1
|
Fuentealba CR, Fiedler JL, Peralta FA, Avalos AM, Aguayo FI, Morgado-Gallardo KP, Aliaga EE. Region-Specific Reduction of BDNF Protein and Transcripts in the Hippocampus of Juvenile Rats Prenatally Treated With Sodium Valproate. Front Mol Neurosci 2019; 12:261. [PMID: 31787877 PMCID: PMC6853897 DOI: 10.3389/fnmol.2019.00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022] Open
Abstract
Autism is a neurodevelopmental disorder characterized by a deep deficit in language and social interaction, accompanied by restricted, stereotyped and repetitive behaviors. The use of genetic autism animal models has revealed that the alteration of the mechanisms controlling the formation and maturation of neural circuits are points of convergence for the physiopathological pathways in several types of autism. Brain Derived Neurotrophic Factor (BDNF), a key multifunctional regulator of brain development, has been related to autism in several ways. However, its precise role is still elusive, in part, due to its extremely complex posttranscriptional regulation. In order to contribute to this topic, we treated prenatal rats with Valproate, a well-validated model of autism, to analyze BDNF levels in the hippocampus of juvenile rats. Valproate-treated rats exhibited an autism-like behavioral profile, characterized by a deficit in social interaction, anxiety-like behavior and repetitive behavior. In situ hybridization (ISH) experiments revealed that Valproate reduced BDNF mRNA, especially long-3′UTR-containing transcripts, in specific areas of the dentate gyrus (DG) and CA3 regions. At the same time, Valproate reduced BDNF immunoreactivity in the suprapyramidal and lucidum layers of CA3, but improved hippocampus-dependent spatial learning. The molecular changes reported here may help to explain the cognitive and behavioral signs of autism and reinforce BDNF as a potential molecular target for this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Constanza R Fuentealba
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Jenny L Fiedler
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Francisco A Peralta
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Felipe I Aguayo
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Katherine P Morgado-Gallardo
- Department of Psychology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile.,The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Esteban E Aliaga
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile.,The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
2
|
Mizui T, Ishikawa Y, Kumanogoh H, Kojima M. Neurobiological actions by three distinct subtypes of brain-derived neurotrophic factor: Multi-ligand model of growth factor signaling. Pharmacol Res 2015; 105:93-8. [PMID: 26747403 DOI: 10.1016/j.phrs.2015.12.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 01/20/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most active members of the neurotrophin family. BDNF not only regulates neuronal survival and differentiation, but also functions in activity-dependent plasticity processes such as long-term potentiation (LTP), long-term depression (LTD), learning, and memory. Like other growth factors, BDNF is produced by molecular and cellular mechanisms including transcription and translation, and functions as a bioactive molecule in the nervous system. Among these mechanisms, a particular post-translational mechanism, namely the conversion of precursor BDNF into mature BDNF by proteolytic cleavage, was not fully understood. In this review, we discuss the manner through which this post-translational mechanism alters the biological actions of BDNF protein. In addition to the initially elucidated findings on BDNF, the biological roles of precursor BDNF and the BDNF pro-peptide, especially synaptic plasticity, will be extensively discussed. Recent findings on the BDNF pro-peptide will provide new insights for understanding the mechanisms of action of the pro-peptides of growth factors.
Collapse
Affiliation(s)
- Toshiyuki Mizui
- Biomedical Research Institute, Advanced Industrial Science and Technology (AIST), Osaka 563-8577, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan.
| | - Yasuyuki Ishikawa
- Department of Systems Life Engineering, Maebashi Institute of Technology, Gunma 371-0816, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Haruko Kumanogoh
- Biomedical Research Institute, Advanced Industrial Science and Technology (AIST), Osaka 563-8577, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Masami Kojima
- Biomedical Research Institute, Advanced Industrial Science and Technology (AIST), Osaka 563-8577, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan.
| |
Collapse
|
3
|
Verrotti A, Manco R, di Marco G, Chiarelli F, Franzoni E. The treatment of juvenile myoclonic epilepsy. Expert Rev Neurother 2014; 6:847-54. [PMID: 16784408 DOI: 10.1586/14737175.6.6.847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Juvenile myoclonic epilepsy is a common type of epilepsy with onset occurring during adolescence. This review provides a collection of evidence relating to the treatment of this type of epilepsy. Historically, the large majority of patients become seizure-free when treated with valproate. Over recent years, there has been a marked improvement in the pharmacological armamentarium by the physicians. Currently, administration of new antiepileptic drugs, such as levetiracetam, lamotrigine and topiramate, seems to have beneficial effects in the patients with poor response to valproate.
