Otsubo H, Ochi A, Akiyama T, Donner EJ, Weiss S, Snead OC, Drake JM, Rutka JT. Occipital lobe epilepsy in children: Characterization, evaluation and surgical outcomes. Epilepsy Res 2012; 99:335-45. [DOI: 10.1016/j.eplepsyres.2011.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/26/2011] [Accepted: 12/26/2011] [Indexed: 11/26/2022]
|
26
|
Park HM, Nakasato N, Tominaga T. Localization of Abnormal Discharges Causing Insular Epilepsy by Magnetoencephalography. TOHOKU J EXP MED 2012; 226:207-11. [PMID: 22353789 DOI: 10.1620/tjem.226.207] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hyeon-Mi Park
- Department of Neurology, Gachon University Gil Hospital
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University Graduate School of Medicine
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine
| |
Collapse
|
27
|
Torres CV, Fallah A, Ibrahim GM, Cheshier S, Otsubo H, Ochi A, Chuang S, Snead OC, Holowka S, Rutka JT. The role of magnetoencephalography in children undergoing hemispherectomy. J Neurosurg Pediatr 2011; 8:575-83. [PMID: 22132915 DOI: 10.3171/2011.8.peds11128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Hemispherectomy is an established neurosurgical procedure for medication-resistant epilepsy in children. Despite the effectiveness of this technique, there are patients who do not achieve an optimum outcome after surgery; possible causes of suboptimal results include the presence of bilateral independent epileptogenic foci. Magnetoencephalography (MEG) is an emerging tool that has been found to be useful in the management of lesional and nonlesional epilepsy. The authors analyzed the relative contribution of MEG in patient selection for hemispherectomy. METHODS The medical records of children undergoing hemispherectomy at the Hospital for Sick Children were reviewed. Those patients who underwent MEG as part of the presurgical evaluation were selected. RESULTS Thirteen patients were included in the study. Nine patients were boys. The mean age at the time of surgery was 66 months (range 10-149 months). Seizure etiology was Rasmussen encephalitis in 6 patients, hemimegalencephaly in 2 patients, and cortical dysplasia in 4 patients. In 8 patients, video-EEG and MEG results were consistent to localize the primary epileptogenic hemisphere. In 2 patients, video-EEG lateralized the ictal onset, but MEG showed bilateral spikes. Two patients had bilateral video-EEG and MEG spikes. Engel Class I, II, and IV outcomes were seen in 10, 2, and 1 patients, respectively. In 2 of the patients who had an outcome other than Engel Class I, the MEG clusters were concentrated in the disconnected hemisphere. The third patient had bilateral clusters and potentially independent epileptogenic foci from bilateral cortical dysplasia. CONCLUSIONS The presence of unilateral MEG spike waves correlated with good outcomes following hemispherectomy. In some cases, MEG provides information that differs from that obtained from video-EEG and conventional MR imaging studies. Further studies with a greater number of patients are needed to assess the role of MEG in the preoperative assessment of candidates for hemispherectomy.
Collapse
Affiliation(s)
- Cristina V Torres
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Funke ME, Moore K, Orrison Jr WW, Lewine JD. The role of magnetoencephalography in “nonlesional” epilepsy. Epilepsia 2011; 52 Suppl 4:10-4. [DOI: 10.1111/j.1528-1167.2011.03144.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Carrette E, Op de Beeck M, Bourguignon M, Boon P, Vonck K, Legros B, Goldman S, Van Bogaert P, De Tiège X. Recording temporal lobe epileptic activity with MEG in a light-weight magnetic shield. Seizure 2011; 20:414-8. [DOI: 10.1016/j.seizure.2011.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022] Open
|
30
|
Heers M, Rampp S, Kaltenhäuser M, Kasper BS, Doelken MT, Stefan H. Monofocal MEG in lesional TLE: Does video EEG monitoring add crucial information? Epilepsy Res 2010; 92:54-62. [DOI: 10.1016/j.eplepsyres.2010.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/08/2010] [Accepted: 08/15/2010] [Indexed: 11/27/2022]
|
31
|
Localization and propagation analysis of ictal source rhythm by electrocorticography. Neuroimage 2010; 52:1279-88. [DOI: 10.1016/j.neuroimage.2010.04.240] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/09/2010] [Accepted: 04/18/2010] [Indexed: 11/18/2022] Open
