1
|
Fatal Vitamin K-Dependent Coagulopathy Associated with Cefoperazone/Sulbactam: A Case Report. DRUG SAFETY - CASE REPORTS 2019; 6:6. [PMID: 31201572 PMCID: PMC6570729 DOI: 10.1007/s40800-019-0100-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This case report describes a suspected and fatal adverse reaction involving vitamin K-dependent coagulopathy that might be associated with cefoperazone/sulbactam (CPZ/SAM), a combined antimicrobial formulation. We reported a patient diagnosed with acute cerebral infarction and secondary pulmonary infection who was treated with an intravenous infusion of CPZ/SAM at 3 g twice daily. After receiving treatment with CPZ/SAM, the patient developed a fatal adverse reaction of CPZ-induced hemorrhage. The Naranjo assessment score in this report was 5, suggesting that the patient's coagulation function disorder was potentially associated with the use of CPZ/SAM. To prevent vitamin K-dependent coagulopathy caused by CPZ/SAM, it is suggested to avoid cephalosporins in patients with a high risk of bleeding unless the need for cephalosporins is compelling.
Collapse
|
2
|
Lemke G. Phosphatidylserine Is the Signal for TAM Receptors and Their Ligands. Trends Biochem Sci 2017; 42:738-748. [PMID: 28734578 DOI: 10.1016/j.tibs.2017.06.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/04/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Abstract
Nature repeatedly repurposes, in that molecules that serve as metabolites, energy depots, or polymer subunits are at the same time used to deliver signals within and between cells. The preeminent example of this repurposing is ATP, which functions as a building block for nucleic acids, an energy source for enzymatic reactions, a phosphate donor to regulate intracellular signaling, and a neurotransmitter to control the activity of neurons. A series of recent studies now consolidates the view that phosphatidylserine (PtdSer), a common phospholipid constituent of membrane bilayers, is similarly repurposed for use as a signal between cells and that the ligands and receptors of the Tyro3/Axl/Mer (TAM) family of receptor tyrosine kinases (RTKs) are prominent transducers of this signal.
Collapse
Affiliation(s)
- Greg Lemke
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Immunobiology and Microbial Pathogenesis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Graham DK, DeRyckere D, Davies KD, Earp HS. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer 2014; 14:769-85. [PMID: 25568918 DOI: 10.1038/nrc3847] [Citation(s) in RCA: 518] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential.
Collapse
|
4
|
Zhang N, Li BQ, Gao S, Ruan JS, Cai YD. Computational prediction and analysis of protein γ-carboxylation sites based on a random forest method. MOLECULAR BIOSYSTEMS 2012; 8:2946-55. [PMID: 22918520 DOI: 10.1039/c2mb25185j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The glutamate γ-carboxylation plays a pivotal part in a number of important human diseases. However, traditional protein γ-carboxylation site detection by experimental approaches are often laborious and time-consuming. In this study, we initiated an attempt for the computational prediction of protein γ-carboxylation sites. We developed a new method for predicting the γ-carboxylation sites based on a Random Forest method. As a result, 90.44% accuracy and 0.7739 MCC value were obtained for the training dataset, and 89.83% accuracy and 0.7448 MCC value for the testing dataset. Our method considered several features including sequence conservation, residual disorder, secondary structures, solvent accessibility, physicochemical/biochemical properties and amino acid occurrence frequencies. By means of the feature selection algorithm, an optimal set of 327 features were selected; these features were considered as the ones that contributed significantly to the prediction of protein γ-carboxylation sites. Analysis of the optimal feature set indicated several important factors in determining the γ-carboxylation and a possible consensus sequence of the γ-carboxylation recognition site (γ-CRS) was suggested. These may shed some light on the in-depth understanding of the mechanisms of γ-carboxylation, providing guidelines for experimental validation.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Biomedical Engineering Tianjin University, Tianjin Key Lab of BME Measurement, Tianjin, 300072, PR China
