1
|
Suchard MS, Adu-Gyamfi CG, Cumming BM, Savulescu DM. Evolutionary Views of Tuberculosis: Indoleamine 2,3-Dioxygenase Catalyzed Nicotinamide Synthesis Reflects Shifts in Macrophage Metabolism: Indoleamine 2,3-Dioxygenase Reflects Altered Macrophage Metabolism During Tuberculosis Pathogenesis. Bioessays 2021; 42:e1900220. [PMID: 32301149 DOI: 10.1002/bies.201900220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in conversion of tryptophan to kynurenines, feeding de novo nicotinamide synthesis. IDO orchestrates materno-foetal tolerance, increasing human reproductive fitness. IDO mediates immune suppression through depletion of tryptophan required by T lymphocytes and other mechanisms. IDO is expressed by alternatively activated macrophages, suspected to play a key role in tuberculosis (TB) pathogenesis. Unlike its human host, Mycobacterium tuberculosis can synthesize tryptophan, suggesting possible benefit to the host from infection with the microbe. Intriguingly, nicotinamide analogues are used to treat TB. In reviewing this field, it is postulated that flux through the nicotinamide synthesis pathway reflects switching between aerobic glycolysis and oxidative phosphorylation in M. tuberculosis-infected macrophages. The evolutionary cause of such shifts may be ancient mitochondrial behavior related to reproductive fitness. Evolutionary perspectives on the IDO pathway may elucidate why, after centuries of co-existence with the Tubercle bacillus, humans still remain susceptible to TB disease.
Collapse
Affiliation(s)
- Melinda S Suchard
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, 2192, South Africa.,Chemical Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Clement G Adu-Gyamfi
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, 2192, South Africa.,Chemical Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | | | - Dana M Savulescu
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, 2192, South Africa
| |
Collapse
|
2
|
Hooshmandabbasi R, Kazemian A, Zerbe H, Kowalewski MP, Klisch K. Macrophages in bovine term placenta: An ultrastructural and molecular study. Reprod Domest Anim 2021; 56:1243-1253. [PMID: 34174122 PMCID: PMC8519142 DOI: 10.1111/rda.13983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
Retention of foetal membranes (RFM) is a major reproductive disorder in dairy cows. An appropriate immune response is important for a physiological expulsion of the foetal membranes at parturition. Our study aims to provide a deeper insight into characteristics of foetal and maternal macrophages in bovine term placenta. We used transmission electron microscopy (TEM), immunohistochemistry and semi-quantitative RT-PCR to provide a deeper insight into characteristics of foetal and maternal macrophages in bovine term placenta. Semi-quantitative RT-PCR was used to define macrophage polarization in foetal and maternal compartments of normal term placenta. Gene expression of factors involved in M1 polarization [interferon regulatory factor-5 (IRF5), interleukin (IL)-12A, IL12B] and in M2 polarization (IL10) were studied. Ultrastructurally, foetal macrophages showed an irregular shape and large vacuoles, whereas the maternal macrophages were spindle shaped. By immunohistochemistry, macrophages were identified by a strong staining with the lysosomal marker Lysosome-associated membrane glycoprotein 1 (LAMP-1), while myofibroblast in the maternal stroma was positive for alpha-smooth muscle actin. We used the LAMP-1 marker to compare the density of foetal stromal macrophages in placentas of cows with RFM and in controls, but no statistically significant difference was observed. RT-PCR showed a higher expression of all studied genes in the maternal compartment of the placenta and generally a higher expression of M1-, compared to M2-associated genes. Our results indicated that at parturition placental macrophages predominantly show the pro-inflammatory M1 polarization. The higher expression of all the target genes in the maternal compartment may denote that maternal macrophages in bovine term placenta are more frequent than foetal macrophages.
Collapse
Affiliation(s)
| | - Ali Kazemian
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| | - Holm Zerbe
- Clinic of Ruminants, Ludwig-Maximilians-Universität (LMU), Oberschleissheim, Germany
| | - Mariusz P Kowalewski
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| | - Karl Klisch
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Cui L, Jin X, Xu F, Wang S, Liu L, Li X, Lin H, Du M. Circadian rhythm-associated Rev-erbα modulates polarization of decidual macrophage via the PI3K/Akt signaling pathway. Am J Reprod Immunol 2021; 86:e13436. [PMID: 33934423 DOI: 10.1111/aji.13436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
PROBLEM Circadian rhythms are involved not only in the repair and regeneration of the immune system, but may also be associated with regulation of inflammation and immune responses. Rev-erbα could constitute a link between immunity and circadian rhythms since it is a transcription factor that regulates circadian rhythms and has functions in multiple physiological and pathological processes. Decidual macrophages (dMφs) play crucial roles in immune balance at the maternal-fetal interface, and abnormal macrophage polarization is related to adverse pregnancy outcomes, such as infertility, recurrent spontaneous abortion, and preterm labor. However, whether Rev-erbα could modulate the polarization of macrophages is unknown. METHODS OF STUDY In this study, we analyzed the phenotype of dMφs and the expression of Rev-erbα in dMφs from normal pregnancies and miscarriages. The effect of Rev-erbα on macrophage polarization was evaluated by its knockdown or pharmacological activation. The mechanism by which the Rev-erbα agonist SR9009 regulates macrophage polarization was also estimated. RESULTS A type-1 macrophage (M1)-like dominance was observed in dMφs from human miscarriages, with a decreased expression of Rev-erbα compared to that from normal pregnancies. Rev-erbα knockdown promoted M1 polarization in macrophages differentiated from the THP1 cell line, whereas pharmacological activation of Rev-erbα by SR9009 induced type-2 macrophage (M2)-like polarization in dMφs. Furthermore, we found that SR9009 induced M2 polarization in macrophages differentiated from the U937 cell line via the PI3K/Akt signaling pathway. CONCLUSION Rev-erbα may play an essential role in macrophage polarization. These findings might help elucidate the role of Rev-erbα in regulating the differentiation and functions of macrophages and suggest a therapeutic target for pregnancy loss and pregnancy complications.
Collapse
Affiliation(s)
- Liyuan Cui
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xueling Jin
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Feng Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Songcun Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Lu Liu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xinyi Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Haiyan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology & Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meirong Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
4
|
Wang J, Zhu D, Yin J, Ma C, Peng X, Zou H, Cao Y, Xu X. Upregulated HMGB1 levels in maternal-fetal interface of patients with unexplained recurrent spontaneous abortion from different sources. J Matern Fetal Neonatal Med 2021; 35:6542-6549. [PMID: 33944653 DOI: 10.1080/14767058.2021.1918084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the expression and sources of high mobility group box 1 (HMGB1) protein in the maternal-fetal interface of patients with unexplained recurrent spontaneous abortion (URSA), and further to verify the role of HMGB1 in the etiology of URSA. METHODS 55 women at early pregnancy with URSA and 55 women undergoing selective termination of normal early pregnancy as control were included. The abortion tissues including villi and decidua were collected. The expression of HMGB1, CD45, CK7, and vimentin in abortion tissues was detected, and the localization and sources of HMGB1 were analyzed. RESULTS Infiltrating immune cells and expression of HMGB1 were significantly increased in villi and decidua in URSA group compared with those in the control group. In the URSA group, HMGB1 was colocalized with the CD45-labeled immune cells, and it was more obvious in decidua than in villi; in addition, HMGB1 was colocalized with the vimentin-labeled decidual stromal cells, but not with the CK7- labeled villous epithelial cells. CONCLUSION High expression of HMGB1 in the maternal-fetal interface in URSA patients was actively secreted by the infiltrating immune cells, and decidual stromal cells may passively release HMGB1 during necrosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Damin Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China.,Department of Obstetrics and Gynecology, Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Jiaqian Yin
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Cong Ma
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Xiaoqing Peng
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Huijuan Zou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| |
Collapse
|
5
|
Vishnyakova P, Poltavets A, Nikitina M, Midiber K, Mikhaleva L, Muminova K, Potapova A, Khodzhaeva Z, Pyregov A, Elchaninov A, Fatkhudinov T, Sukhikh G. Expression of Estrogen Receptor α by Decidual Macrophages in Preeclampsia. Biomedicines 2021; 9:biomedicines9020191. [PMID: 33672970 PMCID: PMC7917975 DOI: 10.3390/biomedicines9020191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia is a gestation-associated hypertensive syndrome that threatens the life and health of the mother and the child. The condition is presumably caused by systemic failure with a strong involvement of innate immunity. In particular, it has been associated with flexible phenotypes of macrophages, which depend on the molecules circulating in the blood and tissue fluid, such as cytokines and hormones. This study aimed at a comparative evaluation of pro-inflammatory (TNFα) and anti-inflammatory (CD206, MMP9, HGF) markers, as well as the levels of estrogen receptor α, expressed by decidual macrophages in normal pregnancy and in patients with early- and late-onset preeclampsia. The tissue samples of decidua basalis were examined by immunohistochemistry and Western blotting. Isolation of decidual macrophages and their characterization were performed using cultural methods, flow cytometry and real-time PCR. Over 50% of the isolated decidual macrophages were positive for the pan-macrophage marker CD68. In the early-onset preeclampsia group, the levels of estrogen receptor α in decidua were significantly decreased. Furthermore, significantly decreased levels of HGF and CD206 were observed in both preeclampsia groups compared with the control group. The observed downregulation of estrogen receptor α, HGF and CD206 may contribute to the balance of pro- and anti-inflammatory macrophages and thereby to pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
- Histology Department, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Correspondence: ; Tel.: +7-9150658577
| | - Anastasiya Poltavets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Maria Nikitina
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Konstantin Midiber
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Liudmila Mikhaleva
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Kamilla Muminova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Alena Potapova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Zulfiya Khodzhaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Alexey Pyregov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
- Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Histology Department, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| |
Collapse
|
6
|
Mezouar S, Katsogiannou M, Ben Amara A, Bretelle F, Mege JL. Placental macrophages: Origin, heterogeneity, function and role in pregnancy-associated infections. Placenta 2020; 103:94-103. [PMID: 33120051 PMCID: PMC7568513 DOI: 10.1016/j.placenta.2020.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
Placental macrophages are a heterogenous population of immune cells present throughout pregnancy. They are essential for maintenance of the homeostatic placenta environment and host defense against infections. The characterization of placental macrophages as well as their activation have been limited for a long time by the lack of convenient tools. The emergence of unbiased methods makes it possible to reappraise the study of placental macrophages. In this review, we discuss the diversity and the functions of placental macrophages to better understand their dysfunctions during placental infections.