|
32
|
Increased spike frequency during general anesthesia with etomidate for magnetoencephalography in patients with focal epilepsies. Clin Neurophysiol 2010; 121:1220-6. [DOI: 10.1016/j.clinph.2010.02.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 12/30/2009] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
|
33
|
Shih JJ, Weisend MP, Sanders JA, Lee RR. Magnetoencephalographic and magnetic resonance spectroscopy evidence of regional functional abnormality in mesial temporal lobe epilepsy. Brain Topogr 2010; 23:368-74. [PMID: 20652828 DOI: 10.1007/s10548-010-0156-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 07/07/2010] [Indexed: 12/23/2022]
Abstract
Mesial temporal lobe epilepsy (mTLE) with mesial temporal sclerosis (MTS) is a recognized epilepsy syndrome which is successfully treated with mesial temporal lobe resection. However, recent studies suggest that mTLE is more than a "focal" disease process. The objective of our study was to determine the presence and extent of functional abnormalities outside of a defined structural abnormality in epilepsy patients with mTLE. We used a prospective age-matched controlled design to study eight consecutive patients with MTS who were undergoing epilepsy surgery evaluation. Magnetoencephalography was used to localize the sources of electromagnetic abnormality. Proton magnetic resonance spectroscopy ((1)H-MRS) measured integrated peak areas for N-acetyl compounds (NAA) and choline-containing compounds (Cho) to determine regions of metabolic abnormality. All eight subjects had predominant electromagnetic abnormality in the temporal lobe ipsilateral to the MTS. All eight subjects had lower NAA/Cho ratios in the region of electromagnetic abnormality when compared to the homologous contralateral region (P < 0.001). Four subjects had predominant MEG spiking outside the mesial temporal region. Surgery-free outcome for the group with neuroimaging abnormalities outside of the medial temporal lobe is 50%. The region of maximal electromagnetic abnormality is outside the hippocampus in some patients with mTLE. These regions also demonstrate functional abnormalities. Our findings support the concept that mTLE is a more diffuse process than the hippocampal structural abnormality, which may impact surgical outcome.
Collapse
Affiliation(s)
- Jerry J Shih
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | | | |
Collapse
|
34
|
Fukao K, Inoue Y, Yagi K. Magnetoencephalographic correlates of different types of aura in temporal lobe epilepsy. Epilepsia 2010; 51:1846-51. [DOI: 10.1111/j.1528-1167.2010.02655.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Reinsberger C, Tanaka N, Cole AJ, Lee JW, Dworetzky BA, Bromfield EB, Hamiwka L, Bourgeois BF, Golby AJ, Madsen JR, Stufflebeam SM. Current dipole orientation and distribution of epileptiform activity correlates with cortical thinning in left mesiotemporal epilepsy. Neuroimage 2010; 52:1238-42. [PMID: 20472073 DOI: 10.1016/j.neuroimage.2010.04.264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 04/16/2010] [Accepted: 04/28/2010] [Indexed: 11/28/2022] Open
Abstract
To evaluate cortical architecture in mesial temporal lobe epilepsy (MTLE) with respect to electrophysiology, we analyze both magnetic resonance imaging (MRI) and magnetoencephalography (MEG) in 19 patients with left MTLE. We divide the patients into two groups: 9 patients (Group A) have vertically oriented antero-medial equivalent current dipoles (ECDs). 10 patients (Group B) have ECDs that are diversely oriented and widely distributed. Group analysis of MRI data shows widespread cortical thinning in Group B compared with Group A, in the left hemisphere involving the cingulate, supramarginal, occipitotemporal and parahippocampal gyri, precuneus and parietal lobule, and in the right hemisphere involving the fronto-medial, -central and -basal gyri and the precuneus. These results suggest that regardless of the presence of hippocampal sclerosis, in a subgroup of patients with MTLE a large cortical network is affected. This finding may, in part, explain the unfavorable outcome in some MTLE patients after epilepsy surgery.