Collapse
Affiliation(s)
- Alberto Verrotti
- University of Chieti, Alberto Verrotti Dept. of Pediatrics, University of Chieti Ospedale Policlinico, Via dei Vestini 5, Italy.
| | | | | | | | | |
Collapse
|
4
|
Mizui T, Tanima Y, Komatsu H, Kumanogoh H, Kojima M. The Biological Actions and Mechanisms of Brain-Derived Neurotrophic Factor in Healthy and Disordered Brains. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/nm.2014.54021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 2014; 220:223-50. [PMID: 24668475 DOI: 10.1007/978-3-642-45106-5_9] [Citation(s) in RCA: 629] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Among all neurotrophins, brain-derived neurotrophic factor (BDNF) stands out for its high level of expression in the brain and its potent effects on synapses. It is now widely accepted that the main function of BDNF in the adult brain is to regulate synapses, with structural and functional effects ranging from short-term to long-lasting, on excitatory or inhibitory synapses, in many brain regions. The diverse effects of BDNF on brain synapses stem from its complex downstream signaling cascades, as well as the diametrically opposing effects of the pro- and mature form through distinct receptors, TrkB and p75(NTR). Many aspects of BDNF cell biology are regulated by neuronal activity. The synergistic interactions between neuronal activity and synaptic plasticity by BDNF make it an ideal and essential regulator of cellular processes that underlie cognition and other complex behaviors. Indeed, numerous studies firmly established that BDNF plays a critical role in hippocampal long-term potentiation (LTP), a long-term enhancement of synaptic efficacy thought to underlie learning and memory. Converging evidence now strongly suggest that deficits in BDNF signaling contribute to the pathogenesis of several major diseases and disorders such as Huntington's disease, Alzheimer's disease, and depression. Thus, manipulating BDNF pathways represents a viable treatment approach to a variety of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- B Lu
- GlaxoSmithKline, R&D China, Building 3, 898 Halei Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China,
| | | | | |
Collapse
|
6
|
Brázda V, Klusáková I, Hradilová Svíženská I, Dubový P. Dynamic response to peripheral nerve injury detected by in situ hybridization of IL-6 and its receptor mRNAs in the dorsal root ganglia is not strictly correlated with signs of neuropathic pain. Mol Pain 2013; 9:42. [PMID: 23953943 PMCID: PMC3844395 DOI: 10.1186/1744-8069-9-42] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/14/2013] [Indexed: 12/15/2022] Open
Abstract
Background IL-6 is a typical injury-induced mediator. Together with its receptors, IL-6 contributes to both induction and maintenance of neuropathic pain deriving from changes in activity of primary sensory neurons in dorsal root ganglia (DRG). We used in situ hybridization to provide evidence of IL-6 and IL-6 receptors (IL-6R and gp130) synthesis in DRG along the neuraxis after unilateral chronic constriction injury (CCI) of the sciatic nerve as an experimental model of neuropathic pain. Results All rats operated upon to create unilateral CCI displayed mechanical allodynia and thermal hyperalgesia in ipsilateral hind paws. Contralateral hind paws and forepaws of both sides exhibited only temporal and nonsignificant changes of sensitivity. Very low levels of IL-6 and IL-6R mRNAs were detected in naïve DRG. IL-6 mRNA was bilaterally increased not only in DRG neurons but also in satellite glial cells (SGC) activated by unilateral CCI. In addition to IL-6 mRNA, substantial increase of IL-6R mRNA expression occurred in DRG neurons and SGC following CCI, while the level of gp130 mRNA remained similar to that of DRG from naïve rats. Conclusions Here we evidence for the first time increased synthesis of IL-6 and IL-6R in remote cervical DRG nonassociated with the nerve injury. Our results suggest that unilateral CCI of the sciatic nerve induced not only bilateral elevation of IL-6 and IL-6R mRNAs in L4–L5 DRG but also their propagation along the neuraxis to remote cervical DRG as a general neuroinflammatory reaction of the nervous system to local nerve injury without correlation with signs of neuropathic pain. Possible functional involvement of IL-6 signaling is discussed.