Collapse
Affiliation(s)
- Soraya Mezouar
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France; IHU - Mediterranean Infection, Marseille, France.
| | - Maria Katsogiannou
- Hôpital Saint Joseph, Department of Obstetrics and Gynecology, FR-13008, Marseille, France
| | - Amira Ben Amara
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France; IHU - Mediterranean Infection, Marseille, France
| | - Florence Bretelle
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France; IHU - Mediterranean Infection, Marseille, France; AP-HM, Gynecology Department, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France; IHU - Mediterranean Infection, Marseille, France; AP-HM, UF Immunology, Marseille, France.
| |
Collapse
|
7
|
Valencia-Ortega J, Saucedo R, Peña-Cano MI, Hernández-Valencia M, Cruz-Durán JG. Immune tolerance at the maternal-placental interface in healthy pregnancy and pre-eclampsia. J Obstet Gynaecol Res 2020; 46:1067-1076. [PMID: 32428989 DOI: 10.1111/jog.14309] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/17/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
AIM The objective of this review is to describe the immunological mechanisms which facilitate maternal tolerance at the maternal-placental interface, and to discuss how these mechanisms are disrupted in pre-eclampsia. METHODS A literature review was performed based on the analysis of papers available on PubMed. The most important and relevant studies regarding the immunological mechanisms which facilitate maternal tolerance in healthy pregnancy and pre-eclampsia are presented in this article. RESULTS The maternal-placental interface is the site where the immune tolerance begins and develops. Within the innate immunity, natural killer cells, macrophages and dendritic cells play a pivotal role in tolerance through regulation of inflammation. On the other hand, within the adaptive immunity, the correct increase of regulatory T cells is crucial for ensuring immune tolerance toward placental cells. Disturbances in maternal tolerance can lead to the appearance of pregnancy complications such as pre-eclampsia, which has a considerable impact on perinatal morbidity and mortality. CONCLUSION Our partial knowledge of immunological mechanisms involved in tolerance at the maternal-placental interface indicates that pre-eclampsia is characterized by alterations of this maternal immune tolerance, which could represent the origin of the disease.
Collapse
Affiliation(s)
- Jorge Valencia-Ortega
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Renata Saucedo
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - María I Peña-Cano
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Marcelino Hernández-Valencia
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - José G Cruz-Durán
- UMAE Hospital de Gineco-Obstetricia No. 3, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
8
|
Zou H, Yin J, Zhang Z, Xiang H, Wang J, Zhu D, Xu X, Cao Y. Destruction in maternal-fetal interface of URSA patients via the increase of the HMGB1-RAGE/TLR2/TLR4-NF-κB signaling pathway. Life Sci 2020; 250:117543. [PMID: 32169518 DOI: 10.1016/j.lfs.2020.117543] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/22/2020] [Accepted: 03/09/2020] [Indexed: 11/28/2022]
Abstract
AIMS HMGB1 has been reported to play a crucial role in the physiological and pathophysiological responses during pregnancy. However, it is still unknown whether excessively expressed HMGB1 at the maternal-fetal interface related to Unexplained Recurrent Spontaneous Abortion (URSA). This study was designed to investigate the local capability of HMGB1 in the pathology of URSA, determined the distributions and characteristics of HMGB1, its receptors (RAGE/TLR2/TLR4) and important signaling molecule NF-κB p65 expression at the maternal-fetal interface,as well as compared the differences of HMGB1 expression between the URSA group, control group and aspirin treatment group. MATERIAL AND METHODS H&E staining, Western blot analysis, immunofluorescence assay and immunohistochemical staining were applied to determine the effect of HMGB1 and its receptors at the maternal-fetal interface. ELISA was utilized to detect the concentration of HMGB1 in plasma. KEY FINDINGS Our study demonstrated that the activation of the HMGB1-RAGE/TLR2/TLR4-NF-κB pathway at the maternal-fetal interface may have occurred in the URSA group. HMGB1 concentration in plasma was higher in the URSA group than the control group. Furthermore, the levels of HMGB1 of subjects with URSA could be reduced by administrating low doses of aspirin (ASPL). SIGNIFICANCE This is the first report indicating the roles of HMGB1 at the maternal-fetal interface of URSA patients and broadening the horizons for clinical treatment of URSA. HMGB1-RAGE/TLR2/TLR4-NF-κB signaling pathway may be activated at the maternal-fetal interface in URSA and account for its pathogenesis. HMGB1 have the potential to be promising biomarkers in prevention and therapy of URSA.
Collapse
Affiliation(s)
- Huijuan Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jiaqian Yin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jing Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Damin Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
9
|
Magatti M, Stefani FR, Papait A, Cargnoni A, Masserdotti A, Silini AR, Parolini O. Perinatal Mesenchymal Stromal Cells and Their Possible Contribution to Fetal-Maternal Tolerance. Cells 2019; 8:E1401. [PMID: 31703272 PMCID: PMC6912620 DOI: 10.3390/cells8111401] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022] Open
Abstract
During pregnancy, a successful coexistence between the mother and the semi-allogenic fetus occurs which requires a dynamic immune system to guarantee an efficient immune protection against possible infections and tolerance toward fetal antigens. The mechanism of fetal-maternal tolerance is still an open question. There is growing in vitro and in vivo evidence that mesenchymal stromal cells (MSC) which are present in perinatal tissues have a prominent role in generating a functional microenvironment critical to a successful pregnancy. This review highlights the immunomodulatory properties of perinatal MSC and their impact on the major immune cell subsets present in the uterus during pregnancy, such as natural killer cells, antigen-presenting cells (macrophages and dendritic cells), and T cells. Here, we discuss the current understanding and the possible contribution of perinatal MSC in the establishment of fetal-maternal tolerance, providing a new perspective on the physiology of gestation.
Collapse
Affiliation(s)
- Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Francesca Romana Stefani
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Alice Masserdotti
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Ornella Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| |
Collapse
|
10
|
Jena MK, Nayak N, Chen K, Nayak NR. Role of Macrophages in Pregnancy and Related Complications. Arch Immunol Ther Exp (Warsz) 2019; 67:295-309. [PMID: 31286151 PMCID: PMC7140981 DOI: 10.1007/s00005-019-00552-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
Macrophages (MФs) are the leukocytes produced from differentiation of monocytes and are located in almost all tissues of human body. They are involved in various processes, such as phagocytosis, innate and adaptive immunity, proinflammatory (M1) and anti-inflammatory (M2) activity, depending on the tissue microenvironment. They play a crucial role in pregnancy, and their dysfunction or alteration of polarity is involved in pregnancy disorders, like preeclampsia, recurrent spontaneous abortion, infertility, intrauterine growth restriction, and preterm labor. About 50-60% of decidual leukocytes are natural killer (NK) cells followed by MФs (the second largest population). MФs are actively involved in trophoblast invasion, tissue and vascular remodeling during early pregnancy, besides their role as major antigen-presenting cells in the decidua. These cells have different phenotypes and polarities in different stages of pregnancy. They have also been observed to enhance tumor growth by their anti-inflammatory activity (M2 type) and prevent immunogenic rejection. Targeted alteration of polarity (M1-M2 or vice versa) could be a major focus in the future treatment of pregnancy complications. This review is focused on the role of MФs in pregnancy, their involvement in pregnancy disorders, and decidual MФs as possible therapeutic targets for the treatment of pregnancy complications.
Collapse
Affiliation(s)
- Manoj K Jena
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India.
| | - Neha Nayak
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Nihar R Nayak
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
11
|
Gill N, Leng Y, Romero R, Xu Y, Panaitescu B, Miller D, Arif A, Mumuni S, Qureshi F, Hsu CD, Hassan SS, Staff AC, Gomez-Lopez N. The immunophenotype of decidual macrophages in acute atherosis. Am J Reprod Immunol 2019; 81:e13098. [PMID: 30734977 PMCID: PMC6556389 DOI: 10.1111/aji.13098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/03/2019] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
PROBLEM Acute atherosis is a uteroplacental arterial lesion that is associated with pregnancy complications such as preeclampsia and preterm birth, the latter being the leading cause of perinatal morbidity and mortality worldwide. However, the immunobiology of acute atherosis is poorly understood. METHOD OF STUDY Placental basal plate samples were collected from women who delivered with (n = 11) and without (n = 31) decidua basalis lesions of acute atherosis. Multicolor flow cytometry was used to quantify M1- and M2-like macrophage subsets and the expression of iNOS and IL-12 by decidual macrophages. Multiplex fluorescence staining and phenoptics were performed to localize M1-, MOX-, and Mhem-like macrophages in the decidual basalis. RESULTS Macrophages displayed diverse phenotypes in the decidua basalis with acute atherosis. M2-like macrophages were the most abundant subset in the decidua; yet, this macrophage subset did not change with the presence of acute atherosis. Decidual M1-like macrophages were increased in acute atherosis, and such macrophages displayed a pro-inflammatory phenotype, as indicated by the expression of iNOS and IL-12. Decidual M1-like pro-inflammatory macrophages were localized near both transformed and non-transformed vessels in the decidua basalis with acute atherosis. MOX and Mhem macrophages were also identified near transformed vessels in the decidua basalis with acute atherosis. Finally, monocyte-like cells were present on the vessel wall of non-transformed decidual vessels, indicating a possible intravascular source for macrophages in acute atherosis. CONCLUSION Decidual macrophages display different phenotypes, namely M1-like, M2-like, MOX, and Mhem subsets. Yet, pro-inflammatory macrophages are enriched in the decidua basalis with acute atherosis. These findings provide a molecular foundation for future mechanistic inquiries about the role of pro-inflammatory macrophages in the pathogenesis of acute atherosis.