Collapse
Affiliation(s)
- Claus Reinsberger
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kaiboriboon K, Nagarajan S, Mantle M, Kirsch HE. Interictal MEG/MSI in intractable mesial temporal lobe epilepsy: spike yield and characterization. Clin Neurophysiol 2010; 121:325-31. [PMID: 20064741 PMCID: PMC2821956 DOI: 10.1016/j.clinph.2009.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 11/04/2009] [Accepted: 12/05/2009] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate the ability of MEG to detect medial temporal spikes in patients with known medial temporal lobe epilepsy (MTLE) and to use magnetic source imaging (MSI) with equivalent current dipoles to examine localization and orientation of spikes and their relation to surgical outcome. METHODS We prospectively obtained MSI on a total of 25 patients previously diagnosed with intractable MTLE. MEG was recorded with a 275 channel whole-head system with simultaneous 21-channel scalp EEG during inpatient admission one day prior to surgical resection. The patients' surgical outcomes were classified based on one-year follow-up after surgery. RESULTS Nineteen of the 22 patients (86.4%) had interictal spikes during the EEG and MEG recordings. Thirteen of 19 patients (68.4%) demonstrated unilateral temporal dipoles ipsilateral to the site of surgery. Among these patients, five (38.5%) patients had horizontal dipoles, one (7.7%) patient had vertical dipoles, and seven (53.8%) patients had both horizontal and vertical dipoles. Sixty percent of patients with non-localizing ictal scalp EEG had well-localized spikes on MSI ipsilateral to the side of surgery and 66.7% of patients with non-localizing MRI had well-localized spikes on MSI ipsilateral to the side of surgery. Concordance between MSI localization and the side of lobectomy was not associated with a likelihood of an excellent postsurgical outcome. CONCLUSIONS MSI can detect medial temporal spikes. It may provide important localizing information in patients with MTLE, especially when MRI and/or ictal scalp EEG are not localizing. SIGNIFICANCE This study demonstrates that MSI has a good ability to detect interictal spikes from mesial temporal structures.
Collapse
Affiliation(s)
- Kitti Kaiboriboon
- UCSF Epilepsy Center, Department of Neurology, University of California, San Francisco, CA
| | - Srikantan Nagarajan
- Biomagnetic Imaging Laboratory, Department of Radiology, University of California, San Francisco, CA
| | - Mary Mantle
- Biomagnetic Imaging Laboratory, Department of Radiology, University of California, San Francisco, CA
| | - Heidi E. Kirsch
- UCSF Epilepsy Center, Department of Neurology, University of California, San Francisco, CA
- Biomagnetic Imaging Laboratory, Department of Radiology, University of California, San Francisco, CA
| |
Collapse
|
37
|
Funke M, Constantino T, Van Orman C, Rodin E. Magnetoencephalography and magnetic source imaging in epilepsy. Clin EEG Neurosci 2009; 40:271-80. [PMID: 19780348 DOI: 10.1177/155005940904000409] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Magnetoencephalograpy (MEG) and Electroencephalography (EEG) provide physicians with complementary data and should not be regarded as mutually exclusive evaluative methods of cerebral activity. Relevant to this edition, MEG applications related to the surgical treatment of epilepsy will be discussed exclusively. Combined MEG/EEG data collection and analysis should be a routine diagnostic practice for patients who are still suffering seizures due to the failure of drug therapy. Clinicians in the field of epilepsy agree that a greater number of patients would benefit from surgery than are currently referred for pre-surgical evaluation. Regardless of age or presumed epilepsy syndrome, all patients deserve the possibility of living seizure-free through surgery. Technological advances in superconducting elements as well as the digital revolution were necessary for the development of MEG into a clinically valuable diagnostic tool. Compared to the examination of electrical activity of the brain, investigation into its magnetic concomitant is a more recent development. In MEG, cerebral magnetic activity is recorded using magnetometer or gradiometer whole-head systems. MEG spikes usually have a shorter duration and a steeper ascending slope than EEG spikes, and variable phase relationships to EEG. When co-registered spikes are compared, it is apparent that EEG and MEG spikes differ. There is agreement among investigators that more interictal epileptiform spikes are seen in MEG than EEG. When MEG is co-registered with invasive intracranial EEG data, the detection rate of interictal epileptiform discharges depends on the number of electrocorticographic channels that record a spike. When patients have a non-localizing video-EEG recording, MEG pinpoints the resected area in 58-72% of the cases.