| | | | | | | | | |
Collapse
|
5
|
Rishavy MA, Hallgren KW, Berkner KL. The vitamin K-dependent carboxylase generates γ-carboxylated glutamates by using CO2 to facilitate glutamate deprotonation in a concerted mechanism that drives catalysis. J Biol Chem 2011; 286:44821-32. [PMID: 21896484 DOI: 10.1074/jbc.m111.249177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The γ-glutamyl carboxylase converts Glu to carboxylated Glu (Gla) to activate a large number of vitamin K-dependent proteins with diverse functions, and this broad physiological impact makes it critical to understand the mechanism of carboxylation. Gla formation is thought to occur in two independent steps (i.e. Glu deprotonation to form a carbanion that then reacts with CO(2)), based on previous studies showing unresponsiveness of Glu deprotonation to CO(2). However, our recent studies on the kinetic properties of a variant enzyme (H160A) showing impaired Glu deprotonation prompted a reevaluation of this model. Glu deprotonation monitored by tritium release from the glutamyl γ-carbon was dependent upon CO(2), and a proportional increase in both tritium release and Gla formation occurred over a range of CO(2) concentrations. This discrepancy with the earlier studies using microsomes is probably due to the known accessibility of microsomal carboxylase to water, which reprotonates the carbanion. In contrast, tritium incorporation experiments with purified carboxylase showed very little carbanion reprotonation and consequently revealed the dependence of Glu deprotonation on CO(2). Cyanide stimulated Glu deprotonation and carbanion reprotonation to the same extent in wild type enzyme but not in the H160A variant. Glu deprotonation that depends upon CO(2) but that also occurs when water or cyanide are present strongly suggests a concerted mechanism facilitated by His-160 in which an electrophile accepts the negative charge on the developing carbanion. This revised mechanism provides important insight into how the carboxylase catalyzes the reaction by avoiding the formation of a high energy discrete carbanion.
Collapse
Affiliation(s)
- Mark A Rishavy
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
6
|
Rishavy MA, Berkner KL. Insight into the coupling mechanism of the vitamin K-dependent carboxylase: mutation of histidine 160 disrupts glutamic acid carbanion formation and efficient coupling of vitamin K epoxidation to glutamic acid carboxylation. Biochemistry 2008; 47:9836-46. [PMID: 18717596 DOI: 10.1021/bi800296r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vitamin K-dependent (VKD) proteins become activated by the VKD carboxylase, which converts Glu's to carboxylated Glu's (Gla's) in their Gla domains. The carboxylase uses vitamin K epoxidation to drive Glu carboxylation, and the two half-reactions are coupled in 1:1 stoichiometry by an unknown mechanism. We now report the first identification of a residue, His160, required for coupling. A H160A mutant showed wild-type levels of epoxidation but substantially less carboxylation. Monitoring proton abstraction using a peptide with Glu tritiated at the gamma-carbon position revealed that poor coupling was due to impaired carbanion formation. H160A showed a 10-fold lower ratio of tritium release to vitamin K epoxidation than wild-type enzyme (i.e., 0.12 versus 1.14, respectively), which could fully account for the fold decrease in coupling efficiency. The Ala substitution in His160 did not affect the K m for vitamin K and caused only a 2-fold increase in the K m for Glu and 2-fold decrease in the activation of vitamin K epoxidation by Glu. The H160A K m for CO 2 was 5-fold higher than the wild-type enzyme. However, the k cat for H160A carboxylation was 8-9-fold lower than the wild-type enzyme with all three substrates (i.e., Glu, CO 2, and vitamin K), suggesting a catalytic role for His160 in carbanion formation. We propose that His160 facilitates the formation of the transition state for carbanion formation. His160 is highly conserved in metazoan VKD carboxylases but not in some bacterial orthologues (acquired by horizontal gene transfer), which has implications for how bacteria have adapted the carboxylase for novel functions.