Collapse
Affiliation(s)
- Navleen Gill
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Afrah Arif
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Salma Mumuni
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Faisal Qureshi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Hutzel Women’s Hospital, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Anne Cathrine Staff
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Division of Obstetrics and Gynecology, Oslo University Hospital, Norway
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
12
|
Decidual macrophage M1 polarization contributes to adverse pregnancy induced by Toxoplasma gondii PRU strain infection. Microb Pathog 2018; 124:183-190. [PMID: 30142466 DOI: 10.1016/j.micpath.2018.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/24/2018] [Accepted: 08/20/2018] [Indexed: 01/28/2023]
Abstract
Recent evidence indicates that macrophages at the maternal-fetal interface adapt to a phenotype characterized by alternative activation (M2 polarization) and exhibit immunosuppressive functions that favor the maintenance of pregnancy. The bias of M2 decidual macrophages toward M1 has been clinically linked to pregnancy-related complications, such as preeclampsia and preterm delivery. The aim of this study was to investigate the effect of Toxoplasma gondii PRU strain infection on the bias of decidual macrophage polarization and its contribution to adverse pregnancy outcomes. A mouse model with adverse pregnancy outcome was established by infection with T. gondii PRU strain and the expression levels of functional molecules in decidual macrophages of mice were measured. The results showed that T. gondii infection caused seriously adverse pregnancy outcome in mice. The placentae of infected mice showed obvious congestion and inflammatory cell infiltration. The expression of CD206, MHC-II, and arginase-1 considered as M2 markers was decreased in decidual macrophages after T. gondii infection, whereas the expression of CD80, CD86, iNOS, and cytokines TNF-α and IL-12 considered as M1 markers was increased. Furthermore, iNOS-positive expression was observed in the decidua basalis of infected mice. Our results indicated that T. gondii infection was responsible for the bias of M2 decidual macrophages toward M1, which changes the immunosuppressive microenvironment at the maternal-fetal interface and contributes to adverse pregnancy outcomes.
Collapse
|
13
|
Teofili L, Silini AR, Bianchi M, Valentini CG, Parolini O. Incorporating placental tissue in cord blood banking for stem cell transplantation. Expert Rev Hematol 2018; 11:649-661. [PMID: 29856650 DOI: 10.1080/17474086.2018.1483717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Human term placenta is comprised of various tissues from which different cells can be obtained, including hematopoietic stem cells and mesenchymal stem/stromal cells (MSCs). Areas covered: This review will discuss the possibility to incorporate placental tissue cells in cord blood banking. It will discuss general features of human placenta, with a brief review of the immune cells at the fetal-maternal interface and the different cell populations isolated from placenta, with a particular focus on MSCs. It will address the question as to why placenta-derived MSCs should be banked with their hematopoietic counterparts. It will discuss clinical trials which are studying safety and efficacy of placenta tissue-derived MSCs in selected diseases, and preclinical studies which have proven their therapeutic properties in other diseases. It will discuss banking of umbilical cord blood and raise several issues for improvement, and the applications of cord blood cells in non-malignant disorders. Expert commentary: Umbilical cord blood banking saves lives worldwide. The concomitant banking of non-hematopoietic cells from placenta, which could be applied therapeutically in the future, alone or in combination to their hematopoietic counterparts, could exploit current banking processes while laying the foundation for clinical trials exploring placenta-derived cell therapies in regenerative medicine.
Collapse
Affiliation(s)
- Luciana Teofili
- a Policlinico Universitario A. Gemelli IRCCS , Banca del Sangue di Cordone Ombelicale UNICATT, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Antonietta R Silini
- b Centro di Ricerca "E. Menni" Fondazione Poliambulanza - Istituto Ospedaliero , Brescia , Italy
| | - Maria Bianchi
- c Policlinico Universitario A. Gemelli IRCCS, Banca del Sangue di Cordone Ombelicale UNICATT , Rome , Italy
| | | | - Ornella Parolini
- b Centro di Ricerca "E. Menni" Fondazione Poliambulanza - Istituto Ospedaliero , Brescia , Italy.,d Istituto di Anatomia Umana e Biologia Cellulare Facoltà di Medicina e chirurgia "A. Gemelli" , Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
14
|
Zhao H, Kalish FS, Wong RJ, Stevenson DK. Hypoxia regulates placental angiogenesis via alternatively activated macrophages. Am J Reprod Immunol 2018; 80:e12989. [PMID: 29932269 DOI: 10.1111/aji.12989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/06/2018] [Indexed: 12/25/2022] Open
Abstract
PROBLEM Uterine and placental macrophages play critical roles in maintaining a normal pregnancy. The majority of these macrophages are believed to be alternatively activated macrophages (M2). METHOD OF STUDY Mouse bone marrow cells were differentiated into macrophages and polarized to M2 in vitro by treatment with IL-4 [M2a] or IL-10 [M2c] and M1 with LPS/IFN-γ as controls. Macrophage subtypes were confirmed by surface markers and characterized by gene expression profiles. RESULTS Compared to M1, M2 showed strong pro-angiogenic activity by expressing higher mRNA for angiogenic-associated factors (Cxcl12, Vegfa, PlGF, Mmp2). M2c produced the highest levels of PlGF, Mmp2, and Cxcr4. To mimic the normal placental microenvironment, M2 were exposed to hypoxia and sex hormones (progesterone, estrogen). In both M2c and M2a, severe hypoxic (1%-3% O2 ) exposure significantly suppressed PlGF, Cxcl12, and Mmp2 mRNA, but not Vegfa, compared to normoxia (21% O2 ) or physiological hypoxia (5% O2 ). mRNA expression returned to normal when hypoxic cells were returned to normoxia. Hypoxia (1%) reduced antioxidant levels in M2 and re-exposure to normoxia significantly increased superoxide dismutase (Sod1, Sod2) and heme oxygenase-1 (HO-1) levels in M2a, and only glutathione peroxidase (Gpx1, Gpx3, Gpx4) in M2c. However, progesterone and estrogen treatment had minimal effects on angiogenic factor expression in M2. CONCLUSION M2, particularly M2c, displayed strong pro-angiogenic potential, which decreased under severe hypoxia such as in early pregnancy. Thus, conditions that alter the placental oxygen microenvironment or macrophage response in early pregnancy might cause aberrant angiogenesis and vascular remodeling, and lead to abnormal placental vascular development.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Flora S Kalish
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Faas MM, De Vos P. Innate immune cells in the placental bed in healthy pregnancy and preeclampsia. Placenta 2018; 69:125-133. [PMID: 29748088 DOI: 10.1016/j.placenta.2018.04.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Immune cells in the placental bed are important for adequate development of the placental bed. The most prominent immune cells in the placental bed early in pregnancy are uterine natural killer cells (uNK) cells and macrophages. Also dendritic cells and mast cells can be found in the early placental bed. These cells not only have an immune regulatory function, but are also involved in the regulation of trophoblast invasion, angiogenesis and spiral artery remodeling. In preeclampsia, one of the major complications of pregnancy, decreased trophoblast invasion and spiral artery remodeling has been found. This is associated with decreased numbers of uNK cells, increased numbers of macrophages around the spiral arteries and similar or increased numbers of dendritic cells in the placental bed. In this review, we discuss the current insights in the functions of uNK cells, macrophages, dendritic cells and mast cells in the placental bed in humans during healthy pregnancy and during preeclampsia. As animal models are instrumental in understanding the role of immune cells in the placental bed, we also review studies on the function and phenotype of these innate immune cells in experimental preeclampsia. A better understanding of the dynamics and functional changes of these immune cells in the placental bed may eventually lead to new therapeutic targets for preeclampsia.
Collapse
Affiliation(s)
- Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Obstetrics and Gynecology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.
| | - Paul De Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Wang XQ, Zhou WJ, Hou XX, Fu Q, Li DJ. Trophoblast-derived CXCL16 induces M2 macrophage polarization that in turn inactivates NK cells at the maternal-fetal interface. Cell Mol Immunol 2018; 15:1038-1046. [PMID: 29588487 PMCID: PMC6269500 DOI: 10.1038/s41423-018-0019-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 01/27/2023] Open
Abstract
Decidual macrophages (dMΦ) are distinct from the conventional macrophages present in other tissues and express M2 macrophage markers, but the molecular mechanisms of formation and the roles of M2 MΦ during pregnancy have not been completely elucidated. The crosstalk between decidual natural killer cells (dNK) and dMΦ plays an important role in the maintenance of maternal-fetal immune tolerance. Here, CXCL16 derived from first-trimester trophoblast cells induces the polarization of human M2 macrophages. The M2 MΦ polarized by CXCL16 exhibit decreased interleukin-15 production, which facilitates the inactivation of NK cells. The cytotoxicity of NK cells is attenuated by the CXCL16-polarized M2 MΦ. The data shown in the present study provide evidence to support the hypothesis that CXCL16 secreted by trophoblast cells is a key molecule involved in decidual M2 MΦ polarization, which in turn regulates the killing ability of NK cells, thereby contributing to the homeostatic and immune-tolerant milieu required for successful fetal development.
Collapse
Affiliation(s)
- Xiao-Qiu Wang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, IRD, Fudan University, Shanghai Medical College, Shanghai, China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, IRD, Fudan University, Shanghai Medical College, Shanghai, China
| | - Xin-Xin Hou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, IRD, Fudan University, Shanghai Medical College, Shanghai, China
| | - Qiang Fu
- College of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, IRD, Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|
17
|
The pathogenesis of microcephaly resulting from congenital infections: why is my baby’s head so small? Eur J Clin Microbiol Infect Dis 2017; 37:209-226. [DOI: 10.1007/s10096-017-3111-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023]
|
18
|
Jafri S, Ormiston ML. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities. Am J Physiol Regul Integr Comp Physiol 2017; 313:R693-R705. [PMID: 28978513 DOI: 10.1152/ajpregu.00259.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4+ helper T cell populations, defined by excessive Th17 responses and impaired Treg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8+ T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders.