Collapse
Affiliation(s)
- M Funke
- Department of Neurology, Primary Childrens Medical Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
38
|
American Clinical MEG Society (ACMEGS) Position Statement: The Value of Magnetoencephalography (MEG)/Magnetic Source Imaging (MSI) in Noninvasive Presurgical Evaluation of Patients With Medically Intractable Localization-related Epilepsy. J Clin Neurophysiol 2009; 26:290-3. [DOI: 10.1097/wnp.0b013e3181b49d50] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Knowlton RC, Razdan SN, Limdi N, Elgavish RA, Killen J, Blount J, Burneo JG, Ver Hoef L, Paige L, Faught E, Kankirawatana P, Bartolucci A, Riley K, Kuzniecky R. Effect of epilepsy magnetic source imaging on intracranial electrode placement. Ann Neurol 2009; 65:716-23. [PMID: 19557860 PMCID: PMC2729691 DOI: 10.1002/ana.21660] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Intracranial electroencephalography (ICEEG) with chronically implanted electrodes is a costly invasive diagnostic procedure that remains necessary for a large proportion of patients who undergo evaluation for epilepsy surgery. This study was designed to evaluate whether magnetic source imaging (MSI), a noninvasive test based on magnetoencephalography source localization, can supplement ICEEG by affecting electrode placement to improve sampling of the seizure onset zone(s). METHODS Of 298 consecutive epilepsy surgery candidates (between 2001 and 2006), 160 patients were prospectively enrolled by insufficient localization from seizure monitoring and magnetic resonance imaging results. Before presenting MSI results, decisions were made whether to proceed with ICEEG, and if so, where to place electrodes such that the hypothetical seizure-onset zone would be sampled. MSI results were then provided with allowance of changes to the original plan. RESULTS MSI indicated additional electrode coverage in 18 of 77 (23%) ICEEG cases. In 39% (95% confidence interval, 16.4-61.4), seizure-onset ICEEG patterns involved the additional electrodes indicated by MSI. Sixty-two patients underwent surgical resection based on ICEEG recording of seizures. Highly localized MSI was significantly associated with seizure-free outcome (mean, 3.4 years; minimum, >1 year) for the entire surgical population (n = 62). INTERPRETATION MSI spike localization increases the chance that the seizure-onset zone is sampled when patients undergo ICEEG for presurgical epilepsy evaluations. The clinical impact of this effect, improving diagnostic yield of ICEEG, should be considered in surgery candidates who do not have satisfactory indication of epilepsy localization from seizure semiology, electroencephalogram, and magnetic resonance imaging.
Collapse
Affiliation(s)
- Robert C Knowlton
- Epilepsy Center, Department of Neurology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL 35294-0001, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sakamoto S, Takami T, Tsuyuguchi N, Morino M, Ohata K, Inoue Y, Ide W, Hashimoto I, Kamada H, Tanaka H, Hara M. Prediction of seizure outcome following epilepsy surgery: Asymmetry of thalamic glucose metabolism and cerebral neural activity in temporal lobe epilepsy. Seizure 2009; 18:1-6. [DOI: 10.1016/j.seizure.2008.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 04/03/2008] [Accepted: 05/09/2008] [Indexed: 12/01/2022] Open
|
41
|
Recording epileptic activity with MEG in a light-weight magnetic shield. Epilepsy Res 2008; 82:227-31. [DOI: 10.1016/j.eplepsyres.2008.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/21/2008] [Accepted: 08/22/2008] [Indexed: 11/18/2022]
|
42
|
Lau M, Yam D, Burneo JG. Re: Epilepsy Res 2008;79(May (2–3)):97–104. Epilepsy Res 2008. [DOI: 10.1016/j.eplepsyres.2008.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Lewine JD. Commentary on Lau et al., 2008. A systematic review on MEG and its use in the presurgical evaluation of localization related epilepsy. Epilepsy Res 2008; 82:235-6; author reply 240-1. [DOI: 10.1016/j.eplepsyres.2008.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2008] [Indexed: 11/24/2022]
|
44
|
Sutherling WW, Mamelak AN, Thyerlei D, Maleeva T, Minazad Y, Philpott L, Lopez N. Influence of magnetic source imaging for planning intracranial EEG in epilepsy. Neurology 2008; 71:990-6. [PMID: 18809834 DOI: 10.1212/01.wnl.0000326591.29858.1a] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Magnetic source imaging (MSI) is used routinely in epilepsy presurgical evaluation and in mapping eloquent cortex for surgery. Despite increasing use, the diagnostic yield of MSI is uncertain, with reports varying from 5% to 35%. To add benefit, a diagnostic technique should influence decisions made from other tests, and that influence should yield better outcomes. We report preliminary results of an ongoing, long-term clinical study in epilepsy, where MSI changed surgical decisions. METHODS We determined whether MSI changed the surgical decision in a prospective, blinded, crossover-controlled, single-treatment, observational case series. Sixty-nine sequential patients diagnosed with partial epilepsy of suspected neocortical origin had video-EEG and imaging. All met criteria for intracranial EEG (ICEEG). At a surgical conference, a decision was made before and after presentation of MSI. Cases where MSI altered the decision were noted. RESULTS MSI gave nonredundant information in 23 patients (33%). MSI added ICEEG electrodes in 9 (13%) and changed the surgical decision in another 14 (20%). Based on MSI, 16 patients (23%) were scheduled for different ICEEG coverage. Twenty-eight have gone to ICEEG, 29 to resection, and 14 to vagal nerve stimulation, including 17 where MSI changed the decision. Additional electrodes in 4 patients covered the correct: hemisphere in 3, lobe in 3, and sublobar ictal onset zone in 1. MSI avoided contralateral electrodes in 2, who both localized on ICEEG. MSI added information to ICEEG in 1. CONCLUSION Magnetic source imaging (MSI) provided nonredundant information in 33% of patients. In those who have undergone surgery to date, MSI added useful information that changed treatment in 6 (9%), without increasing complications. MSI has benefited 21% who have gone to surgery.