Collapse
Affiliation(s)
- Václav Brázda
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | | | | | | |
Collapse
|
7
|
Cox DJ, Racca C. Differential dendritic targeting of AMPA receptor subunit mRNAs in adult rat hippocampal principal neurons and interneurons. J Comp Neurol 2013; 521:1954-2007. [DOI: 10.1002/cne.23292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022]
|
8
|
Brain-derived neurotrophic factor-estrogen interactions in the hippocampal mossy fiber pathway: implications for normal brain function and disease. Neuroscience 2012; 239:46-66. [PMID: 23276673 DOI: 10.1016/j.neuroscience.2012.12.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) and the steroid hormone estrogen exhibit potent effects on hippocampal neurons during development and in adulthood. BDNF and estrogen have also been implicated in the etiology of diverse types of neurological disorders or psychiatric illnesses, or have been discussed as potentially important in treatment. Although both are typically studied independently, it has been suggested that BDNF mediates several of the effects of estrogen in the hippocampus, and that these interactions play a role in the normal brain as well as disease. Here we focus on the mossy fiber (MF) pathway of the hippocampus, a critical pathway in normal hippocampal function, and a prime example of a location where numerous studies support an interaction between BDNF and estrogen in the rodent brain. We first review the temporal and spatially regulated expression of BDNF and estrogen in the MFs, as well as their receptors. Then we consider the results of studies that suggest that 17β-estradiol alters hippocampal function by its influence on BDNF expression in the MF pathway. We also address the hypothesis that estrogen influences the hippocampus by mechanisms related not only to the mature form of BDNF, acting at trkB receptors, but also by regulating the precursor, proBDNF, acting at p75NTR. We suggest that the interactions between BDNF and 17β-estradiol in the MFs are potentially important in the normal function of the hippocampus, and have implications for sex differences in functions that depend on the MFs and in diseases where MF plasticity has been suggested to play an important role, Alzheimer's disease, epilepsy and addiction.
Collapse
|
9
|
Steinhoff B, Kurth C, Dennig D. Levetiracetam bei generalisierten Epilepsien des Erwachsenenalters. ZEITSCHRIFT FUR EPILEPTOLOGIE 2012. [DOI: 10.1007/s10309-012-0237-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Porro F, Rosato-Siri M, Leone E, Costessi L, Iaconcig A, Tongiorgi E, Muro AF. β-adducin (Add2) KO mice show synaptic plasticity, motor coordination and behavioral deficits accompanied by changes in the expression and phosphorylation levels of the α- and γ-adducin subunits. GENES BRAIN AND BEHAVIOR 2010; 9:84-96. [PMID: 19900187 DOI: 10.1111/j.1601-183x.2009.00537.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- F Porro
- ICGEB, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Waterhouse EG, Xu B. New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol Cell Neurosci 2009; 42:81-9. [PMID: 19577647 DOI: 10.1016/j.mcn.2009.06.009] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 06/25/2009] [Indexed: 12/14/2022] Open
Abstract
Substantial evidence indicates that brain-derived neurotrophic factor (BDNF) plays a crucial role in synaptic plasticity. Long-lasting synaptic plasticity is restricted to active synapses and requires new protein synthesis. Recent work has identified local protein synthesis as an important source for new protein during the expression of enduring synaptic plasticity. This review discusses recent progress in understanding the mechanisms that restrict the action of BDNF to active synapses and by which BDNF mediates chemical and structural modifications of individual synapses, placing an emphasis on the role of local protein synthesis in these processes.
