1
|
Galimova GR, Medvedkov IA, Mebel AM. The Role of Methylaryl Radicals in the Growth of Polycyclic Aromatic Hydrocarbons: The Formation of Five-Membered Rings. J Phys Chem A 2022; 126:1233-1244. [PMID: 35138856 DOI: 10.1021/acs.jpca.2c00060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The regions of the C13H11 potential energy surface (PES) related to the unimolecular isomerization and decomposition of the 1-methylbiphenylyl radical and accessed by the 1-/2-methylnaphthyl + C2H2 reactions have been explored by ab initio G3(MP2,CC)//B3LYP/6-311G(d,p) calculations. The kinetics of these reactions relevant to the growth of polycyclic aromatic hydrocarbons (PAH) under high-temperature conditions in circumstellar envelopes and in combustion flames has been studied employing the RRKM-Master Equation approach. The unimolecular reaction of 1-methylbiphenylyl proceeding via a five-membered ring closure followed by H elimination is predicted to be very fast, on a submicrosecond scale above 1000 K and to result in the formation of an embedded five-membered ring in the 9H-fluorene product. The 1-/2-methylnaphthyl + C2H2 reaction mechanism involves acetylene addition to the radical on the methylene group followed by a six- or five-membered ring closure and aromatization via an H atom loss. Despite of the complexity of the C13H11 PES, these straightforward pathways are dominant in the high-temperature regime (above ∼1000 K), with the prevailing products being phenalene, with a significant contribution of 1H-cyclopenta(a)naphthalene, for 1-methylnaphthyl + C2H2, and 1H-cyclopenta(b)naphthalene and 3H-cyclopenta(a)naphthalene, for 2-methylnaphthyl + C2H2. The methylnaphthyl reactions with acetylene represent a clean source of the three-ring PAHs, but they are relatively slow owing to the high entrance barriers of ∼10 kcal/mol, with the rate constants of about an order of magnitude lower as compared to those for naphthyl + allene and σ-aryl + C2H2. The 1-methylnaphthyl + C2H2 and 2-methylnaphthyl + C2H2 reactions represent prototypes for PAH growth by an extra six- and five-membered ring on a zigzag edge or a corner of PAH and the generated modified Arrhenius expressions are recommended for kinetic modeling of PAH expansion by the mechanism of acetylene addition to methylaryl radicals.
Collapse
Affiliation(s)
- Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Department of Physics, Samara National Research University, Samara 443086, Russian Federation
| | - Iakov A Medvedkov
- Department of Physics, Samara National Research University, Samara 443086, Russian Federation.,Lebedev Physical Institute, Samara 443011, Russian Federation
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
2
|
Doddipatla S, Galimova GR, Wei H, Thomas AM, He C, Yang Z, Morozov AN, Shingledecker CN, Mebel AM, Kaiser RI. Low-temperature gas-phase formation of indene in the interstellar medium. SCIENCE ADVANCES 2021; 7:7/1/eabd4044. [PMID: 33523847 PMCID: PMC7775774 DOI: 10.1126/sciadv.abd4044] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/04/2020] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are fundamental molecular building blocks of fullerenes and carbonaceous nanostructures in the interstellar medium and in combustion systems. However, an understanding of the formation of aromatic molecules carrying five-membered rings-the essential building block of nonplanar PAHs-is still in its infancy. Exploiting crossed molecular beam experiments augmented by electronic structure calculations and astrochemical modeling, we reveal an unusual pathway leading to the formation of indene (C9H8)-the prototype aromatic molecule with a five-membered ring-via a barrierless bimolecular reaction involving the simplest organic radical-methylidyne (CH)-and styrene (C6H5C2H3) through the hitherto elusive methylidyne addition-cyclization-aromatization (MACA) mechanism. Through extensive structural reorganization of the carbon backbone, the incorporation of a five-membered ring may eventually lead to three-dimensional PAHs such as corannulene (C20H10) along with fullerenes (C60, C70), thus offering a new concept on the low-temperature chemistry of carbon in our galaxy.
Collapse
Affiliation(s)
- Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
- Samara National Research University, Samara 443086, Russia
| | - Hongji Wei
- Department of Physics and Astronomy, Benedictine College, Atchison, KS 66002, USA
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Chao He
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | | | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
3
|
Roithová J, Jašík J, Del Pozo Mellado JJ, Gerlich D. Electronic spectra of ions of astrochemical interest: from fast overview spectra to high resolution. Faraday Discuss 2019; 217:98-113. [PMID: 31016298 PMCID: PMC8639220 DOI: 10.1039/c8fd00196k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/12/2018] [Indexed: 11/21/2022]
Abstract
The combination of cryogenic ion traps with suitable light sources and standard tools of mass spectrometry has led to many innovative applications in previous years. This paper presents the combination of our versatile instrument with a supercontinuum laser for the rapid identification of ions that might be of special interest, e.g. as candidates for diffuse interstellar bands carriers. Using a linear wire quadrupole ion trap at 3 K, routine He-tagging, long irradiation times, and the brilliance and wide spectral range of a crystal fiber laser, mass selected ions have been exposed to spectral fluencies larger than 10 mJ (nm cm2)-1. These conditions result in an unsurpassed sensitivity, allowing us to find out within a few minutes and with nm accuracy, where photo absorption occurs with cross sections above 10-18 cm2. In this contribution, we present a variety of ions, probed between 420 and 720 nm. They have been generated by electron- or electrospray ionization of (polycyclic) aromatic hydrocarbons. For selected candidates, we recorded spectra with higher resolution and in the IR range. The anthracene dication has been selected to present a detailed analysis of our new results.
Collapse
Affiliation(s)
- Jana Roithová
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands.
| | - Juraj Jašík
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Jesus J Del Pozo Mellado
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands.
| | - Dieter Gerlich
- Department of Physics, University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
4
|
Strelnikov DV, Jašík J, Gerlich D, Murata M, Murata Y, Komatsu K, Roithová J. Near- and Mid-IR Gas-Phase Absorption Spectra of H 2@C 60+-He. J Phys Chem A 2018; 122:8162-8166. [PMID: 30060658 DOI: 10.1021/acs.jpca.8b06222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Near- and mid-IR absorption spectra of endohedral H2@C60+ have been measured using He-tagging. The samples have been prepared using a "molecular surgery" synthetic approach and were ionized and spectroscopically characterized in the gas phase. In contrast to neutral C60 and H2@C60, the corresponding He-tagged cationic species show distinct spectral differences. Shifts and line splittings in the near- and mid-IR regions indicate the influence of the caged hydrogen molecule on both the electronic ground and excited states. Possible relevance to astronomy is discussed.
Collapse
Affiliation(s)
- Dmitry V Strelnikov
- Division of Physical Chemistry of Microscopic Systems , Karlsruhe Institute of Technology (KIT) , Karlsruhe , Germany
| | - Juraj Jašík
- Department of Organic Chemistry, Faculty of Science , Charles University in Prague , 12843 Prague 2 , Czech Republic
| | - Dieter Gerlich
- Department of Physics , University of Technology , 09107 Chemnitz , Germany
| | - Michihisa Murata
- Institute for Chemical Research , Kyoto University , Kyoto 611-0011 , Japan
| | - Yasujiro Murata
- Institute for Chemical Research , Kyoto University , Kyoto 611-0011 , Japan
| | - Koichi Komatsu
- Institute for Chemical Research , Kyoto University , Kyoto 611-0011 , Japan
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science , Charles University in Prague , 12843 Prague 2 , Czech Republic
| |
Collapse
|