Collapse
Affiliation(s)
- Mark A Rishavy
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
7
|
Abstract
Vitamin K-dependent (VKD) protein carboxylation uses vitamin K epoxidation to convert Glus to carboxylated Glus (Glas), rendering VKD proteins active in physiologies that include hemostasis, apoptosis, bone mineralization, calcium homeostasis, growth control, and signal transduction. Clusters of Glus are modified by a processive carboxylase, generating a calcium-binding module that allows binding to either hydroxyapatite in the extracellular matrices or cell surfaces where anionic phospholipids become exposed, for example, during apoptosis or cell activation. Naturally occurring carboxylase mutations have been informative for function and are associated with bleeding complications and, surprisingly, a pseudoxanthoma elasticum (PXE)-like phenotype. A major advance in defining carboxylase function is the identification of the base that initiates carboxylation, which raises interesting possibilities for how vitamin K epoxidation is regulated by Glu substrate and carboxylase membrane topology. Vitamin K oxidoreductase (VKOR), the target of warfarin, generates the reduced vitamin K cofactor used by the carboxylase. Oxidation of active site thiols during vitamin K reduction inactivates VKOR, and activity is regenerated by an unknown reductase. The amounts of reduced vitamin K limit the capacity for carboxylation in cells, and overexpression of VKOR, but not carboxylase, improves carboxylation. However, the effect of VKOR overexpression is small, possibly because the reductase that regenerates VKOR activity is saturated. The review discusses these advances, as well as the potential impact of secretory components on carboxylation, which occurs during VKD protein secretion. Also discussed is the role of the carboxylase in mammals and lower organisms, including the bacterial pathogen Leptospira interrogans that has acquired a VKD carboxylase by horizontal transfer.
Collapse
Affiliation(s)
- Kathleen L Berkner
- Department of Molecular Cardiology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| |
Collapse
|
8
|
Bandyopadhyay PK. Vitamin K-dependent gamma-glutamylcarboxylation: an ancient posttranslational modification. VITAMINS AND HORMONES 2008; 78:157-84. [PMID: 18374194 DOI: 10.1016/s0083-6729(07)00008-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vitamin K-dependent carboxylase carries out the posttranslational modification of specific glutamate residues in proteins to gamma-carboxy glutamic acid (Gla) in the presence of reduced vitamin K, molecular oxygen, and carbon dioxide. In the process, reduced vitamin K is converted to vitamin K epoxide, which is subsequently reduced to vitamin K, by vitamin K epoxide reductase (VKOR) for use in the carboxylation reaction. The modification has a wide range of physiological implications, including hemostasis, bone calcification, and signal transduction. The enzyme interacts with a high affinity gamma-carboxylation recognition sequence (gamma-CRS) of the substrate and carries out multiple modifications of the substrate before the product is released. This mechanism ensures complete carboxylation of the Gla domain of the coagulation factors, which is essential for their biological activity. gamma-Carboxylation, originally discovered in mammals, is widely distributed in the animal kingdom. It has been characterized in sea squirt (Ciona intestinalis), in flies (Drosophila melanogaster), and in marine snails (Conus textile), none of which have a blood coagulation system similar to mammals. The cone snails express a large array of gamma-carboxylated peptides that modulate the activity of ion channels. These findings have led to the suggestion that gamma-carboxylation is an extracellular posttranslational modification that antedates the divergence of molluscs, arthropods, and chordates. I will first summarize recent understanding of gamma-carboxylase and gamma-carboxylation gleaned from experiments using the mammalian enzyme, and then I will briefly describe the available information on gamma-carboxylation in D. melanogaster and C. textile.
Collapse
Affiliation(s)
- Pradip K Bandyopadhyay
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112, USA
| |
Collapse
|
9
|
Kulman JD, Harris JE, Xie L, Davie EW. Proline-rich Gla protein 2 is a cell-surface vitamin K-dependent protein that binds to the transcriptional coactivator Yes-associated protein. Proc Natl Acad Sci U S A 2007; 104:8767-72. [PMID: 17502622 PMCID: PMC1885577 DOI: 10.1073/pnas.0703195104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proline-rich Gla protein 2 (PRGP2) is one of four known vertebrate transmembrane gamma-carboxyglutamic acid (Gla) proteins. Members of this protein family are broadly expressed in fetal and adult human tissues and share a common architecture consisting of a predicted propeptide and Gla domain, a single-pass transmembrane segment, and tandem Pro/Leu-Pro-Xaa-Tyr (PY) motifs near their C termini. Using a methodology developed for the regulated expression of enzymatically biotinylated proteins in mammalian cells, we demonstrate that PRGP2 undergoes gamma-glutamyl carboxylation in a manner that is both dependent upon the presence of a proteolytically cleavable propeptide and sensitive to warfarin, a vitamin K antagonist that is widely used as an antithrombotic agent. When expressed at physiologically relevant levels, the majority of PRGP2 is present in the gamma-glutamyl carboxylated, propeptide-cleaved (mature) form. We additionally demonstrate, by Western blotting and flow cytometry, that mature PRGP2 is predominantly located on the cell surface with the Gla domain exposed extracellularly. In a yeast two-hybrid screen that used the C-terminal cytoplasmic region of PRGP2 as bait, we identified the WW domain-containing transcriptional coactivator Yes-associated protein (YAP) as a binding partner for PRGP2. In GST pull-down experiments, both PRGP2 PY motifs and both YAP WW domains were essential for complex formation, as were residues proximal to the core sequence of the first PY motif. These findings suggest that PRGP2 may be involved in a signal transduction pathway, the impairment of which may be an unintended consequence of warfarin therapy.