Collapse
Affiliation(s)
- Emily G Waterhouse
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | | |
Collapse
|
12
|
Distinct subcellular localization of BDNF transcripts in cultured hypothalamic neurons and modification by neuronal activation. J Neural Transm (Vienna) 2008; 116:23-32. [DOI: 10.1007/s00702-008-0159-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 11/18/2008] [Indexed: 01/06/2023]
|
13
|
Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. ACTA ACUST UNITED AC 2008; 59:201-20. [PMID: 18708092 DOI: 10.1016/j.brainresrev.2008.07.007] [Citation(s) in RCA: 420] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 01/13/2023]
Abstract
The decline observed during aging involves multiple factors that influence several systems. It is the case for learning and memory processes which are severely reduced with aging. It is admitted that these cognitive effects result from impaired neuronal plasticity, which is altered in normal aging but mainly in Alzheimer disease. Neurotrophins and their receptors, notably BDNF, are expressed in brain areas exhibiting a high degree of plasticity (i.e. the hippocampus, cerebral cortex) and are considered as genuine molecular mediators of functional and morphological synaptic plasticity. Modification of BDNF and/or the expression of its receptors (TrkB.FL, TrkB.T1 and TrkB.T2) have been described during normal aging and Alzheimer disease. Interestingly, recent findings show that some physiologic or pathologic age-associated changes in the central nervous system could be offset by administration of exogenous BDNF and/or by stimulating its receptor expression. These molecules may thus represent a physiological reserve which could determine physiological or pathological aging. These data suggest that boosting the expression or activity of these endogenous protective systems may be a promising therapeutic alternative to enhance healthy aging.
Collapse
|
14
|
Status epilepticus induces a TrkB to p75 neurotrophin receptor switch and increases brain-derived neurotrophic factor interaction with p75 neurotrophin receptor: An initial event in neuronal injury induction. Neuroscience 2008; 154:978-93. [DOI: 10.1016/j.neuroscience.2008.04.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 01/12/2023]
|
15
|
Lu Y, Christian K, Lu B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 2007; 89:312-23. [PMID: 17942328 DOI: 10.1016/j.nlm.2007.08.018] [Citation(s) in RCA: 573] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 08/23/2007] [Accepted: 08/23/2007] [Indexed: 01/27/2023]
Abstract
It is generally believed that late-phase long-term potentiation (L-LTP) and long-term memory (LTM) require new protein synthesis. Although the full complement of proteins mediating the long-lasting changes in synaptic efficacy have yet to be identified, several lines of evidence point to a crucial role for activity-induced brain-derived neurotrophic factor (BDNF) expression in generating sustained structural and functional changes at hippocampal synapses thought to underlie some forms of LTM. In particular, BDNF is sufficient to induce the transformation of early to late-phase LTP in the presence of protein synthesis inhibitors, and inhibition of BDNF signaling impairs LTM. Despite solid evidence for a critical role of BDNF in L-LTP and LTM, many issues are not resolved. Given that BDNF needs to be processed in Golgi outposts localized at the branch point of one or few dendrites, a conceptually challenging problem is how locally synthesized BDNF in dendrites could ensure synapse-specific modulation of L-LTP. An interesting alternative is that BDNF-TrkB signaling is involved in synaptic tagging, a prominent hypothesis that explains how soma-derived protein could selectively modulate the tetanized (tagged) synapse. Finally, specific roles of BDNF in the acquisition, retention or extinction of LTM remain to be established.