Collapse
Affiliation(s)
- Salema Jafri
- University of Cambridge, Department of Medicine, Cambridge, United Kingdom; and
| | - Mark L Ormiston
- Queen's University, Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Kingston, Canada
| |
Collapse
|
19
|
Shirasuna K, Seno K, Ohtsu A, Shiratsuki S, Ohkuchi A, Suzuki H, Matsubara S, Nagayama S, Iwata H, Kuwayama T. AGEs and HMGB1 Increase Inflammatory Cytokine Production from Human Placental Cells, Resulting in an Enhancement of Monocyte Migration. Am J Reprod Immunol 2016; 75:557-68. [DOI: 10.1111/aji.12506] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Koumei Shirasuna
- Laboratory of Animal Reproduction; Department of Agriculture; Tokyo University of Agriculture; Atsugi Kanagawa Japan
| | - Kotomi Seno
- Laboratory of Animal Reproduction; Department of Agriculture; Tokyo University of Agriculture; Atsugi Kanagawa Japan
| | - Ayaka Ohtsu
- Laboratory of Animal Reproduction; Department of Agriculture; Tokyo University of Agriculture; Atsugi Kanagawa Japan
| | - Shogo Shiratsuki
- Laboratory of Animal Reproduction; Department of Agriculture; Tokyo University of Agriculture; Atsugi Kanagawa Japan
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology; Jichi Medical University; Shimotsuke Tochigi Japan
| | - Hirotada Suzuki
- Department of Obstetrics and Gynecology; Jichi Medical University; Shimotsuke Tochigi Japan
| | - Shigeki Matsubara
- Department of Obstetrics and Gynecology; Jichi Medical University; Shimotsuke Tochigi Japan
| | - Shiho Nagayama
- Department of Obstetrics and Gynecology; Jichi Medical University; Shimotsuke Tochigi Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction; Department of Agriculture; Tokyo University of Agriculture; Atsugi Kanagawa Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction; Department of Agriculture; Tokyo University of Agriculture; Atsugi Kanagawa Japan
| |
Collapse
|
20
|
Human trophoblast cells induced MDSCs from peripheral blood CD14(+) myelomonocytic cells via elevated levels of CCL2. Cell Mol Immunol 2015; 13:615-27. [PMID: 26027727 DOI: 10.1038/cmi.2015.41] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/18/2015] [Accepted: 04/19/2015] [Indexed: 12/16/2022] Open
Abstract
Successful human pregnancy requires the maternal immune system to recognize and tolerate the semi-allogeneic fetus. Myeloid-derived suppressor cells (MDSCs), which are capable of inhibiting T-cell responses, are highly increased in the early stages of pregnancy. Although recent reports indicate a role for MDSCs in fetal-maternal tolerance, little is known about the expansion of MDSCs during pregnancy. In the present study, we demonstrated that the trophoblast cell line HTR8/SVneo could instruct peripheral CD14(+) myelomonocytic cells toward a novel subpopulation of MDSCs, denoted as CD14(+)HLA-DR(-/low) cells, with suppressive activity and increased expression of IDO1, ARG-1, and COX2. After interaction with HTR8/SVneo cells, CD14(+) myelomonocytic cells secrete high levels of CCL2, promoting the expression of signal transducer and activator of transcription 3. We utilized a neutralizing monoclonal antibody to reveal the prominent role of CCL2 in the induction of CD14(+)HLA-DR(-/low) MDSCs. In combination, the results of the present study support a novel role for the cross-talk between the trophoblast cell line HTR8/SVneo and maternal CD14(+) myelomonocytic cells in initiating MDSCs induction, prompting a tolerogenic immune response to ensure a successful pregnancy.
Collapse
|
21
|
Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev 2014; 35:851-905. [PMID: 25141152 DOI: 10.1210/er.2014-1045] [Citation(s) in RCA: 686] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decidualization denotes the transformation of endometrial stromal fibroblasts into specialized secretory decidual cells that provide a nutritive and immunoprivileged matrix essential for embryo implantation and placental development. In contrast to most mammals, decidualization of the human endometrium does not require embryo implantation. Instead, this process is driven by the postovulatory rise in progesterone levels and increasing local cAMP production. In response to falling progesterone levels, spontaneous decidualization causes menstrual shedding and cyclic regeneration of the endometrium. A growing body of evidence indicates that the shift from embryonic to maternal control of the decidual process represents a pivotal evolutionary adaptation to the challenge posed by invasive and chromosomally diverse human embryos. This concept is predicated on the ability of decidualizing stromal cells to respond to individual embryos in a manner that either promotes implantation and further development or facilitates early rejection. Furthermore, menstruation and cyclic regeneration involves stem cell recruitment and renders the endometrium intrinsically capable of adapting its decidual response to maximize reproductive success. Here we review the endocrine, paracrine, and autocrine cues that tightly govern this differentiation process. In response to activation of various signaling pathways and genome-wide chromatin remodeling, evolutionarily conserved transcriptional factors gain access to the decidua-specific regulatory circuitry. Once initiated, the decidual process is poised to transit through distinct phenotypic phases that underpin endometrial receptivity, embryo selection, and, ultimately, resolution of pregnancy. We discuss how disorders that subvert the programming, initiation, or progression of decidualization compromise reproductive health and predispose for pregnancy failure.
Collapse
Affiliation(s)
- Birgit Gellersen
- Endokrinologikum Hamburg (B.G.), 20251 Hamburg, Germany; and Division of Reproductive Health (J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
22
|
Dynamic changes in maternal decidual leukocyte populations from first to second trimester gestation. Placenta 2014; 35:1027-34. [PMID: 25449030 DOI: 10.1016/j.placenta.2014.09.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/22/2014] [Accepted: 09/25/2014] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Decidual leukocytes are critical to the development of the fetomaternal interface, regulating tolerance to the semi-allogeneic fetus and vascular transformation of the uterine spiral arteries. Despite the continuation of these processes beyond the first trimester of pregnancy, the second trimester has largely been unstudied, with investigation focusing on early gestation and term tissues. We sought to characterize changes in decidual leukocyte populations from first to second trimester. METHODS Multicolor flow cytometry was performed on isolated decidual leukocytes from elective terminations of pregnancy between 6 and 20 weeks of gestation for study of first (6-12 weeks) and second trimesters (13-20 weeks). Specific subpopulations were identified by comparison to isotype and fluorescent-minus-one (FMO) controls. RESULTS Decidual natural killer cells (CD56(+)CD16(-)CD3(-)) did not change in number, although a population of dNK with decreased CD56 brightness was observed in second trimester decidua. CD14(+)HLA-DR(+) macrophage numbers declined from first to second trimester (p = 0.031), yet a CD163(+)CD206(+) subset designating alternatively activated M2-like macrophages increased during the same period (p = 0.015). Intermediate CD205(+) dendritic cells demonstrated significant decline (p = 0.022), but immature CD209(+) and mature CD83(+) dendritic cells did not differ between trimesters. Total CD3(+) and CD3(+)CD4(+) T lymphocytes increased (p = 0.0079, p = 0.0028); CD3(+)CD8(+) T cells trended towards increase but did not differ significantly. CONCLUSION Several changes in leukocyte subsets are observed in the second trimester that promote a tolerogenic and angiogenic decidual microenvironment through mid-gestation.
Collapse
|
23
|
Faas MM, Spaans F, De Vos P. Monocytes and macrophages in pregnancy and pre-eclampsia. Front Immunol 2014; 5:298. [PMID: 25071761 PMCID: PMC4074993 DOI: 10.3389/fimmu.2014.00298] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia is an important complication in pregnancy, characterized by hypertension and proteinuria in the second half of pregnancy. Generalized activation of the inflammatory response is thought to play a role in the pathogenesis of pre-eclampsia. Monocytes may play a central role in this inflammatory response. Monocytes are short lived cells that mature in the circulation and invade into tissues upon an inflammatory stimulus and develop into macrophages. Macrophages are abundantly present in the endometrium and play a role in implantation and placentation in normal pregnancy. In pre-eclampsia, these macrophages appear to be present in larger numbers and are also activated. In the present review, we focused on the role of monocytes and macrophages in the pathophysiology of pre-eclampsia.
Collapse
Affiliation(s)
- Marijke M Faas
- Immunoendocrinology, Department of Pathology and Medical Biology, Division of Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Floor Spaans
- Immunoendocrinology, Department of Pathology and Medical Biology, Division of Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Paul De Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, Division of Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
24
|
Sedlmayr P, Blaschitz A, Stocker R. The role of placental tryptophan catabolism. Front Immunol 2014; 5:230. [PMID: 24904580 PMCID: PMC4032907 DOI: 10.3389/fimmu.2014.00230] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/05/2014] [Indexed: 01/22/2023] Open
Abstract
This review discusses the mechanisms and consequences of degradation of tryptophan (Trp) in the placenta, focusing mainly on the role of indoleamine 2,3-dioxygenase-1 (IDO1), one of three enzymes catalyzing the first step of the kynurenine pathway of Trp degradation. IDO1 has been implicated in regulation of feto-maternal tolerance in the mouse. Local depletion of Trp and/or the presence of metabolites of the kynurenine pathway mediate immunoregulation and exert antimicrobial functions. In addition to the decidual glandular epithelium, IDO1 is localized in the vascular endothelium of the villous chorion and also in the endothelium of spiral arteries of the decidua. Possible consequences of IDO1-mediated catabolism of Trp in the endothelium encompass antimicrobial activity and immunosuppression, as well as relaxation of the placental vasotonus, thereby contributing to placental perfusion and growth of both placenta and fetus. It remains to be evaluated whether other enzymes mediating Trp oxidation, such as indoleamine 2,3-dioxygenase-2, Trp 2,3-dioxygenase, and Trp hydroxylase-1 are of relevance to the biology of the placenta.