Collapse
Affiliation(s)
- John D. Kulman
- *Department of Biochemistry, University of Washington, Seattle, WA 98195; and
| | - Jeff E. Harris
- *Department of Biochemistry, University of Washington, Seattle, WA 98195; and
| | - Ling Xie
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892
| | - Earl W. Davie
- *Department of Biochemistry, University of Washington, Seattle, WA 98195; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Hafizi S, Dahlbäck B. Gas6 and protein S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily. FEBS J 2006; 273:5231-44. [PMID: 17064312 DOI: 10.1111/j.1742-4658.2006.05529.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gas6 and protein S are two homologous secreted proteins that depend on vitamin K for their execution of a range of biological functions. A discrete subset of these functions is mediated through their binding to and activation of the receptor tyrosine kinases Axl, Sky and Mer. Furthermore, a hallmark of the Gas6-Axl system is the unique ability of Gas6 and protein S to tether their non receptor-binding regions to the negatively charged membranes of apoptotic cells. Numerous studies have shown the Gas6-Axl system to regulate cell survival, proliferation, migration, adhesion and phagocytosis. Consequently, altered activity/expression of its components has been detected in a variety of pathologies such as cancer and vascular, autoimmune and kidney disorders. Moreover, Axl overactivation can equally occur without ligand binding, which has implications for tumorigenesis. Further knowledge of this exquisite ligand-receptor system and the circumstances of its activation should provide the basis for development of novel therapies for the above diseases.
Collapse
Affiliation(s)
- Sassan Hafizi
- Lund University, Department of Laboratory Medicine, Section for Clinical Chemistry, Wallenberg Laboratory, University Hospital Malmö, Sweden.
| | | |
Collapse
|
11
|
Kulman JD, Harris JE, Nakazawa N, Ogasawara M, Satake M, Davie EW. Vitamin K-dependent proteins in Ciona intestinalis, a basal chordate lacking a blood coagulation cascade. Proc Natl Acad Sci U S A 2006; 103:15794-9. [PMID: 17043233 PMCID: PMC1635082 DOI: 10.1073/pnas.0607543103] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have isolated and sequenced several cDNAs derived from the sea squirt Ciona intestinalis that encode vitamin K-dependent proteins. Four of these encode gamma-carboxyglutamic acid (Gla) domain-containing proteins, which we have named Ci-Gla1 through Ci-Gla4. Two additional cDNAs encode the apparent orthologs of gamma-glutamyl carboxylase and vitamin K epoxide reductase. Ci-Gla1 undergoes gamma-glutamyl carboxylation when expressed in CHO cells and is homologous to Gla-RTK, a putative receptor tyrosine kinase previously identified in a related ascidian. The remaining three Gla domain proteins are similar to proteins that participate in fundamental developmental processes, complement regulation, and blood coagulation. These proteins are generally expressed at low levels throughout development and exhibit either relatively constant expression (Ci-Gla1, gamma-glutamyl carboxylase, and vitamin K epoxide reductase) or spatiotemporal regulation (Ci-Gla2, -3, and -4). These results demonstrate the evolutionary emergence of the vitamin K-dependent Gla domain before the divergence of vertebrates and urochordates and suggest novel functions for Gla domain proteins distinct from their roles in vertebrate hemostasis. In addition, these findings highlight the usefulness of C. intestinalis as a model organism for investigating vitamin K-dependent physiological phenomena, which may be conserved among the chordate subphyla.