Collapse
Affiliation(s)
- W W Sutherling
- Huntington Medical Research Institutes, 10 Pico, Pasadena, CA 91105, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Knowlton RC, Elgavish RA, Limdi N, Bartolucci A, Ojha B, Blount J, Burneo JG, Ver Hoef L, Paige L, Faught E, Kankirawatana P, Riley K, Kuzniecky R. Functional imaging: I. Relative predictive value of intracranial electroencephalography. Ann Neurol 2008; 64:25-34. [DOI: 10.1002/ana.21389] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Lau M, Yam D, Burneo J. A systematic review on MEG and its use in the presurgical evaluation of localization-related epilepsy. Epilepsy Res 2008; 79:97-104. [DOI: 10.1016/j.eplepsyres.2008.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 01/01/2008] [Accepted: 01/22/2008] [Indexed: 11/17/2022]
|
47
|
Imai K, Otsubo H, Sell E, Mohamed I, Ochi A, RamachandranNair R, Snead OC. MEG source estimation from mesio-basal temporal areas in a child with a porencephalic cyst. Acta Neurol Scand 2007; 116:263-7. [PMID: 17824907 DOI: 10.1111/j.1600-0404.2007.00866.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND A child whose left temporal lobe contained mesial, anterior and basal structures but lacked superio-lateral cortex had intractable epilepsy secondary to a porencephalic cyst. Magnetoencephalography (MEG) shows equivalent current dipoles (ECDs) as dipole modeling for temporal lobe epilepsy rather than in an exact location. AIM We hypothesized that the magnetic fields generated by the epileptic discharges in mesio-basal temporal areas could be detected by MEG without interference from the superio-lateral temporal cortices. METHODS We analyzed MEG spikes using single dipole analysis and synthetic aperture magnetometry (SAM), and compared with EEG spike topography. RESULTS Two MEG ECDs corresponding to T3 spikes localized to the anterior mesio-basal temporal region with vertical orientation. Sixteen MEG ECDs corresponding to T5 spikes localized to the middle to posterior mesio-basal temporal region with vertical orientation. SAM revealed maximum current density at hippocampus and anterior fusiform gyrus for T3 spikes, and at posterior hippocampus and fusiform gyrus for T5 spikes. CONCLUSION Vertically oriented ECDs were obtained without superio-lateral temporal cortices because of temporo-parieto-occipital porencephalic cyst. The absence of superio-lateral temporal cortices, prominent temporal EEG spikes, less prominent MEG spikes, and mesio-basal SAM spikes indicated that the vertically oriented ECDs were projected directly from the mesio-basal temporal region.
Collapse
Affiliation(s)
- K Imai
- Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW The surgical approach to nonlesional temporal lobe epilepsy presents a significant challenge due to uncertainties regarding the extent of resection necessary to result in a seizure-free state. To outline an optimum surgical strategy, an understanding of the clinical and diagnostic presentation of mesial and lateral temporal epilepsy is required in order to properly characterize the location of the ictal onset zone. This review focuses on several methods used to identify this ictal onset zone, with emphasis on the impact each modality has on surgical outcome. RECENT FINDINGS Factors predicting an excellent surgical outcome include the presence of a discrete zone of low voltage fast activity and prolonged propagation time on the electroencephalogram, and the absence of metabolic dysfunction in the contralateral temporal lobe. Identifying epileptogenic regions in the temporal lobe using magnetic source imaging is a recent technique that has also yielded promising surgical outcomes. Recent prospective studies have shown that a temporal neocortical resection is very effective in providing a seizure free outcome given strict localization of the ictal onset zone to the lateral temporal region, highlighting the need for accurate characterization of mesial versus lateral nonlesional epilepsy. SUMMARY With accurate identification of the ictal onset zone with intracranial electroencephalography, a tailored temporal resection can yield excellent surgical results.