Collapse
Affiliation(s)
- Peter Sedlmayr
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz , Graz , Austria
| | - Astrid Blaschitz
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz , Graz , Austria
| | - Roland Stocker
- Victor Chang Cardiac Research Institute , Darlinghurst, NSW , Australia
| |
Collapse
|
25
|
Major histocompatibility complex I mediates immunological tolerance of the trophoblast during pregnancy and may mediate rejection during parturition. Mediators Inflamm 2014; 2014:579279. [PMID: 24812442 PMCID: PMC4000645 DOI: 10.1155/2014/579279] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 12/30/2022] Open
Abstract
During pregnancy in larger mammals, the maternal immune system must tolerate the fetus for months while resisting external infection. This tolerance is facilitated by immunological communication between the fetus and the mother, which is mediated by Major Histocompatibility Complex I (MHC I) proteins, by leukocytes, and by the cytokines secreted by the leukocytes. Fetal-maternal immunological communication also supports pregnancy by inducing physiological changes in the mother. If the mother “misunderstands” the signal sent by the fetus during pregnancy, the fetus will be miscarried or delivered preterm. Unlike any other maternal organ, the placenta can express paternal antigens. At parturition, paternal antigens are known to be expressed in cows and may be expressed in horses, possibly so that the maternal immune system will reject the placenta and help to expel it. This review compares fetal-maternal crosstalk that is mediated by the immune system in three species with pregnancies that last for nine months or longer: humans, cattle, and horses. It raises the possibility that immunological communication early in pregnancy may prepare the mother for successful expulsion of fetal membranes at parturition.
Collapse
|
26
|
Helige C, Ahammer H, Moser G, Hammer A, Dohr G, Huppertz B, Sedlmayr P. Distribution of decidual natural killer cells and macrophages in the neighbourhood of the trophoblast invasion front: a quantitative evaluation. Hum Reprod 2013; 29:8-17. [PMID: 24140594 DOI: 10.1093/humrep/det353] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Do decidual natural killer (dNK) cells and decidual macrophages (dMph) become enriched in the vicinity of the trophoblast invasion front? SUMMARY ANSWER Morphometric image analysis and areal cell density calculations, which excluded observer bias, showed an enrichment of decidual leukocytes in the neighbourhood of the trophoblast invasion front. WHAT IS KNOWN ALREADY In previous studies, the number of decidual leukocytes was visually counted in medium- or high power fields. These methods, however, cannot reveal the exact spatial relationship between leukocytes and invasive trophoblast cells, and are therefore prone to subjective errors. Thus, a more objective approach is required. STUDY DESIGN, SIZE, DURATION Applying a new method of morphometric image analysis, leukocyte populations were studied in human tissue fragments derived from first trimester placentation sites (n = 7) as well as in co-cultures of first trimester decidual tissue with placental villi of the same pregnancy representing an appropriate in vitro model of trophoblast invasion (n = 15). PARTICIPANTS/MATERIALS, SETTINGS, METHODS First trimester decidual tissue was obtained from women undergoing elective terminations of pregnancy at 7-10 weeks of gestational age. Tissue sections were double-stained immunohistochemically for markers of dNK cells or dMph on one hand, and for invasive extravillous trophoblast cells on the other. To analyse the distribution of leukocytes, distinct cell compartments as well as cell neighbourhood areas were defined. Finally, relative areal cell densities were calculated and these data were compared with those of an in vitro model of trophoblast invasion as well as with tissue fragments derived from decidua parietalis without trophoblast cells. MAIN RESULTS AND THE ROLE OF CHANCE At first trimester placentation sites, a higher density of dNK cells as well as of dMph was found in close proximity to the invasive trophoblast (P ≤ 0.01), compared with the average areal cell density of decidual leukocytes in the tissue with exclusion of the trophoblast. The highest areal cell density of leukocytes was determined up to a distance of 20 μm from the trophoblast cells, whereas in more distant regions it was even lower than average, indicating a migration of these leukocytes towards the trophoblast invasion front. In the three-dimensional co-culture model, however, we found an enrichment of dMph (P ≤ 0.01) but not of dNK cells (P > 0,05) in the neighbourhood of the invasive trophoblast. LIMITATIONS, REASONS FOR CAUTION The morphometric image analysis depends on intense immunohistochemical staining that is free of background and cross-reactivity. WIDER IMPLICATIONS OF THE FINDINGS The presented method will be useful not only for the investigation of recurrent miscarriage but also in the fields of tumour immunology and inflammation. STUDY FUNDING/COMPETING INTEREST(S) The study was supported by the European Commission (Network of Excellence 'The Control of Embryo Implantation (EMBIC)', FP6-512040, lead researcher: P.S.), and by the Franz Lanyar Foundation of the Medical University of Graz, Austria (Grant #347). None of the authors declared a conflict of interests.
Collapse
Affiliation(s)
- C Helige
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University of Graz, Harrachgasse 21, A-8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
27
|
Karniychuk UU, Nauwynck HJ. Pathogenesis and prevention of placental and transplacental porcine reproductive and respiratory syndrome virus infection. Vet Res 2013; 44:95. [PMID: 24099529 PMCID: PMC4021427 DOI: 10.1186/1297-9716-44-95] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/26/2013] [Indexed: 01/09/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV)-induced reproductive problems are characterized by embryonic death, late-term abortions, early farrowing and increase in number of dead and mummified fetuses, and weak-born piglets. The virus recovery from fetal tissues illustrates transplacental infection, but despite many studies on the subject, the means by which PRRSV spreads from mother to fetus and the exact pathophysiological basis of the virus-induced reproductive failure remain unexplained. Recent findings from our group indicate that the endometrium and placenta are involved in the PRRSV passage from mother to fetus and that virus replication in the endometrial/placental tissues can be the actual reason for fetal death. The main purpose of this review is to clarify the role that PRRSV replication and PRRSV-induced changes in the endometrium/placenta play in the pathogenesis of PRRSV-induced reproductive failure in pregnant sows. In addition, strategies to control placental and transplacental PRRSV infection are discussed.
Collapse
Affiliation(s)
- Uladzimir U Karniychuk
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | | |
Collapse
|
28
|
Comparative phenotypic characterization of human cord blood monocytes and placental macrophages at term. Placenta 2013; 34:836-9. [PMID: 23773857 DOI: 10.1016/j.placenta.2013.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/13/2013] [Accepted: 05/20/2013] [Indexed: 11/23/2022]
Abstract
The expression of surface molecules in cord blood monocytes and placental macrophages was studied using flow cytometry. When compared with monocytes, macrophages presented a decrease in HLA-DR and LAP/TGF-β1 levels and increased expression of alternative activation markers, especially CD206. No difference in the production of the apoptotic factors TRAIL and TWEAK was observed, whereas the levels of cytokine receptors in monocytes were significantly higher than in macrophages. Most remarkable was the difference in the expression of IL-17 and TNFα receptors. A strong correlation between VEGF and TNFα receptors was revealed in both cell populations. The results obtained in this study provide antigenic phenotypes for two related cell populations and outline the feasible functional alterations during tissue macrophage differentiation.
Collapse
|
29
|
Nanomaterial interference with early human placenta: Sophisticated matter meets sophisticated tissues. Reprod Toxicol 2013; 41:73-9. [PMID: 23751448 DOI: 10.1016/j.reprotox.2013.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/23/2013] [Accepted: 05/30/2013] [Indexed: 01/12/2023]
Abstract
Next to nothing is known about nanoparticle and nanofiber trafficking at the feto-maternal interface in early human pregnancy. As the first trimester is thought to be crucial for the further placental and fetal development, it will be important to assess the possible risks of nanomaterial exposures during this period. There are some intriguing observations in nanotoxicology, however, indicating certain differences between classical toxicology and nanotoxicology. To understand nanomaterial-biokinetics and placental toxicity in early gestation, the special architecture, the hypoxic condition, the bilayer of villous trophoblast, the plugging of spiral arteries and the contribution of intrauterine glands to nutrition, as well as the delicate immunologic situation at the implantation site, will have to be considered. Unless nano-specific biokinetics are properly understood, it will be difficult to ensure identification of potential "nano-thalidomides" among all the newly engineered nanoparticles and fibers, based on the models available in reproductive toxicology.
Collapse
|
30
|
Abstract
The immune cells that reside at the interface between the placenta and uterus are thought to play many important roles in pregnancy. Recent work has revealed that the composition and function of these cells are locally controlled by the specialized uterine stroma (the decidua) that surrounds the implanted conceptus. Here, I discuss how key immune cell types (natural killer cells, macrophages, dendritic cells, and T cells) are either enriched or excluded from the decidua, how their function is regulated within the decidua, and how they variously contribute to pregnancy success or failure. The discussion emphasizes the relationship between human and mouse studies. Deeper understanding of the immunology of the maternal-fetal interface promises to yield significant insight into the pathogenesis of many human pregnancy complications, including preeclampsia, intrauterine growth restriction, spontaneous abortion, preterm birth, and congenital infection.
Collapse
Affiliation(s)
- Adrian Erlebacher
- Department of Pathology and NYU Cancer Institute, NYU School of Medicine, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
31
|
Amodio G, Mugione A, Sanchez AM, Viganò P, Candiani M, Somigliana E, Roncarolo MG, Panina-Bordignon P, Gregori S. HLA-G expressing DC-10 and CD4(+) T cells accumulate in human decidua during pregnancy. Hum Immunol 2012; 74:406-11. [PMID: 23238214 PMCID: PMC3610019 DOI: 10.1016/j.humimm.2012.11.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/01/2012] [Accepted: 11/28/2012] [Indexed: 12/05/2022]
Abstract
Multiple mechanisms underlie the surprising willingness of mothers to tolerate the semi-allogeneic fetal tissues during pregnancy. Chief among these is the expression of the HLA-G molecules that has been largely demonstrated to be responsible for reprogramming the local maternal immune response towards tolerance. We recently identified a subset of tolerogenic dendritic cells, DC-10 that secrete high amounts of IL-10 and express high levels of HLA-G and its ligand ILT4. DC-10 are present in the peripheral blood and are essential in inducing adaptive regulatory T cells. We investigated the presence of DC-10 and HLA-G-expressing CD4+ T cells in human decidua in the first trimester of pregnancy. Results showed that these cells are highly represented in human decidua as compared to the peripheral blood. This is the first report describing decidual DC-10 and CD4+HLA-G+ T cells, strongly suggesting that they may accumulate or be induced at the fetal maternal interface to promote tolerance.