Collapse
Affiliation(s)
- Yuan Lu
- Gene, Cognition and Psychosis Program (GCAP), NIMH, National Institutes of Health, Bethesda, MD 20892-3714, USA
| | | | | |
Collapse
|
16
|
Synaptic localization of seizure-induced matrix metalloproteinase-9 mRNA. Neuroscience 2007; 150:31-9. [PMID: 17928157 DOI: 10.1016/j.neuroscience.2007.08.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 06/25/2007] [Accepted: 08/28/2007] [Indexed: 11/20/2022]
Abstract
The phenomenon of dendritic transport and local translation of mRNA is considered to be one of the most fundamental mechanisms underlying long-term synaptic plasticity. Matrix metalloproteinase 9 (gelatinase B) (MMP-9) is a matrix metalloproteinase implicated in synaptic long-term potentiation and hippocampus-dependent memory. It was recently shown to be prominently up-regulated in the hippocampal dentate gyrus (DG) upon kainate-mediated seizures. Here, using a high resolution nonradioactive in situ hybridization at the light- and electron-microscopic levels, as well as subcellular fractionation, we provide evidence that in the rat hippocampus, MMP-9 mRNA is associated with dendrites and dendritic spines bearing asymmetric (excitatory) synapses. Moreover we observe that after kainate treatment the number of dendrites and synapses containing MMP-9 mRNA increases markedly. Our results indicate that we are observing the phenomenon of dendritic transport of seizure-induced MMP-9 mRNA.
Collapse
|
17
|
Abstract
Since the discovery of nerve growth factor (NGF) in the 1950s and brain-derived neurotrophic factor (BDNF) in the 1980s, a great deal of evidence has mounted for the roles of neurotrophins (NGF; BDNF; neurotrophin-3, NT-3; and neurotrophin-4/5, NT-4/5) in development, physiology, and pathology. BDNF in particular has important roles in neural development and cell survival, as well as appearing essential to molecular mechanisms of synaptic plasticity and larger scale structural rearrangements of axons and dendrites. Basic activity-related changes in the central nervous system (CNS) are thought to depend on BDNF modulation of synaptic transmission. Pathologic levels of BDNF-dependent synaptic plasticity may contribute to conditions such as epilepsy and chronic pain sensitization, whereas application of the trophic properties of BDNF may lead to novel therapeutic options in neurodegenerative diseases and perhaps even in neuropsychiatric disorders. In this chapter, I review neurotrophin structure, signal transduction mechanisms, localization and regulation within the nervous system, and various potential roles in disease. Modulation of neurotrophin action holds significant potential for novel therapies for a variety of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Devin K Binder
- Department of Neurological Surgery, University of California, Irvine, CA 92868, USA.
| |
Collapse
|
18
|
Gorter JA, van Vliet EA, Aronica E, Breit T, Rauwerda H, Lopes da Silva FH, Wadman WJ. Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy. J Neurosci 2006; 26:11083-110. [PMID: 17065450 PMCID: PMC6674659 DOI: 10.1523/jneurosci.2766-06.2006] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To get insight into the mechanisms that may lead to progression of temporal lobe epilepsy, we investigated gene expression during epileptogenesis in the rat. RNA was obtained from three different brain regions [CA3, entorhinal cortex (EC), and cerebellum (CB)] at three different time points after electrically induced status epilepticus (SE): acute phase [group D (1 d)], latent period [group W (1 week)], and chronic epileptic period [group M (3-4 months)]. A group that was stimulated but that had not experienced SE and later epilepsy was also included (group nS). Gene expression analysis was performed using the Affymetrix Gene Chip System (RAE230A). We used GENMAPP and Gene Ontology to identify global biological trends in gene expression data. The immune response was the most prominent process changed during all three phases of epileptogenesis. Synaptic transmission was a downregulated process during the acute and latent phases. GABA receptor subunits involved in tonic inhibition were persistently downregulated. These changes were observed mostly in both CA3 and EC but not in CB. Rats that were stimulated but that did not develop spontaneous seizures later on had also some changes in gene expression, but this was not reflected in a significant change of a biological process. These data suggest that the targeting of specific genes that are involved in these biological processes may be a promising strategy to slow down or prevent the progression of epilepsy. Especially genes related to the immune response, such as complement factors, interleukins, and genes related to prostaglandin synthesis and coagulation pathway may be interesting targets.