Collapse
Affiliation(s)
- Deepak Madhavan
- New York University Comprehensive Epilepsy Center, New York, New York 10016, USA
| | | |
Collapse
|
49
|
Benifla M, Otsubo H, Ochi A, Weiss SK, Donner EJ, Shroff M, Chuang S, Hawkins C, Drake JM, Elliott I, Smith ML, Snead OC, Rutka JT. Temporal lobe surgery for intractable epilepsy in children: an analysis of outcomes in 126 children. Neurosurgery 2007; 59:1203-13; discussion 1213-4. [PMID: 17277683 DOI: 10.1227/01.neu.0000245615.32226.83] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Temporal lobectomy is a well-established neurosurgical procedure for temporal lobe epilepsy. In this study, we conducted a retrospective review of children with drug-resistant temporal lobe epilepsy to evaluate seizure outcome after temporal lobe surgery. METHODS We reviewed the medical records of 126 children who had surgery for temporal lobe epilepsy at The Hospital for Sick Children between 1983 and 2003. The records were examined for preoperative and intraoperative factors that could predict patient outcome after surgery. RESULTS The mean age at seizure onset was 5.9 years. The mean seizure duration before surgery was 5.6 years. All patients had preoperative computed tomographic scans, magnetic resonance imaging scans, or both. The mean age at the time of surgery was 13.5 years. Sixty-two patients underwent left temporal resections and 64 patients underwent right temporal resections. The histopathology of the temporal resections revealed low-grade brain tumors in 65 children (52%) and cavernous malformations in four children. Ganglioglioma and astrocytoma were the most common tumors encountered. Mesial temporal sclerosis was found in 16 patients (13%), astrogliosis in 15 patients (12%), and cortical dysplasia in eight patients (7%). Postoperative follow-up of at least 2 years was available for 106 patients and ranged up to 13.0 years. Seventy-four percent of patients had an Engel Class I or II outcome. Patients with temporal lobe lesions had better outcomes compared with those without lesions (P < 0.05). Patients without a history of secondary generalization of seizures also had a better outcome when compared with those with secondary generalization. Complications in the form of contralateral homonymous hemianopsia, dysphasia, and infection were found in 5% of patients. Twelve patients had a second temporal lobe procedure for intractable recurrent seizures. After a second procedure, seven patients returned to a seizure-free state. CONCLUSION Temporal lobe resections for epilepsy in children are effective and safe procedures, with a favorable impact on seizure control. Repeat temporal resections for recurrent seizures may also be effective in restoring a seizure-free outcome to children.
Collapse
Affiliation(s)
- Mony Benifla
- Division of Neurosurgery, The Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Benifla M, Otsubo H, Ochi A, Snead OC, Rutka JT. Multiple subpial transections in pediatric epilepsy: indications and outcomes. Childs Nerv Syst 2006; 22:992-8. [PMID: 16786370 DOI: 10.1007/s00381-006-0122-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Multiple subpial transection (MST) is a surgical technique mainly used when epileptiform activity arises from eloquent or functional brain cortex. In the medical literature, there are relatively few studies reporting the efficacy and safety of this procedure in adults and in children. We review the scientific rationale, the indications, and the results of this procedure. METHODS Neuroanatomic studies show that the basic functional cortical unit is arranged vertically, and epileptic activity spreads horizontally. Minimal cortical unit is essential for maintenance of cortical activity. Vertical incisions in the cortex interrupt transverse synaptic connections, preventing seizure propagation while preserving the vertical column subserving neuronal function. In the past, it has been difficult to assess the efficacy of MSTs per se, as they have usually been performed together with cortical resection or lesionectomy. After MSTs, studies show that 33-46% of treated children are in Engel class I or II. The permanent complication rate is low with no permanent language or motor disabilities. CONCLUSIONS MST is a safe procedure with unclear specific efficacy. It has been used mainly in conjunction with cortical resection or lesionectomy, when the eloquent cortex is involved in the seizure activity. Further prospective studies are needed to define the role of MST in epilepsy surgery.
Collapse
Affiliation(s)
- Mony Benifla
- Division of Neurosurgery, The Hospital for Sick Children, The University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | | | | | | | | |
Collapse
|