Collapse
Affiliation(s)
- Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sedlmayr P, Blaschitz A. Placental expression of indoleamine 2,3-dioxygenase. Wien Med Wochenschr 2012; 162:214-9. [PMID: 22717876 DOI: 10.1007/s10354-012-0082-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/16/2012] [Indexed: 12/19/2022]
Abstract
This review focuses on the placental expression of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase-1 (IDO1) and its potential roles, which may not only encompass immunosuppression and antimicrobial activity, but also vasodilation based on the endothelial expression on both sides of the feto-maternal interface.
Collapse
Affiliation(s)
- Peter Sedlmayr
- Center for Molecular Medicine, Institute for Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria.
| | | |
Collapse
|
33
|
Juch H, Blaschitz A, Dohr G, Hutter H. HLA class I expression in the human placenta. Wien Med Wochenschr 2012; 162:196-200. [PMID: 22717873 DOI: 10.1007/s10354-012-0070-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
Placental trophoblast cells of the semi-allogenic human conceptus invade deeply into maternal uterine tissue. From a classical immunoiogic point of view this invasion and the following growth and development of the fetus in the uterus have to be tolerated by a pregnant woman's immune system. Among the various possible protective mechanisms that may be involved, the unique expression pattern of HLA class I molecules seems to be relevant. Besides many other differences between placentation and organ transplantation, this extraordinary HLA class I expression on trophoblast explains why pregnancy should not be considered an immunologic paradox but rather a fascinating example of a very special challenge for the female immune system.
Collapse
Affiliation(s)
- Herbert Juch
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | | | | | | |
Collapse
|
34
|
Zimmer A, Bouley J, Le Mignon M, Pliquet E, Horiot S, Turfkruyer M, Baron-Bodo V, Horak F, Nony E, Louise A, Moussu H, Mascarell L, Moingeon P. A regulatory dendritic cell signature correlates with the clinical efficacy of allergen-specific sublingual immunotherapy. J Allergy Clin Immunol 2012; 129:1020-30. [PMID: 22464673 DOI: 10.1016/j.jaci.2012.02.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/06/2012] [Accepted: 02/15/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND Given their pivotal role in the polarization of T-cell responses, molecular changes at the level of dendritic cells (DCs) could represent an early signature indicative of the subsequent orientation of adaptive immune responses during immunotherapy. OBJECTIVE We sought to investigate whether markers of effector and regulatory DCs are affected during allergen immunotherapy in relationship with clinical benefit. METHODS Differential gel electrophoresis and label-free mass spectrometry approaches were used to compare whole proteomes from human monocyte-derived DCs differentiated toward either regulatory or effector functions. The expression of those markers was assessed by using quantitative PCR in PBMCs from 79 patients with grass pollen allergy enrolled in a double-blind, placebo-controlled clinical study evaluating the efficacy of sublingual tablets in an allergen exposure chamber over a 4-month period. RESULTS We identified several markers associated with DC1 and/or DC17 effector DCs, including CD71, FSCN1, IRF4, NMES1, MX1, TRAF1. A substantial phenotypic heterogeneity was observed among various types of tolerogenic DCs, with ANXA1, Complement component 1 (C1Q), CATC, GILZ, F13A, FKBP5, Stabilin-1 (STAB1), and TPP1 molecules established as shared or restricted regulatory DC markers. The expression of 2 of those DCs markers, C1Q and STAB1, was increased in PBMCs from clinical responders in contrast to that seen in nonresponders or placebo-treated patients. CONCLUSION C1Q and STAB1 represent candidate biomarkers of early efficacy of allergen immunotherapy as the hallmark of a regulatory innate immune response predictive of clinical tolerance.
Collapse
|
35
|
Menzies FM, Henriquez FL, Alexander J, Roberts CW. Selective inhibition and augmentation of alternative macrophage activation by progesterone. Immunology 2011; 134:281-91. [PMID: 21977998 DOI: 10.1111/j.1365-2567.2011.03488.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Progesterone is the female sex hormone necessary for the maintenance of pregnancy, and is known to modulate macrophage activation. However, studies have concentrated exclusively on the ability of progesterone to negatively regulate the innate and classical pathways of activation, associated with nitric oxide (NO) and interleukin (IL)-12 production. Our aim was to examine the ability of progesterone to modulate alternative macrophage activation. Bone marrow cells were isolated and differentiated from male BALB/c mice, exposed to varying concentrations of progesterone and stimulated with lipopolysaccharide (LPS) (innate activation), IL-4 (alternative activation) or LPS in combination with IL-4. Our present study demonstrates that progesterone not only down-regulates inducible nitric oxide synthase 2 (iNOS) activity in macrophages but also arginase activity, in a dose-dependent manner, independent of the stimuli, whether it is induced by LPS (innate activation), IL-4 (alternative activation) or LPS in combination with IL-4. The ability of progesterone to down-modulate IL-4-induced cell surface expression of the mannose receptor further suggested a negative regulation of alternative macrophage activation by this hormone. Analysis of mRNA expression, by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), of genes associated with innate and alternative macrophage activation revealed that progesterone down-regulated LPS-induced macrophage nos2, argI and p40 (IL-12/IL-23) expression and IL-4-induced argI, mrc-1 and fizz1 expression. However, progesterone up-regulated IL-4-induced macrophage expression of ym1, while dectin-1 expression remained unaltered. Following treatment of macrophages with LPS and IL-4 in combination a similar pattern was observed, with the exception that progesterone up-regulated macrophage expression of fizz1 as well as ym1 and did not modify mrc-1 expression. Our data demonstrate for the first time that a hormone has the ability to regulate selectively the expression of different genes associated with alternative macrophage activation.
Collapse
Affiliation(s)
- Fiona M Menzies
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | | | |
Collapse
|
36
|
Marcelin G, Aldridge JR, Duan S, Ghoneim HE, Rehg J, Marjuki H, Boon ACM, McCullers JA, Webby RJ. Fatal outcome of pandemic H1N1 2009 influenza virus infection is associated with immunopathology and impaired lung repair, not enhanced viral burden, in pregnant mice. J Virol 2011; 85:11208-19. [PMID: 21865394 PMCID: PMC3194964 DOI: 10.1128/jvi.00654-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/10/2011] [Indexed: 01/22/2023] Open
Abstract
Pandemic A (H1N1) 2009 influenza virus (pH1N1) infection in pregnant women can be severe. The mechanisms that affect infection outcome in this population are not well understood. To address this, pregnant and nonpregnant BALB/c mice were inoculated with the wild-type pH1N1 strain A/California/04/09. To determine whether innate immune responses are associated with severe infection, we measured the innate cells trafficking into the lungs of pregnant versus nonpregnant animals. Increased infiltration of pulmonary neutrophils and macrophages strongly correlated with an elevated mortality in pregnant mice. In agreement with this, the product of nitric oxide (nitrite) and several cytokines associated with recruitment and/or function of these cells were increased in the lungs of pregnant animals. Surprisingly, increased mortality in pregnant mice was not associated with higher virus load because equivalent virus titers and immunohistochemical staining were observed in the nasal cavities or lungs of all mice. To determine whether exacerbated inflammatory responses and elevated cellularity resulted in lung injury, epithelial regeneration was measured. The lungs of pregnant mice exhibited reduced epithelial regeneration, suggesting impaired lung repair. Despite these immunologic alterations, pregnant animals demonstrated equivalent percentages of pulmonary influenza virus-specific CD8(+) T lymphocytes, although they displayed elevated levels of T-regulator lymphocytes (Tregs) in the lung. Also, pregnant mice mounted equal antibody titers in response to virus or immunization with a monovalent inactivated pH1N1 A/California/07/09 vaccine. Therefore, immunopathology likely caused by elevated cellular recruitment is an implicated mechanism of severe pH1N1 infection in pregnant mice.
Collapse
Affiliation(s)
| | | | - Susu Duan
- Department of Infectious Diseases, Division of Virology
| | | | - Jerold Rehg
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105
| | - Henju Marjuki
- Department of Infectious Diseases, Division of Virology
| | | | | | | |
Collapse
|
37
|
Lash GE, Bulmer JN, Innes BA, Drury JA, Robson SC, Quenby S. Prednisolone treatment reduces endometrial spiral artery development in women with recurrent miscarriage. Angiogenesis 2011; 14:523-32. [PMID: 21984529 DOI: 10.1007/s10456-011-9237-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 09/21/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND Uterine natural killer (uNK) cells and endometrial blood vessel maturation are increased in the luteal phase of the menstrual cycle in a subset of women with recurrent miscarriage (RM). uNK cell numbers are reduced after treatment with prednisolone (20 mg/day for 3 weeks). HYPOTHESES Prednisolone treatment reduces endometrial vascular maturation and angiogenic growth factor expression in women with RM with increased uNK cells. METHODS Endometrial biopsies (n = 18 paired samples) from women with RM at LH + 7 before and during prednisolone treatment (20 mg/day for 3 weeks) were snap frozen. Total RNA and cDNA was prepared and used in a human angiogenesis RT-PCR superarray (84 genes, n = 6 pairs) with results validated using RT-PCR (n = 15 pairs). Immunohistochemistry (n = 15 pairs) was performed for Factor VIII, α-smooth muscle actin (α-SMA) and myosin heavy chain (MyHC) and the total number of vessels and the percentage of vessels completely surrounded by vascular smooth muscle cells (VSMCs) were determined. RESULTS During prednisolone treatment there was no change in the total number of endometrial blood vessels but the percentage of vessels completely surrounded by VSMCs was decreased (α-SMA P < 0.0001; MyHC P < 0.0001). Endometrial EGF and STAB 1 expression was decreased during prednisolone treatment in samples from woman who went on to have a live birth. CONCLUSIONS The effect of prednisolone therapy for some women with RM may be due to altered endometrial angiogenic growth factor expression and reduced blood vessel maturation.