Collapse
Affiliation(s)
- Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ure J, Baudry M, Perassolo M. Metabotropic glutamate receptors and epilepsy. J Neurol Sci 2006; 247:1-9. [PMID: 16697014 DOI: 10.1016/j.jns.2006.03.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 03/24/2006] [Accepted: 03/28/2006] [Indexed: 11/26/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) play an important role in the initiation of ictal discharges by participating in the interictal-ictal transition, and may play a crucial role in recruiting normal brain tissue into synchronized discharges, thereby facilitating propagation of seizure activity. In this article we present a review of mGluRs and epilepsy studies. Structural features of mGluRs offer multiple possibilities for synthetic compounds to modulate their activity, and for many reasons these compounds are good candidates for therapeutic applications. Group I mGluRs enhance excitatory transmission as much as groups II and III mGluRs can modulate those effects. Finally, main avenues to induce epileptogenesis are considered: activation of Ca2+ channels and Ca2+/CaMKII cascade, overexpression of AMPA and/or KA receptors, enhanced NMDARs function, activation of protooncogenes leading to a steady epileptogenic state, enhancement of INaP currents, blockade of A and/or M K(+) currents, calcium channelopathies, diminished number of GABARs or functions, and down-regulation of glutamate transporters. Deregulation of mGluR signaling functions including deficits in groups II and III mGluRs or hyperactivation of group I mGluRs may occur in some forms of epilepsy, therefore targeting these mechanisms with specific pharmacological tools could provide new developments for original therapeutic approaches.
Collapse
Affiliation(s)
- Jorge Ure
- Department of Neurology, Borda Hospital, Universidad de Buenos Aires, Ramón Carrillo 375, Buenos Aires, Argentina.
| | | | | |
Collapse
|
20
|
Tongiorgi E, Domenici L, Simonato M. What is the biological significance of BDNF mRNA targeting in the dendrites? Clues from epilepsy and cortical development. Mol Neurobiol 2006; 33:17-32. [PMID: 16388108 DOI: 10.1385/mn:33:1:017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 06/02/2005] [Indexed: 01/19/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) is a regulatory factor of several, partially contrasting, aspects of the biology of neural cells, including survival, growth, differentiation, and cell death. Regulation of the local availability of BDNF at distinct subcellular domains such as the cell soma, dendrites, axons, and spines appears to be the key to conferring spatial and temporal specificity of the different effects elicited by this neurotrophin. This article reviews recent findings in the context of epileptogenesis and visual cortex maturation that showed that different BDNF messenger RNA (mRNA) transcripts are localized at different subcellular locations in hippocampal and cortical neurons. It also reviews findings demonstrating that strong depolarizing stimuli, both in vitro and in vivo, elicit accumulation of BDNF mRNA and protein in the distal dendrites through a signaling pathway involving the activation of the N-methyl-D-aspartate and tyrosine kinase B receptors and an intracellular increase in Ca2+ concentration. Finally, this article proposes that the regulation of the delivery of BDNF mRNA and protein to the different subcellular domains--particularly the dendritic compartment--may represent a fundamental aspect of the processes of cellular and synaptic morphological rearrangements underlying epileptogenesis and postnatal development of the visual cortex.
Collapse
Affiliation(s)
- Enrico Tongiorgi
- BRAIN Centre for Neuroscience, Department of Biology, University of Trieste, Trieste, Italy.
| | | | | |
Collapse
|
21
|
Koutroumanidis M, Bourvari G, Tan SV. Idiopathic generalized epilepsies: clinical and electroencephalogram diagnosis and treatment. Expert Rev Neurother 2006; 5:753-67. [PMID: 16274333 DOI: 10.1586/14737175.5.6.753] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review concentrates on the principles of the clinical and electroencephalogram diagnosis of idiopathic generalized epilepsies and their treatment. The electroclinical variability of the main seizure types is detailed and particular emphasis is placed on the differential diagnosis from other seizures and nonepileptic conditions that is essential for the optimal management of these patients. The authors review the various idiopathic generalized epilepsy subsyndromes and conditions that are included in both the 1989 International League Against Epilepsy classification system and the recently proposed International League Against Epilepsy scheme, but also syndromes and forms that have not been formally recognized. Finally, the authors describe the principles of antiepileptic drug treatment with the old and newer drugs, and their specific indications and contraindications in the various syndromes and seizure types.