Collapse
Affiliation(s)
- John D. Kulman
- *Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Jeff E. Harris
- *Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Noriko Nakazawa
- Department of Biology, Faculty of Science, Chiba University, Chiba 263-8522, Japan; and
| | - Michio Ogasawara
- Department of Biology, Faculty of Science, Chiba University, Chiba 263-8522, Japan; and
| | - Masanobu Satake
- Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Earl W. Davie
- *Department of Biochemistry, University of Washington, Seattle, WA 98195
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Kulman JD, Satake M, Harris JE. A versatile system for site-specific enzymatic biotinylation and regulated expression of proteins in cultured mammalian cells. Protein Expr Purif 2006; 52:320-8. [PMID: 17084093 DOI: 10.1016/j.pep.2006.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 09/19/2006] [Accepted: 09/23/2006] [Indexed: 11/15/2022]
Abstract
We have developed a system for producing biotinylated recombinant proteins in mammalian cells. The expression construct consists of an inducible tetracycline response element (TRE) that drives expression of a bicistronic cassette comprising a biotin acceptor peptide (BioTag) fused to either terminus of the target protein, the gene for Escherichia coli biotin ligase (BirA), and an intervening internal ribosome entry site (IRES). By either transient or stable transfection of Chinese hamster ovary (CHO) Tet-On cells, we successfully expressed, detected, and immobilized biotinylated human Itch, a pleiotropic multi-domain ubiquitin-protein ligase, as well as Gla-RTK, a putative vitamin K-dependent receptor tyrosine kinase. The biotinylation of recombinant Itch in transiently transfected CHO Tet-On cells required biotin supplementation and coexpression of BirA, occurred quantitatively and specifically on the lysine residue of the BioTag, and enabled detection of Itch by Western blot in as little as 10ng of total lysate protein. Stably selected clones were rapidly pre-screened for doxycycline (dox)-inducible BirA expression by ELISA, and subsequently screened for dox-inducible expression of biotinylated Itch. Biotinylated Gla-RTK was detectable in as little as 5ng of total lysate protein from transiently transfected CHO Tet-On cells, and exhibited pronounced tyrosine phosphorylation. In stable clones however, constitutive phosphorylation was prevented by reducing the expression level of Gla-RTK through the titration of dox. These results demonstrate the utility of this system for the expression of 'difficult' proteins, particularly those that are cytotoxic or those that may require lower expression levels to ensure appropriate post-translational modification.
Collapse
Affiliation(s)
- John D Kulman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
13
|
Beug S, Vascotto SG, Tsilfidis C. Newt orthologue ofGrowth arrest-specific 6 (NvGas6) is implicated in stress response during newt forelimb regeneration. Dev Dyn 2006; 235:711-22. [PMID: 16444701 DOI: 10.1002/dvdy.20690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Red-spotted newts are capable of regenerating various structures and organs through the process of epimorphic regeneration. Receptor tyrosine kinases (RTKs) and their ligands are important for normal cellular development and physiology but most have not yet been characterised during regeneration. We have isolated a newt orthologue of Growth arrest-specific 6 (NvGas6), and examined its expression during forelimb regeneration and within a blastema cell line (B1H1). During limb regeneration, NvGas6 expression increases upon amputation, peaks during maximal blastema cell proliferation, and is subsequently downregulated during redifferentiation. Transcripts are localised to the wound epithelium and distal mesenchymal cells during dedifferentiation and proliferative phases, and scattered within redifferentiating tissues during later stages. In B1H1 cultures, NvGas6 is upregulated under reduced serum conditions and myogenesis. Treatment with mimosine and colchicine or exposure to heat shock or anoxia results in upregulation of NvGas6 expression. Taken together, our findings suggest that during regeneration, NvGas6 expression may be upregulated in response to cellular stress.
Collapse
Affiliation(s)
- Shawn Beug
- University of Ottawa Eye Institute, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
14
|
Hansson K, Stenflo J. Post-translational modifications in proteins involved in blood coagulation. J Thromb Haemost 2005; 3:2633-48. [PMID: 16129023 DOI: 10.1111/j.1538-7836.2005.01478.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K Hansson
- Department of Clinical Chemistry, Lund University, University Hospital Malmö, Malmö, Sweden.
| | | |
Collapse
|