Collapse
Affiliation(s)
- Gendie E Lash
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, 3rd Floor, William Leech Building, Newcastle upon Tyne, NE2 4HH, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Svensson J, Jenmalm MC, Matussek A, Geffers R, Berg G, Ernerudh J. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. THE JOURNAL OF IMMUNOLOGY 2011; 187:3671-82. [PMID: 21890660 DOI: 10.4049/jimmunol.1100130] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During pregnancy, the maternal immune system is challenged by the presence of the fetus, which must be tolerated despite being semiallogeneic. Uterine mucosal (or decidual) macrophages (M), one of the major leukocyte populations at the fetal-maternal interface, have been implicated in fetal tolerance, but information regarding their regulation is scarce. In this study, we investigated the role of several factors potentially involved in the differentiation and polarization of decidual M with an in vitro M differentiation model. By using flow cytometry, we showed that M-CSF and IL-10 were potent inducers of M2 (immunoregulatory) M markers expressed on human decidual M (CD14, CD163, CD206, CD209). In contrast, proinflammatory stimuli, and unexpectedly also the Th2-associated IL-4 and IL-13, induced different patterns of expression, indicating that a Th2-dominated environment is not required for decidual M polarization. M-CSF/IL-10-stimulated and decidual M also showed similar cytokine secretion patterns, with production of IL-10 as well as IL-6, TNF, and CCL4. Conversely, the proinflammatory, LPS/IFN-γ-stimulated M produced significantly higher levels of TNF and no IL-10. We also used a gene array with 420 M-related genes, of which 100 were previously reported to be regulated in a global gene expression profiling of decidual M, confirming that M-CSF/IL-10-induced M are closely related to decidual M. Taken together, our results consistently point to a central role for M-CSF and in particular IL-10 in the shaping of decidual M with regulatory properties. These cytokines may therefore play an important role in supporting the homeostatic and tolerant immune milieu required for a successful pregnancy.
Collapse
Affiliation(s)
- Judit Svensson
- Unit for Autoimmunity and Immune Regulation, Division of Clinical Immunology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 581 85 Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|
39
|
Blaschitz A, Gauster M, Fuchs D, Lang I, Maschke P, Ulrich D, Karpf E, Takikawa O, Schimek MG, Dohr G, Sedlmayr P. Vascular endothelial expression of indoleamine 2,3-dioxygenase 1 forms a positive gradient towards the feto-maternal interface. PLoS One 2011; 6:e21774. [PMID: 21755000 PMCID: PMC3130744 DOI: 10.1371/journal.pone.0021774] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/07/2011] [Indexed: 12/31/2022] Open
Abstract
We describe the distribution of indoleamine 2,3-dioxygenase 1 (IDO1) in vascular endothelium of human first-trimester and term placenta. Expression of IDO1 protein on the fetal side of the interface extended from almost exclusively sub-trophoblastic capillaries in first-trimester placenta to a nearly general presence on villous vascular endothelia at term, including also most bigger vessels such as villous arteries and veins of stem villi and vessels of the chorionic plate. Umbilical cord vessels were generally negative for IDO1 protein. In the fetal part of the placenta positivity for IDO1 was restricted to vascular endothelium, which did not co-express HLA-DR. This finding paralleled detectability of IDO1 mRNA in first trimester and term tissue and a high increase in the kynurenine to tryptophan ratio in chorionic villous tissue from first trimester to term placenta. Endothelial cells isolated from the chorionic plate of term placenta expressed IDO1 mRNA in contrast to endothelial cells originating from human umbilical vein, iliac vein or aorta. In first trimester decidua we found endothelium of arteries rather than veins expressing IDO1, which was complementory to expression of HLA-DR. An estimation of IDO activity on the basis of the ratio of kynurenine and tryptophan in blood taken from vessels of the chorionic plate of term placenta indicated far higher values than those found in the peripheral blood of adults. Thus, a gradient of vascular endothelial IDO1 expression is present at both sides of the feto-maternal interface.
Collapse
MESH Headings
- Cell Separation
- Chorion/cytology
- Chorion/enzymology
- Decidua/cytology
- Decidua/enzymology
- Endothelial Cells/cytology
- Endothelial Cells/enzymology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/enzymology
- Epitopes/immunology
- Female
- Gene Expression Regulation, Enzymologic
- HLA-DR Antigens
- Humans
- Immunohistochemistry
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Maternal-Fetal Exchange
- Paraffin Embedding
- Pregnancy
- Pregnancy Trimester, First/metabolism
- Protein Transport
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Tryptophan/metabolism
Collapse
Affiliation(s)
- Astrid Blaschitz
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Martin Gauster
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Ingrid Lang
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Petra Maschke
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Daniela Ulrich
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Eva Karpf
- Institute of Pathology, Center for Applied Biomedicine, Medical University of Graz, Graz, Austria
| | - Osamu Takikawa
- Laboratory of Radiation Safety, National Institute of Longevity Science, National Center for Geriatrics and Gerontology, Obu City, Japan
| | - Michael G. Schimek
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Gottfried Dohr
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Peter Sedlmayr
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
40
|
Palani S, Maksimow M, Miiluniemi M, Auvinen K, Jalkanen S, Salmi M. Stabilin-1/CLEVER-1, a type 2 macrophage marker, is an adhesion and scavenging molecule on human placental macrophages. Eur J Immunol 2011; 41:2052-63. [PMID: 21480214 DOI: 10.1002/eji.201041376] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 01/06/2023]
Abstract
Stabilin-1/common lymphatic endothelial and vascular endothelial receptor-1 (CLEVER-1) is a multidomain protein present in lymphatic and vascular endothelial cells and type 2 immunosuppressive macrophages. In adults, stabilin-1/CLEVER-1 is a scavenging receptor and an adhesion molecule, but much less is known about its role during development. Here, we studied the expression and functions of macrophage stabilin-1/CLEVER-1 in human placenta and during human ontogeny. Using newly generated mAbs, we found that stabilin-1/CLEVER-1 is expressed on virtually all macrophages in term placenta, both in the decidua and in the placental villi. Placental stabilin-1/CLEVER-1 was involved in the scavenging of Ac-LDL (acetylated low density lipoprotein) and in the uptake of fluorescently labeled model antigen OVA. siRNA-mediated suppression of stabilin-1/CLEVER-1 altered the cytokine profile produced by placental macrophages. Stabilin-1/CLEVER-1 on placental macrophages mediated their adhesion to placental vessels and supported their transmigration through vascular endothelium. Finally, we found that stabilin-1/CLEVER-1 is induced very early in fetal macrophages, high endothelial venules, and lymphatic vessels in multiple lymphatic organs. Together, these data suggest that macrophage stabilin-1/CLEVER-1 can potentially regulate leukocyte migration and scavenging during the development of the placenta and fetus.
Collapse
Affiliation(s)
- Senthil Palani
- MediCity Research Laboratory, Department of Medical Biochemistry and Genetics, University of Turku, and National Institute of Health and Welfare, Turku, Finland
| | | | | | | | | | | |
Collapse
|
41
|
Joerink M, Rindsjö E, van Riel B, Alm J, Papadogiannakis N. Placental macrophage (Hofbauer cell) polarization is independent of maternal allergen-sensitization and presence of chorioamnionitis. Placenta 2011; 32:380-5. [PMID: 21419483 DOI: 10.1016/j.placenta.2011.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Macrophages can polarize in which M1/classically activated and M2/alternatively activated macrophages are considered to be the extremes. M1 macrophages are involved in inflammatory reactions, while M2 macrophages are suggested to be involved in homeostasis, parasite killing, tumor promotion, tissue remodeling and in allergic reactions. We hypothesized that polarization of placental macrophages (Hofbauer cells) is influenced by the allergen-sensitization status of the mother and/or the presence of chorioamnionitis, a placental inflammation. This Hofbauer cell polarization might be associated to the intrauterine environment and influence the risk of allergy development for the child. Therefore we aimed to determine the polarization status of Hofbauer cells in health and disease. METHODS We determined the expression of CD68, CX3CR1, IL-7R, DC-SIGN/CD209 and CD163 in placentas of sensitized versus non-sensitized mothers (n = 17), and placentas with or without histological chorioamnionitis (n = 10) by means of immunohistochemical analysis and quantitative real-time PCR (qPCR). RESULTS Protein expression of the M1 markers (CX3CR1, IL-7R and CCR7) could not be detected in any of the analyzed samples while the M2 markers (DC-SIGN, CD163 and mannose receptor/CD206) were readily detected. Significant differences between non-sensitized versus sensitized mothers and uncomplicated versus chorioamnionitis complicated pregnancies were not detected at protein or at mRNA expression level. CONCLUSIONS These results suggest that Hofbauer cells have an M2 phenotype, and that their polarization is not affected by maternal allergen-sensitization or by presence of chorioamnionitis.