Collapse
Affiliation(s)
- Michael Koutroumanidis
- Department of Clinical Neurophysiology and Epilepsies, Lambeth Wing, 3rd Floor, St Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
22
|
Nagappan G, Lu B. Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends Neurosci 2005; 28:464-71. [PMID: 16040136 DOI: 10.1016/j.tins.2005.07.003] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/21/2005] [Accepted: 07/13/2005] [Indexed: 02/02/2023]
Abstract
Although brain-derived neurotrophic factor (BDNF) has emerged as a key regulator of activity-dependent synaptic plasticity, a conceptually challenging question is how this diffusible molecule achieves local and synapse-specific modulation. One hypothesis is that neuronal activity enhances BDNF signaling by selectively modulating TrkB receptors at active neurons or synapses without affecting receptors on neighboring, less-active ones. Growing evidence suggests that neuronal activity facilitates cell-surface expression of TrkB. BDNF secreted from active synapses and neurons recruits TrkB from extrasynaptic sites into lipid rafts, microdomains of membrane that are enriched at synapses. Postsynaptic rises in cAMP concentrations facilitate translocation of TrkB into the postsynaptic density. Finally, neuronal activity promotes BDNF-induced TrkB endocytosis, a signaling event important for many long-term BDNF functions. These mechanisms could collectively underlie synapse-specific regulation by BDNF.
Collapse
Affiliation(s)
- Guhan Nagappan
- Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, MSC 3714, Bethesda, MD 20892-4480, USA
| | | |
Collapse
|
23
|
Tongiorgi E, Armellin M, Giulianini PG, Bregola G, Zucchini S, Paradiso B, Steward O, Cattaneo A, Simonato M. Brain-derived neurotrophic factor mRNA and protein are targeted to discrete dendritic laminas by events that trigger epileptogenesis. J Neurosci 2005; 24:6842-52. [PMID: 15282290 PMCID: PMC6729709 DOI: 10.1523/jneurosci.5471-03.2004] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic targeting of mRNA and local protein synthesis are mechanisms that enable neurons to deliver proteins to specific postsynaptic sites. Here, we demonstrate that epileptogenic stimuli induce a dramatic accumulation of BDNF mRNA and protein in the dendrites of hippocampal neurons in vivo. BDNF mRNA and protein accumulate in dendrites in all hippocampal subfields after pilocarpine seizures and in selected subfields after other epileptogenic stimuli (kainate and kindling). BDNF accumulates selectively in discrete dendritic laminas, suggesting targeting to synapses that are active during seizures. Dendritic targeting of BDNF mRNA occurs during the time when the cellular changes that underlie epilepsy are occurring and is not seen after intense stimuli that are non-epileptogenic, including electroconvulsive seizures and high-frequency stimulation. MK801, an NMDA receptor antagonist that can prevent epileptogenesis but not acute seizures, prevents the dendritic accumulation of BDNF mRNA, indicating that dendritic targeting is mediated via NMDA receptor activation. Together, these results suggest that dendritic accumulation of BDNF mRNA and protein plays a critical role in the cellular changes leading to epilepsy.
Collapse
Affiliation(s)
- Enrico Tongiorgi
- BRAIN Centre for Neuroscience, Department of Biology, University of Trieste, 34127 Trieste, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Since the purification of BDNF in 1982, a great deal of evidence has mounted for its central roles in brain development, physiology, and pathology. Aside from its importance in neural development and cell survival, BDNF appears essential to molecular mechanisms of synaptic plasticity. Basic activity-related changes in the central nervous system are thought to depend on BDNF modification of synaptic transmission, especially in the hippocampus and neocortex. Pathologic levels of BDNF-dependent synaptic plasticity may contribute to conditions such as epilepsy and chronic pain sensitization, whereas application of the trophic properties of BDNF may lead to novel therapeutic options in neurodegenerative diseases and perhaps even in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Devin K Binder
- Department of Neurological Surgery, M779 Moffitt Hospital, Box 0112, University of California, San Francisco, CA 94143-0112, USA.
| | | |
Collapse
|