Collapse
Affiliation(s)
- M Joerink
- Department of Medicine Solna, Clinical Allergy Research Unit, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
42
|
Kacerovsky M, Drahosova M, Andrys C, Hornychova H, Tambor V, Lenco J, Tosner J, Krejsek J. Amniotic fluid concentrations of soluble scavenger receptor for hemoglobin (sCD163) in pregnancy complicated by preterm premature rupture of the membranes and histologic chorioamnionitis. J Matern Fetal Neonatal Med 2010; 24:995-1001. [DOI: 10.3109/14767058.2010.538453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Oliveira LJ, McClellan S, Hansen PJ. Differentiation of the endometrial macrophage during pregnancy in the cow. PLoS One 2010; 5:e13213. [PMID: 20949061 PMCID: PMC2951363 DOI: 10.1371/journal.pone.0013213] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/13/2010] [Indexed: 12/16/2022] Open
Abstract
Background The presence of conceptus alloantigens necessitates changes in maternal immune function. One player in this process may be the macrophage. In the cow, there is large-scale recruitment of macrophages expressing CD68 and CD14 to the uterine endometrium during pregnancy. Methodology/Principal Findings In the present study, the function of endometrial macrophages during pregnancy was inferred by comparison of the transcriptome of endometrial CD14+ cells isolated from pregnant cows as compared to that of blood CD14+ cells. The pattern of gene expression was largely similar for CD14+ cells from both sources, suggesting that cells from both tissues are from the monocyte/macrophage lineage. A total of 1,364 unique genes were differentially expressed, with 680 genes upregulated in endometrial CD14+ cells as compared to blood CD14+ cells and with 674 genes downregulated in endometrial CD14+ cells as compared to blood CD14+ cells. Twelve genes characteristic of M2 activated macrophages (SLCO2B1, GATM, MRC1, ALDH1A1, PTGS1, RNASE6, CLEC7A, DPEP2, CD163, CCL22, CCL24, and CDH1) were upregulated in endometrial CD14+ cells. M2 macrophages play roles in immune regulation, tissue remodeling, angiogenesis and apoptosis. Consistent with a role in tissue remodeling, there was over-representation of differentially expressed genes in endometrium for three ontologies related to proteolysis. A role in apoptosis is suggested by the observation that the most overrepresented gene in endometrial CD14+ cells was GZMA. Conclusions Results indicate that at least a subpopulation of endometrial macrophages cells differentiates along an M2 activation pathway during pregnancy and that the cells are likely to play roles in immune regulation, tissue remodeling, angiogenesis, and apoptosis.
Collapse
Affiliation(s)
- Lilian J. Oliveira
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
| | - Steve McClellan
- Flow Cytometry Core Laboratory, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
| | - Peter J. Hansen
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
44
|
Thelen T, Hao Y, Medeiros AI, Curtis JL, Serezani CH, Kobzik L, Harris LH, Aronoff DM. The class A scavenger receptor, macrophage receptor with collagenous structure, is the major phagocytic receptor for Clostridium sordellii expressed by human decidual macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 185:4328-35. [PMID: 20810988 DOI: 10.4049/jimmunol.1000989] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clostridium sordellii is an emerging pathogen associated with highly lethal female reproductive tract infections following childbirth, abortion, or cervical instrumentation. Gaps in our understanding of the pathogenesis of C. sordellii infections present major challenges to the development of better preventive and therapeutic strategies against this problem. We sought to determine the mechanisms whereby uterine decidual macrophages phagocytose this bacterium and tested the hypothesis that human decidual macrophages use class A scavenger receptors to internalize unopsonized C. sordellii. In vitro phagocytosis assays with human decidual macrophages incubated with pharmacological inhibitors of class A scavenger receptors (fucoidan, polyinosinic acid, and dextran sulfate) revealed a role for these receptors in C. sordellii phagocytosis. Soluble macrophage receptor with collagenous structure (MARCO) receptor prevented C. sordellii internalization, suggesting that MARCO is an important class A scavenger receptor in decidual macrophage phagocytosis of this microbe. Peritoneal macrophages from MARCO-deficient mice, but not wild-type or scavenger receptor AI/II-deficient mice, showed impaired C. sordellii phagocytosis. MARCO-null mice were more susceptible to death from C. sordellii uterine infection than wild-type mice and exhibited impaired clearance of this bacterium from the infected uterus. Thus, MARCO is an important phagocytic receptor used by human and mouse macrophages to clear C. sordellii from the infected uterus.
Collapse
Affiliation(s)
- Tennille Thelen
- Molecular, Cellular, and Developmental Biology Graduate Program, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Oliveira LJ, Hansen PJ. ORIGINAL ARTICLE: Phenotypic Characterization of Macrophages in the Endometrium of the Pregnant Cow. Am J Reprod Immunol 2009; 62:418-26. [DOI: 10.1111/j.1600-0897.2009.00761.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
46
|
Renaud SJ, Graham CH. The Role of Macrophages in Utero-placental Interactions During Normal and Pathological Pregnancy. Immunol Invest 2009; 37:535-64. [DOI: 10.1080/08820130802191375] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Haniffa M, Ginhoux F, Wang XN, Bigley V, Abel M, Dimmick I, Bullock S, Grisotto M, Booth T, Taub P, Hilkens C, Merad M, Collin M. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J Exp Med 2009; 206:371-85. [PMID: 19171766 PMCID: PMC2646566 DOI: 10.1084/jem.20081633] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 12/18/2008] [Indexed: 12/12/2022] Open
Abstract
Animal models of hematopoietic stem cell transplantation have been used to analyze the turnover of bone marrow-derived cells and to demonstrate the critical role of recipient antigen-presenting cells (APC) in graft versus host disease (GVHD). In humans, the phenotype and lineage relationships of myeloid-derived tissue APC remain incompletely understood. It has also been proposed that the risk of acute GVHD, which extends over many months, is related to the protracted survival of certain recipient APC. Human dermis contains three principal subsets of CD45(+)HLA-DR(+) cells: CD1a(+)CD14(-) DC, CD1a(-)CD14(+) DC, and CD1a(-)CD14(+)FXIIIa(+) macrophages. In vitro, each subset has characteristic properties. After transplantation, both CD1a(+) and CD14(+) DC are rapidly depleted and replaced by donor cells, but recipient macrophages can be found in GVHD lesions and may persist for many months. Macrophages isolated from normal dermis secrete proinflammatory cytokines. Although they stimulate little proliferation of naive or memory CD4(+) T cells, macrophages induce cytokine expression in memory CD4(+) T cells and activation and proliferation of CD8(+) T cells. These observations suggest that dermal macrophages and DC are from distinct lineages and that persistent recipient macrophages, although unlikely to initiate alloreactivity, may contribute to GVHD by sustaining the responses of previously activated T cells.
Collapse
Affiliation(s)
- Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Florent Ginhoux
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Xiao-Nong Wang
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Venetia Bigley
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Michal Abel
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Ian Dimmick
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Sarah Bullock
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Marcos Grisotto
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Trevor Booth
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Peter Taub
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Catharien Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Miriam Merad
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
48
|
Jin Y, Wang X, Xiao Y, Lv C, Ding C, Lin Q. ORIGINAL ARTICLE: The Role of TSP-1 on Decidual Macrophages Involved in the Susceptibility to Unexplained Recurrent Spontaneous Abortion. Am J Reprod Immunol 2009; 61:253-60. [DOI: 10.1111/j.1600-0897.2009.00689.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
Alok A, Mukhopadhyay D, Karande AA. Glycodelin A, an immunomodulatory protein in the endometrium, inhibits proliferation and induces apoptosis in monocytic cells. Int J Biochem Cell Biol 2008; 41:1138-47. [PMID: 18996219 DOI: 10.1016/j.biocel.2008.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/08/2008] [Accepted: 10/10/2008] [Indexed: 11/28/2022]
Abstract
Glycodelin A (GdA), is a lipocalin with an immunomodulatory role, secreted by the endometrium under progesterone regulation and proposed to play a role in protecting the fetus from maternal immune attack. Glycodelin A has an inhibitory effect on the proliferation of T cells and B cells and also on the activity of natural killer cells. We have earlier demonstrated that the inhibitory effect of glycodelin A on T cell proliferation is due to apoptosis induced in these cells through the caspase-dependent intrinsic mitochondrial pathway. Studies reported until now have shown that glycodelin modulates the adaptive immune responses. We, therefore, decided to look at its effect, if any, on the innate immune system. The effect of glycodelin on monocytes was studied using human monocytic cell lines, THP1 and U937, and primary human monocytes as model systems. We demonstrated that glycodelin inhibited the proliferation of THP1 and U937 and induced apoptosis in these cells as well as in primary monocytes. We found that this signaling was caspase-independent but followed the intrinsic mitochondrial pathway of apoptosis. No effect of glycodelin was seen on the phagocytic ability of monocytes post-differentiation into macrophages. These observations suggest that, at the fetomaternal interface, glycodelin plays a protective role by deleting the monocytes that could become pro-inflammatory. Importantly, leaving the macrophages untouched to carry on with efficient clearance of the apoptotic cells.
Collapse
Affiliation(s)
- Anshula Alok
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
50
|
Oliveira LJ, Hansen PJ. Deviations in populations of peripheral blood mononuclear cells and endometrial macrophages in the cow during pregnancy. Reproduction 2008; 136:481-90. [DOI: 10.1530/rep-08-0218] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The presence of conceptus alloantigens necessitates changes in maternal immune function. Here, we used the cow to evaluate whether species with epitheliochorial placentation have changes in specific leukocyte populations during pregnancy similar to those reported in species with hemotropic placentae. At days 33–34 of pregnancy, there was no effect of pregnancy status on the number of cells positive for CD8, CD4, γδT cell receptor, or the monocyte marker CD68 in the peripheral blood mononuclear cell (PBMC) population. There was, however, an increase in the proportion of CD4+cells that were positive for CD25. There was no effect of status on the proportion of PBMCs that were CD8+when comparing preparturient cows to nonpregnant cows. However, preparturient cows had an increased percentage of PBMCs that were γδT cells and CD4+CD25+and a tendency for a lower percentage that were CD68+cells. Using immunolocalization with anti-CD68, it was found that pregnant cows had increased numbers of CD68+cells in the endometrial stroma as early as days 54–100 of gestation; this increase persisted through the last time examined (day 240 of gestation). Cells positive for CD68 were also positive for another macrophage/monocyte marker, CD14. In conclusion, pregnancy in the cow is associated with changes in peripheral and endometrial leukocyte numbers, which are similar to patterns observed in other species.
Collapse
|